福建省福州市第一中学2020-2021学年高一上学期期末数学试题 答案和解析

合集下载

福建省福州市八县一中2020-2021学年高一地理上学期期末联考试题(含解析)

福建省福州市八县一中2020-2021学年高一地理上学期期末联考试题(含解析)

福建省福州市八县一中2020-2021学年高一地理上学期期末联考试题(含解析)完卷时间 90分钟满分 100分一、单选题(本大题共25小题,每小题2分,共50.0分)地球上的极光是太阳风被磁场捕获,轰击大气层,使大气电离产生的发光现象。

金星是我们观测到的除日、月之外的最亮天体,金星大气层比地球大气层浓密,导致只有少量的太阳辐射能到达金星地表。

据此完成下列小题。

1. 太阳风主要发生在太阳()A. 光球层B. 色球层C. 日冕层D. 太阳内部2. 金星上没有极光现象,其最合理的解释是()A. 距太阳远B. 大气稀薄C. 太阳辐射太弱D. 没有磁场【答案】1. C 2. D【解析】【1题详解】根据太阳活动的类型,光球层常见黑子现象;色球层常见耀斑和日珥;太阳活动是发生在太阳大气层的现象,不是在太阳内部;ABD项错误。

太阳风主要发生在太阳日冕层,故选C正确。

【2题详解】极光是出现于地球的高纬地区上空,是一种绚丽多彩的发光现象。

地球的极光是太阳的高能带电粒子流进入地球磁场,与极地高层大气碰撞发光而形成,而金星没有磁场,D对;金星在八大行星中距离太阳第二远,距离太阳近,太阳风可以到达,A、C错;金星有大气浓度高且与极光产生没有关系,B错。

故选D正确。

某太阳能设备生产公司,测试新研发的“追日型”太阳能发电设备。

电池板可沿水平方向(左右移动)和竖直方向旋转(上下移动),使电池板始终正对太阳,从而提高太阳能利用率。

据图回答下列各题。

3. 在下列城市中,太阳能发电量效果最差的城市是()A. 海口B. 拉萨C. 成都D. 乌鲁木齐4. 在我国城市测试时,一年中,电池板水平旋转角度最大的节气A. 春分B. 夏至C. 秋分D. 冬至【答案】3. C 4. B【解析】【分析】考查影响太阳辐射分布的因素和正午太阳高度角的变化规律。

【3题详解】太阳辐射越弱,则太阳能越贫乏、发电效果越差。

四个城市相比,拉萨海拔高,大气稀薄,晴天多且空气洁净,大气对太阳辐射的削弱作用弱,获得的太阳辐射最强;乌鲁木齐为温带大陆性气候,年降水量少,晴天多,太阳辐射强;海口降水量较多,阴雨天气多,但纬度低,太阳高度角较大,太阳辐射较多;成都位于四川盆地,盆地地形,水汽难以扩散,多云雾,大气对太阳辐射的削弱作用强,太阳能资源贫乏;因此四地太阳能发电效果最差的是成都,故选C,A、B、D错。

福建省福州市福清市高中联合体2020-2021学年高一上学期期末考试数学试题(含解析)

福建省福州市福清市高中联合体2020-2021学年高一上学期期末考试数学试题(含解析)

福清市高中联合体2020—12021学年第一学期高一年期末考试数学试卷(完卷时间:120分钟;满分:150分)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.第Ⅱ卷用0.5毫米黑色签字笔在答题卡上书写作答.在试题卷上作答,答案无效.3.考试结束,考生必须将试题卷和答题卡一并交回.第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}1,0,1,2,3A =-,{}31B x x =-<,则A B =( )A. {}3B. {}1,0,1-C.1,0,1,2D. {}1,0,1,2,3-2. 命题“0x ∀≥,sin x x ≤”的否定是( ) A. 0x ∀≥,sin x x > B. 00x ∃<,00sin x x > C. 00x ∃≥,00sin x x >D. 00x ∃≥,00sin x x ≤3. 函数()f x x =是( ) A. 奇函数,且在R 上单调递减 B. 奇函数,且在R 上单调递增 C. 偶函数,且在R 上单调递减D. 偶函数,且在R 上单调递增4. 若角α的顶点与直角坐标系的原点重合,始边与x 轴的非负半轴重合,终边经过点(1,-,则sin 2α=( )A. B. 12-C.12D.25. 函数()38ln f x x x =-+的零点所在区间应是( )A. ()1,2B. ()2,3C. ()3,4D. ()4,56. 要得到函数sin 23y x π⎛⎫=- ⎪⎝⎭的图象,只需将函数sin 24y x π⎛⎫=-⎪⎝⎭图象上所有点的横坐标( ) A. 向左平移12π个单位长度B. 向右平移12π个单位长度C. 向左平移24π个单位长度D. 向右平移24π个单位长度7. 已知51log 4a =,1514b ⎛⎫= ⎪⎝⎭,41log 5c =,则a ,b ,c 的大小关系为( )A. a b c >>B. b c a >>C. b a c >>D. c b a >>8. 月均温全称月平均气温,气象学术语,指一月所有日气温的平均气温.某城市一年中12个月的月均温y (单位:C )与月份x (单位:月)的关系可近似地用函数()sin 36y A x a π⎡⎤=-+⎢⎥⎣⎦(1,2,3,,12x =)来表示,已知6月份的月均温为29C ,12月份的月均温为17C ,则10月份的月均温为( ) A. 20CB. 20.5CC. 21CD. 21.5C二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9. 下列函数中,最小值是2的有( )A. 1y xx=+B. y =C. 223y x x =++D. e e x x y -=+10. 命题“x R ∀∈,210x ax -+≥”为真命题的一个必要不充分条件可以是( ) A. 22a -≤≤B. 2a ≥-C. 2a ≤D. 22a -<<11. 关于函数()sin cos f x x x =+有下述四个结论,其中正确的是:( ) A. ()f x 的图象关于原点对称 B. ()f x 在区间,4ππ⎛⎫⎪⎝⎭单调递减 C. ()f x 在[],ππ-有2个零点D. ()f x 的最大值为212. 已知定义在R 上的函数()f x 满足()()4f x f x +=,若()1y f x =-的图象关于直线1x =对称,且对任意的[]12,0,2x x ∈,且12x x ≠,都有()()()12120x x f x f x -->⎡⎤⎣⎦,则下列结论正确的是( ) A. ()f x 是偶函数B. ()f x 在()2018,2020上单调递增C. 4是函数()f x 的周期D. ()f x 在()2018,2020上单调递减第Ⅱ卷注意事项: 用0.5毫米黑色签字笔在答题卡上书写作答.在试题卷上作答,答案无效.三、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.13. 已知函数()1,12,1x f x x x <⎧=⎨≥⎩则()()0f f =________.14. 已知22tan 31tan αα=--,且α为锐角,则α=________.15. 如图,Rt ABC 的三个顶点A ,B ,C 恰好分别落在函数()21xy x =>,y x =,12log y x =的图象上,且B ,C 两点关于x 轴对称,则点A 的横坐标为________.16. 已知定义在R 上的偶函数()f x ,当0x ≥时,函数()cos ,01,,1,x x f x x x π≤<⎧=⎨-≥⎩则满足()()12f x f x +<的x 的取值范围是________.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 求下列各式的值: (1)(0312932224-⎛⎫--⨯ ⎪⎝⎭;(2)55251log 3log log 25log 215++⨯. 18. 已知全集U =R ,集合{}20A x x a =+>,()(){}140B x x x =+-≤. (1)当2a =时,求()UA B ;(2)若B A ⊆,求实数a 的取值范围.19. 在①1k =-,②1k =这两个条件中任选一个,补充在下面问题中. 已知函数()kf x kx x=-,且_______, (1)求()f x 的定义域,并判断()f x 的奇偶性;(2)判断()f x 的单调性,并用定义给予证明.20. 已知,2παπ⎛⎫∈ ⎪⎝⎭,且2sin cos 222αα-= (1)求cos α的值; (2)若()4sin 5αβ-=,,2πβπ⎛⎫∈ ⎪⎝⎭,求cos β的值. 21. 某儿童活动中心,为儿童修建一个面积为100平方米的矩形游泳池,为保障儿童生命安全,在其四周都留有宽2米的路面,问所选场地的长和宽各为多少时,才能使占用场地的面积S 最小,并求出该最小值? 22. 已知函数()2sin 36f x x ππ⎛⎫=+⎪⎝⎭.(1)用“五点作图法”在给定的坐标系中,画出函数()f x 在[]0,6上的图象; (2)求()f x 图象的对称轴与单调递增区间; (3)当[]0,x m ∈时,()12f x ≤≤,求实数m 取值范围.福清市高中联合体2020—12021学年第一学期高一年期末考试数学试卷(解析版)(完卷时间:120分钟;满分:150分)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.第Ⅱ卷用0.5毫米黑色签字笔在答题卡上书写作答.在试题卷上作答,答案无效.3.考试结束,考生必须将试题卷和答题卡一并交回.第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}1,0,1,2,3A =-,{}31B x x =-<,则A B =( )A. {}3B. {}1,0,1-C.1,0,1,2D. {}1,0,1,2,3-【答案】A 【解析】 【分析】先求得集合B ,再根据交集定义直接得结果.【详解】因为{}()312B x x =-<=+∞,,又{}1,0,1,2,3A =-,所以{}3A B ⋂=, 故选:A.2. 命题“0x ∀≥,sin x x ≤”的否定是( ) A. 0x ∀≥,sin x x > B. 00x ∃<,00sin x x > C. 00x ∃≥,00sin x x > D. 00x ∃≥,00sin x x ≤【答案】C 【解析】 【分析】由全称命题的否定变换形式即可得出结果. 【详解】命题“0x ∀≥,sin x x ≤” 的否定是00x ∃≥,00sin x x >.故选:C3. 函数()f x x =是( ) A. 奇函数,且在R 上单调递减 B. 奇函数,且在R 上单调递增 C. 偶函数,且在R 上单调递减 D. 偶函数,且在R 上单调递增【答案】B 【解析】 【分析】利用函数的奇偶性定义判断奇偶性,根据函数的解析式判断单调性. 【详解】函数的定义域为R ,关于原点对称,又()(()f x x x f x -=-+=-+=-,所以()f x是奇函数,又,y x y ==R 上的增函数,所以()f x 是R 上的增函数, 故选:B4. 若角α的顶点与直角坐标系的原点重合,始边与x 轴的非负半轴重合,终边经过点(1,-,则sin 2α=( )A. B. 12-C.12D.【答案】D 【解析】 【分析】根据任意角的三角函数的定义,求出sin α和cos α,再由二倍角的正弦公式,即可求出结果.【详解】因为角α的顶点与直角坐标系的原点重合,始边与x轴的非负半轴重合,终边经过点(1,-,所以sin 2α==-,1cos 2α==-,因此1sin 22sin cos 22ααα⎛⎛⎫==⨯⨯-= ⎪ ⎝⎭⎝⎭.故选:D.5. 函数()38ln f x x x =-+的零点所在区间应是( )A. ()1,2B. ()2,3C. ()3,4D. ()4,5【答案】B 【解析】 【分析】利用函数的零点存在定理求解.【详解】由函数()38ln f x x x =-+, 因为()()2ln 220,3ln310f f =-<=+>, 所以函数的零点所在区间应是()2,3 故选:B6. 要得到函数sin 23y x π⎛⎫=- ⎪⎝⎭的图象,只需将函数sin 24y x π⎛⎫=-⎪⎝⎭图象上所有点的横坐标( ) A. 向左平移12π个单位长度B. 向右平移12π个单位长度C. 向左平移24π个单位长度 D. 向右平移24π个单位长度【答案】D 【解析】 【分析】根据sin 2sin 23244y x x πππ⎡⎤⎛⎫⎛⎫=-=-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,利用平移变换求解. 【详解】因为sin 2sin 23244y x x πππ⎡⎤⎛⎫⎛⎫=-=-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 所以要得到函数sin 23y x π⎛⎫=- ⎪⎝⎭的图象,只需由sin 24y x π⎛⎫=- ⎪⎝⎭图象上所有点横坐标向右平移24π个单位长度,故选:D 7. 已知51log 4a =,1514b ⎛⎫= ⎪⎝⎭,41log 5c =,则a ,b ,c 的大小关系为( )A. a b c >>B. b c a >>C. b a c >>D. c b a >>【答案】C 【解析】 【分析】利用指数函数和对数函数的单调性判断.【详解】因为55510log log 4log 514a >==->-=-,15110144b ⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭, 4441log log 5log 415c ==-<-=-,所以b a c >> 故选:C8. 月均温全称月平均气温,气象学术语,指一月所有日气温的平均气温.某城市一年中12个月的月均温y (单位:C )与月份x (单位:月)的关系可近似地用函数()sin 36y A x a π⎡⎤=-+⎢⎥⎣⎦(1,2,3,,12x =)来表示,已知6月份的月均温为29C ,12月份的月均温为17C ,则10月份的月均温为( ) A. 20C B. 20.5CC. 21CD. 21.5C【答案】A 【解析】 【分析】由题意得出关于A 、a 的方程组,可得出函数解析式,在函数解析式中令10x =可得结果.【详解】由题意可得sin 2923sin 172A a A a A a a A ππ⎧+=+=⎪⎪⎨⎪+=-=⎪⎩,解得623A a =⎧⎨=⎩,所以,函数解析式为()6sin 3236y x π⎡⎤=-+⎢⎥⎣⎦, 在函数解析式中,令10x =,可得716sin236232062y π⎛⎫=+=⨯-+= ⎪⎝⎭. 因此,10月份的月均温为20C . 故选:A.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9. 下列函数中,最小值是2的有( )A. 1y xx=+B. y =C. 223y x x =++D. e e x x y -=+【答案】BCD 【解析】 【分析】根据基本不等式逐一判断即可.【详解】对于A ,1y x x =+,当0x >时,12y x x =+≥=,当且仅当1x =时取等号;当0x <时,12y x x ⎛⎫=--+≤-=- ⎪-⎝⎭, 当且仅当1x =-时取等号,故A 不正确;对于B ,2y=≥=,当且仅当1x =时取等号. 对于C ,()2223122y x x x =++=++≥,当1x =-时,取最小值;对于D ,e e 2x x y -=+≥=,当且仅当0x =时取等号; 故选:BCD【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方10. 命题“x R ∀∈,210x ax -+≥”为真命题的一个必要不充分条件可以是( ) A. 22a -≤≤ B. 2a ≥- C. 2a ≤ D. 22a -<<【答案】BC 【解析】 【分析】根据题意,命题为真可得()240a ∆=--≤,求出a 的取值范围,再根据必要不充分条件即可求解. 【详解】由命题“x R ∀∈,210x ax -+≥”为真命题,可得()240a ∆=--≤,解得22a -≤≤, 对于A ,22a -≤≤是命题为真的充要条件; 对于B ,由2a ≥-不能推出22a -≤≤,反之成立, 所以2a ≥-是命题为真的一个必要不充分条件; 对于C ,2a ≤不能推出22a -≤≤,反之成立, 所以2a ≤也是命题为真的一个必要不充分条件; 对于D ,22a -<<能推出22a -≤≤,反之不成立, 22a -<<是命题为真的一个充分不必要条件.故选:BC11. 关于函数()sin cos f x x x =+有下述四个结论,其中正确的是:( ) A. ()f x 的图象关于原点对称 B. ()f x 在区间,4ππ⎛⎫⎪⎝⎭单调递减C. ()f x在[],ππ-有2个零点 D. ()f x 的最大值为2【答案】BC 【解析】 【分析】分sin 0x ≥,sin 0x <,将函数转化(),224sin cos ,2224x k x k f x x x x k x k πππππππππ⎛⎫+≤≤+ ⎪⎝⎭=+=⎛⎫++<<+ ⎪⎝⎭,再逐项求解判断.【详解】当sin 0x ≥,即22k x k πππ≤≤+时,()sin cos 4f x x x x π⎛⎫=+=+ ⎪⎝⎭,当sin 0x <,即222ππππ+<<+k x k 时,()sin cos 4f x x x x π⎛⎫=-+=+ ⎪⎝⎭,所以(),224sin cos ,2224x k x k f x x x x k x k πππππππππ⎛⎫+≤≤+ ⎪⎝⎭=+=⎛⎫++<<+ ⎪⎝⎭,A.因为函数定义域为R ,关于原点对称,又()()()()sin cos sin cos f x x x x x f x -=-+-=+=,所以()f x 是偶函数,其图象关于y 轴对称,故错误;B.当,4x ππ⎛⎫∈⎪⎝⎭时, 53,,42422x πππππ⎛⎫⎛⎫+∈⊆ ⎪ ⎪⎝⎭⎝⎭,因为sin y x =在3,22ππ⎡⎤⎢⎥⎣⎦上单调递减,所以()f x 在区间,4ππ⎛⎫⎪⎝⎭单调递减,故正确; C. 令()04f x x π⎛⎫=+= ⎪⎝⎭,则4x k ππ+=,因为[]0,x π∈,解得34x π=,又因为()f x 是偶函数,所以函数()f x 在[],ππ-有2个零点,故正确; D. ()f x,故错误; 故选:BC【点睛】关键点点睛:将函数变形为(),224,2224x k x k f x x k x k πππππππππ⎛⎫+≤≤+ ⎪⎝⎭=⎛⎫++<<+ ⎪⎝⎭是本题求解的关键.12. 已知定义在R 上的函数()f x 满足()()4f x f x +=,若()1y f x =-的图象关于直线1x =对称,且对任意的[]12,0,2x x ∈,且12x x ≠,都有()()()12120x x f x f x -->⎡⎤⎣⎦,则下列结论正确的是( ) A. ()f x 是偶函数 B. ()f x 在()2018,2020上单调递增 C. 4是函数()f x 的周期 D. ()f x 在()2018,2020上单调递减【答案】ACD 【解析】 【分析】A. 由()1y f x =-的图象与()y f x =的图象关系判断;C.由()f x 满足()()4f x f x +=判断;BD.由对任意的[]12,0,2x x ∈,且12x x ≠,都有()()()12120x x f x f x -->⎡⎤⎣⎦,得到()f x 在[]0,2上递增,再结合函数的周期性判断.【详解】因为()1y f x =-的图象关于直线1x =对称,所以()y f x =的图象关于直线0x =对称,所以()f x 是偶函数,故A 正确;()f x 满足()()4f x f x +=,所以4是函数()f x 的周期,故C 正确;因为对任意的[]12,0,2x x ∈,且12x x ≠,都有()()()12120x x f x f x -->⎡⎤⎣⎦,所以()f x 在[]0,2上递增,又()()()()20182,20200f f f f == ,所以()f x 在()2018,2020上单调递减,故D 正确B 错误; 故选:ACD第Ⅱ卷注意事项:用0.5毫米黑色签字笔在答题卡上书写作答.在试题卷上作答,答案无效. 三、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.13. 已知函数()1,12,1x f x x x <⎧=⎨≥⎩则()()0f f =________.【答案】2 【解析】 【分析】根据分段函数每段的定义域求解.【详解】因为函数()1,12,1x f x x x <⎧=⎨≥⎩所以()01f =, 所以()()()012ff f ==,故答案为:214. 已知22tan 1tan αα=-α为锐角,则α=________. 【答案】3π 【解析】 【分析】根据二倍角的正切公式,求出tan2α,再由α为锐角,即可求出α.【详解】因为22tan tan 21tan ααα==-α为锐角,所以02απ<<, 因此223πα=, 所以3πα=.故答案为:3π.15. 如图,Rt ABC 的三个顶点A ,B ,C 恰好分别落在函数()21xy x =>,y x =,12log y x =的图象上,且B ,C 两点关于x 轴对称,则点A 的横坐标为________.【答案】2 【解析】 【分析】设出点(),2tA t ,根据题意可知//AB x 轴,从而可得出点B ,进而可得点C ,代入对数函数的解析式即可求解.【详解】设出点(),2tA t ,ABC 是直角三角形,且B ,C 两点关于x 轴对称,∴//AB x 轴,A 和B 纵坐标相同,2t x ∴=4t x ∴=,()4,2t t B ∴,则()4,2t t C -,C 在12log y x =的图象上,则12log 42t t=-,整理可得22t t -=-,()1t >,解得2t =. 故答案为:216. 已知定义在R 上的偶函数()f x ,当0x ≥时,函数()cos ,01,,1,x x f x x x π≤<⎧=⎨-≥⎩则满足()()12f x f x +<的x 的取值范围是________. 【答案】113-<<x【解析】 【分析】根据cos y x =和y x =-的单调性,又 cos 1π=-,得到()f x 在 [0,)+∞上递减,再根据()f x 是偶函数,将不等式()()12f x f x +<转化为()()12fx f x +<求解.【详解】当0x ≥时,函数()cos ,01,,1,x x f x x x π≤<⎧=⎨-≥⎩当01x ≤<时, 0x ππ≤<,因为 cos y x =在 []0,π上递减,所以 ()f x 在 [0,1)上递减,当1≥x 时,y x =-递减,又 cos 1π=-,所以()f x 在 [0,)+∞上递减, 又因为()f x 是定义在R 上的偶函数, 则不等式()()12f x f x +<可化为:()()12f x f x +<,所以12x x +>, 解得113-<<x , 故答案为:113-<<x四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 求下列各式的值: (1)(03129324-⎛⎫--⨯ ⎪⎝⎭;(2)55251log 3log log 25log 215++⨯. 【答案】(1)3;(2)1. 【解析】 【分析】(1)根据指数的运算性质即可求解. (2)利用对数的运算性质即可求解. 【详解】(1)原式=33=+=(2)原式51lg 25lg 2log (3)15lg 2lg5=⨯+⨯ 152lg5lg 2log 5lg 2lg5-=+⨯ 12=-+ 1=.18. 已知全集U =R ,集合{}20A x x a =+>,()(){}140B x x x =+-≤. (1)当2a =时,求()UA B ;(2)若B A ⊆,求实数a 的取值范围. 【答案】(1){}|4x x ;(2)()2,+∞. 【解析】 【分析】(1)由2a =得到{}|1A x x =>-,再利用集合的补集和并集运算求解. (2)化简|2a A x x ⎧⎫=>-⎨⎬⎩⎭,{}|14B x x=-,再由B A ⊆求解.【详解】(1)当2a =时,集合{}|1A x x =>-,{}|1UxA x -=,因为()(){}|140B x x x =+-,所以{}|14B x x=-, 所以{}()|4U A B x x=.(2)因为{}|20A x x a =+>, 所以|2a A x x ⎧⎫=>-⎨⎬⎩⎭, 由(1)知,{}|14B x x=-,又因为B A ⊆,所以12a-<-, 解得2a >,所以实数a 的取值范围()2,+∞.19. 在①1k =-,②1k =这两个条件中任选一个,补充在下面问题中. 已知函数()kf x kx x=-,且_______,(1)求()f x 的定义域,并判断()f x 的奇偶性; (2)判断()f x 的单调性,并用定义给予证明. 【答案】(1)答案见解析;(2)答案见解析. 【解析】 【分析】选择①1k =-,可得1()f x x x =-,选择②1k =,可得1()f x x x=-. (1)使函数()f x 有意义,只需0x ≠;再求出()f x -与()f x 的关系即可求解. (2)根据证明函数单调性的步骤:取值、作差、变形、定号即可证明. 【详解】选择①1k =-,因为()kf x kx x =-,所以1()f x x x=-. (1)要使函数()f x 有意义,只需0x ≠, 所以函数()f x 的定义域为(,0)(0,)-∞+∞.因为11()()()f x x x f x x x-=--=--=--, 所以()f x 为奇函数.⑵ 函数()f x 在区间(,0)-∞和(0,)+∞均为增函数. 证明如下: 12,(0,)x x ∀∈+∞,且12x x <, 则12121211()()()f x f x x x x x -=--- 121212()x x x x x x -=-+12121()1)x x x x =-+( ()121212()1x x x x x x -+=,因为120x x <<,所以120x x -<,120x x >,1210x x +>, 所以12())0(f x f x -<,即12()()f x f x <, 故函数()f x 在区间(0,)+∞为增函数; 同理可证,函数()f x 在区间(,0)-∞为增函数;所以函数()f x 在区间(,0)-∞和(0,)+∞均为增函数. 选择②1k =,因为()kf x kx x =-,所以1()f x x x=-. (1)要使函数()f x 有意义,只需0x ≠, 所以函数()f x 的定义域为(,0)(0,)-∞+∞.因为11()()()()f x x x f x x x-=--=--=--, 所以()f x 奇函数.⑵ 函数()f x 在区间(,0)-∞和(0,)+∞均为减函数. 证明如下:12,(0,)x x ∀∈+∞,且12x x <, 则12121211()()()f x f x x x x x -=--- 212112()x x x x x x -=+- 21121()1x x x x ⎛⎫=-+ ⎪⎝⎭()211212()1x x x x x x -+=,因为120x x <<,所以210x x ->,120x x >,1210x x +>, 所以12())0(f x f x ->,即12()()f x f x >, 故函数()f x 在区间(0,)+∞为减函数; 同理可证,函数()f x 在区间(,0)-∞为减函数; 所以函数()f x 在区间(,0)-∞和(0,)+∞均为减函数.20. 已知,2παπ⎛⎫∈ ⎪⎝⎭,且sin cos 222αα-=. (1)求cos α的值; (2)若()4sin 5αβ-=,,2πβπ⎛⎫∈ ⎪⎝⎭,求cos β的值. 【答案】(1);(2. 【解析】 【分析】(1)将已知条件两边平方,求得sin α的值,进而求得cos α的值.(2)先求得()cos αβ-的值,然后利用cos cos[()]βααβ=--,结合两角差的余弦公式,求得cos β的值.【详解】(1)将sincos222αα-=两边同时平方,得11sin 2α-=,则1sin 2α=,又2παπ∈(,),所以cos 2α==-.(2)由(1)知,1sin ,cos 2αα==, 因为2παπ∈(,),2βπ∈π(,),所以22ππαβ-<-<.又因为4sin()5αβ-=,所以3cos()5αβ-,所以cos cos[)]βααβ=--( cos cos()sin sin()ααβααβ=-+-314525=+⨯, 【点睛】关键点点睛:对于三角函数给值求值的问题,关键在于运用已知角的和,差,二倍的运算表示待求的角,再选择相关公式得以求值.21. 某儿童活动中心,为儿童修建一个面积为100平方米的矩形游泳池,为保障儿童生命安全,在其四周都留有宽2米的路面,问所选场地的长和宽各为多少时,才能使占用场地的面积S 最小,并求出该最小值? 【答案】长为14米,宽为14米;196平方米. 【解析】 【分析】先设泳池的长为x 米,宽为y 米,列出式子,再利用基本不等式即可求解.【详解】解:设游泳池的长为x 米,宽为y 米,则场地长为(4)x +米,宽为(4)y +米,()1000,0xy x y =>>,(4)(4)S x y =++ 4()16xy x y =+++ 100164()x y =+++ 1164()x y =++1168xy ≥+11680=+196=,当且仅当“10x y ==”时取等号.∴当10x y ==时,S 取得最小值为196平方米,此时场地长为14米,宽为14米.22. 已知函数()2sin 36f x x ππ⎛⎫=+⎪⎝⎭.(1)用“五点作图法”在给定的坐标系中,画出函数()f x 在[]0,6上的图象; (2)求()f x 图象的对称轴与单调递增区间;(3)当[]0,x m ∈时,()12f x ≤≤,求实数m 的取值范围.【答案】(1)答案见解析;(2)对称轴方程为()31x k k Z =+∈,递增区间为[]()62,61k k k -+∈Z ;(3)[1,2].【解析】 【分析】(1)由[]0,6x ∈,计算出36x ππ+的取值范围,通过列表、描点、连线,可作出函数()f x 在[]0,6上的图象; (2)解方程()362x k k Z ππππ+=+∈可得出函数()f x 的对称轴方程,解不等式()222362k x k k Z ππππππ-≤+≤+∈可得函数()f x 的单调递增区间;(3)利用(1)中的图象结合()12f x ≤≤可得出实数m 的取值范围. 【详解】(1)因为()2sin 36f x x ππ⎛⎫=+ ⎪⎝⎭,当[]0,6x ∈时,13,3666x ππππ⎡⎤+∈⎢⎥⎣⎦, 列表如下:x0 1 524112636xππ+6π2ππ32π2π136πy 1 2 0 2-0 1作图如下:(2)因为()2sin36f x xππ⎛⎫=+⎪⎝⎭,令()362x k k Zππππ+=+∈,解得()31x k k Z=+∈,令()222362k x k k Zππππππ-≤+≤+∈,解得()6261k x k k Z-≤≤+∈,所以()f x的对称轴方程为()31x k k Z=+∈,递增区间为[]()62,61k k k-+∈Z;(3)[]0,x m∈,,36636mxπππππ⎡⎤∴+∈+⎢⎥⎣⎦,又()12f x≤≤,由(1)的图象可知,12m≤≤,m∴的取值范围是[]1,2.【点睛】方法点睛:函数()()sin0y A x Aωϕω=+>>0,的图象的两种作法是五点作图法和图象变换法:(1)五点法:用“五点法”作()()sin0y A x Aωϕω=+>>0,的简图,主要是通过变量代换,设z xωϕ=+,由z取0、2π、π、32π、2π来求出相应的x,通过列表,计算得出五点坐标,描点后得出图象;(2)三角函数图象进行平移变换时注意提取x的系数,进行周期变换时,需要将x的系数变为原来的ω倍,要特别注意相位变换、周期变换的顺序,顺序不同,其变换量也不同.。

福建省漳州市2020-2021学年学年高一数学上学期期末考试试题(含解析)

福建省漳州市2020-2021学年学年高一数学上学期期末考试试题(含解析)

福建省漳州市2020-2021学年学年高一数学上学期期末考试试题(含解析)本试卷共5页,22题.全卷满分150分.考试用时120分钟.注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束,考生必须将试题卷和答题卡一并交回.一.单项选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{|4}A x x =>,{|2}B x x ,则A B =( )A. (2,)+∞B. (4,)+∞C. (2,4)D. (,4)-∞【答案】B 【解析】 【分析】由交集的定义求解即可. 【详解】{|{|2}4}{|4}x A B x x x x x =>>=>故选:B【点睛】本题主要考查了集合间的交集运算,属于基础题. 2.sin(600)-︒的值是( )A.12B. 12-C.2D. 【答案】C 【解析】 【分析】原式中的角度变形后,利用诱导公式及特殊角的三角函数值计算即可得到结果.【详解】解:()()()sin 600sin 720120sin120sin 18060sin60-︒=-︒+︒=︒=︒-︒=︒= 故选C .【点睛】此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键. 3.下列各函数的值域与函数y x =的值域相同的是( ) A. 2yxB. 2xy =C. sin y x =D.2log y x =【答案】D 【解析】 【分析】分别求出下列函数的值域,即可判断. 【详解】函数y x =的值域为R20y x =≥,20x y =>则A ,B 错误;函数sin y x =的值域为[]1,1-,则C 错误; 函数2log y x =的值域为R ,则D 正确; 故选:D【点睛】本题主要考查了求具体函数的值域,属于基础题.4.已知函数42,0,()log ,0,x x f x x x ⎧=⎨>⎩则((1))f f -=( )A. 2-B. 12-C.12D. 2【答案】B 【解析】 【分析】分别计算(1)f -,12f ⎛⎫ ⎪⎝⎭即可得出答案.【详解】121(1)2f --==,241211log log 12222f -⎛⎫===- ⎪⎝⎭所以1((1))2f f -=- 故选:B【点睛】本题主要考查了已知自变量求分段函数的函数值,属于基础题. 5.函数log ||()(1)||a x x f x a x =>图象的大致形状是( )A. B.C. D.【答案】A 【解析】 【分析】判断函数函数()f x 为奇函数,排除BD 选项,取特殊值排除C ,即可得出答案. 【详解】log ||log ||()()||||a a x x x x f x f x x x ---==-=--所以函数()f x 为奇函数,故排除BD.log ||()10||a a a f a a ==>,排除C故选:A【点睛】本题主要考查了函数图像的识别,属于基础题.6.已知0.22log 0.2,2,sin 2a b c ===,则( )A. a b c <<B. a c b <<C. c a b <<D.b c a <<【答案】B【解析】 【分析】分别求出a ,b ,c 的大概范围,比较即可.【详解】因为22log 0.2log 10<=,0sin 21<<,0.20221>= 所以a c b <<. 故选:B【点睛】本题主要考查了指数,对数,三角函数的大小关系,找到他们大概的范围再比较是解决本题的关键,属于简单题.7.已知以原点O 为圆心的单位圆上有一质点P ,它从初始位置01(,22P 开始,按逆时针方向以角速度1/rad s 做圆周运动.则点P 的纵坐标y 关于时间t 的函数关系为 A. sin(),03y t t π=+≥ B. sin(),06y t t π=+≥ C. cos(),03y t t π=+≥D. cos(),06y t t π=+≥【答案】A 【解析】当时间为t 时,点P 所在角的终边对应的角等于3t π+, 所以点P 的纵坐标y 关于时间t 的函数关系为sin(),03y t t π=+≥.8.已知函数()f x 为定义在(0,)+∞的增函数,且满足()()()1f x f y f xy +=+.若关于x 的不等式(1sin )(1)(cos )(1sin )f x f f a x f x --<+-+恒成立,则实数a 的取值范围为( ) A. 1a >- B. 14a >-C. 1a >D. 2a >【答案】D 【解析】 【分析】将题设不等式转化为2(cos )(cos )f x f a x <+,根据函数()f x 的单调性解不等式得出2cos cos x a x <+,通过换元法,构造函数2()g x t t =-,[]1,1t ∈-求出最大值,即可得到实数a 的取值范围.【详解】(1sin )(1)(cos )(1sin )f x f f a x f x --<+-+(1sin )(1sin )(cos )(1)f x f x f a x f ∴-++<++因为()()()2(1sin )(1sin )1sin 1sin 1(cos)1f x f x fx x f x -++=-++=+,(cos )(1)(cos )1f a x f f a x ++=++所以2(cos )(cos )f x f a x <+在(0,)x ∈+∞恒成立故2cos cos x a x <+在(0,)x ∈+∞恒成立,即2cos cos x x a -<在(0,)x ∈+∞恒成立 令[]cos ,1,1x t t =∈-,则22()cos cos g x x x t t =-=-所以函数2()g x t t =-在11,2⎡⎤-⎢⎥⎣⎦上单调递减,在1,12⎛⎤ ⎥⎝⎦上单调递增,(1)2(1)0g g -=>= 所以2a > 故选:D【点睛】利用函数的单调性解抽象不等式以及不等式的恒成立问题,属于中档题.二.多项选择题:本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,选对但不全的得3分,有选错的得0分.9.设11,,1,32α⎧⎫∈-⎨⎬⎩⎭,则使函数y x α=的定义域是R ,且为奇函数的α值可以是( )A. 1-B.12C. 1D. 3【答案】CD 【解析】 【分析】求出对应α值函数y x α=的定义域,利用奇偶性的定义判断即可.【详解】当α的值为11,2-时,函数y x α=的定义域分别为()(),00,-∞+∞,[)0,+∞当1α=时,函数y x =的定义域为R ,令()f x x =,()()f x x f x -=-=-,则函数y x =为R 上的奇函数当3α=时,函数3y x =的定义域为R ,令3()f x x =,3()()f x x f x -=-=-,则函数3y x=为R 上的奇函数故选:CD【点睛】本题主要考查了判断函数的奇偶性,属于基础题. 10.要得到sin 25y x π⎛⎫=- ⎪⎝⎭的图象,可以将函数sin y x =的图象上所有的点( ) A. 向右平行移动5π个单位长度,再把所得各点的横坐标缩短到原来的12倍B. 向右平行移动10π个单位长度,再把所得各点的横坐标缩短到原来的12倍C. 横坐标缩短到原来的12倍,再把所得各点向右平行移动5π个单位长度D. 横坐标缩短到原来的12倍,再把所得各点向右平行移动10π个单位长度【答案】AD 【解析】 【分析】由正弦函数的伸缩变换以及平移变换一一判断选项即可. 【详解】将函数sin y x =的图象上所有的点向右平行移动5π个单位长度,得到函数n 5si y x π⎛⎫=- ⎪⎝⎭的图象,再把所得各点的横坐标缩短到原来的12倍,得到sin 25y x π⎛⎫=- ⎪⎝⎭的图象,故A 正确;将函数sin y x =的图象上所有的点向右平行移动10π个单位长度,得到函数sin 10y x π⎛⎫=- ⎪⎝⎭的图象,再把所得各点的横坐标缩短到原来的12倍,得到sin 210y x π⎛⎫=- ⎪⎝⎭的图象,故B 错误;将函数sin y x =的图象上所有的点横坐标缩短到原来的12倍,得到sin 2y x =的图象,再把所得各点向右平行移动5π个单位长度,得到25sin 2y x π⎛⎫=-⎪⎝⎭的图象,故C 错误; 将函数sin y x =的图象上所有的点横坐标缩短到原来的12倍,得到sin 2y x =的图象,再把所得各点向右平行移动10π个单位长度,得到sin 25y x π⎛⎫=- ⎪⎝⎭的图象,故D 正确;故选:AD【点睛】本题主要考查了正弦函数的伸缩变换以及平移变换,属于基础题.11.对于函数()sin(cos )f x x =,下列结论正确的是( ) A. ()f x 为偶函数B. ()f x 的一个周期为2πC. ()f x 的值域为[sin1,sin1]-D. ()f x 在[]0,π单调递增【答案】ABC 【解析】 【分析】利用奇偶性的定义以及周期的定义判断A ,B 选项;利用换元法以及正弦函数的单调性判断C 选项;利用复合函数的单调性判断方法判断D 选项. 【详解】函数()f x 的定义域为R ,关于原点对称()()()()sin cos sin cos ()f x x x f x -=-==,则函数()f x 偶函数,故A 正确;()()()sin co 22s sin cos ()f x x x f x ππ+=+==⎡⎤⎣⎦,则函数()f x 的一个周期为2π,故B正确;令[]cos ,1,1t x t =∈-,则()sin f x t =,由于函数sin y t=[]1,1-上单调递增,则()sin 1()sin1sin1()sin1f x f x -≤≤⇒-≤≤,故C 正确;当[]0,x π∈时,函数cos t x =为减函数,由于[]cos 0,1t x =∈,则函数sin y t =在0,1上为增函数,所以函数()f x 在[]0,π单调递减,故D 错误; 故选:ABC【点睛】本题主要考查了判断函数的奇偶性,周期性,求函数值域,复合函数的单调性,属于中档题.12.已知()f x 为R 上的奇函数,且当0x >时,()lg f x x =.记()sin ()cos g x x f x x =+⋅,下列结论正确的是( ) A. ()g x 为奇函数B. 若()g x 的一个零点为0x ,且00x <,则()00lg tan 0x x --=C. ()g x 在区间,2ππ⎛⎫-⎪⎝⎭的零点个数为3个 D. 若()g x 大于1的零点从小到大依次为12,,x x ,则1223x x ππ<+<【答案】ABD 【解析】 【分析】根据奇偶性的定义判断A 选项;将()0g x =等价变形为tan ()x f x =-,结合()f x 的奇偶性判断B 选项,再将零点问题转化为两个函数的交点问题,结合函数()g x 的奇偶性判断C 选项,结合图象,得出12,x x 的范围,由不等式的性质得出12x x +的范围. 【详解】由题意可知()g x 的定义域为R ,关于原点对称因为()()()sin ()cos sin ()cos ()g x x f x x x f x x g x -=-+-⋅-=--⋅=-,所以函数()g x 为奇函数,故A 正确; 假设cos 0x =,即,2x k k Z ππ=+∈时,sin ()co cos s sin 02x k x f x k πππ⎛⎫++⋅==≠ ⎪⎝⎭所以当,2x k k Z ππ=+∈时,()0g x ≠当,2x k k Z ππ≠+∈时,sin ()cos 0tan ()x f x x x f x +⋅=⇔=-当00x <,00x ->,则()000()()lg f x f x x =--=--由于()g x 的一个零点为0x , 则()()00000tan ()lg t lg an 0x x f x x x =-=⇒--=-,故B 正确;当0x >时,令12tan ,lg y x y x ==-,则()g x 大于0的零点为12tan ,lg y x y x ==-的交点,由图可知,函数()g x 在区间()0,π的零点有2个,由于函数()g x 为奇函数,则函数()g x 在区间,02π⎛⎫-⎪⎝⎭的零点有1个,并且(0)sin 0(0)cos00g f =+⋅= 所以函数在区间,2ππ⎛⎫-⎪⎝⎭的零点个数为4个,故C 错误;由图可知,()g x 大于1的零点123,222x x ππππ<<<< 所以1223x x ππ<+< 故选:ABD【点睛】本题主要考查了判断函数的奇偶性以及判断函数的零点个数,属于较难题. 三、填空题:本大题共4题,每小题5分,共20分.13.函数()1xf x a =+(0a >且1a ≠)的图象恒过点__________【答案】()0,2 【解析】分析:根据指数函数xy a =过()0,1可得结果.详解:由指数函数的性质可得xy a =过()0,1,所以1xy a =+过()0,2,故答案为()0,2.点睛:本题主要考查指数函数的简单性质,属于简单题. 14.已知扇形的圆心角为12π,面积为6π,则该扇形的弧长为_______; 【答案】6π 【解析】 【分析】由扇形面积公式求出扇形半径,根据扇形弧长公式即可求解.【详解】设扇形的半径为r 由扇形的面积公式得:216212r ππ=⨯,解得2r该扇形的弧长为2126ππ⨯=故答案为:6π 【点睛】本题主要考查了扇形面积公式以及弧长公式,属于基础题. 15.函数()2sin 23f x x π⎛⎫=- ⎪⎝⎭在区间0,2π⎡⎤⎢⎥⎣⎦上的值域为______;【答案】[2] 【解析】 【分析】由x 的范围,确定23x π-的范围,利用换元法以及正弦函数的单调性,即可得出答案.【详解】0,2x π⎡⎤∈⎢⎥⎣⎦,22,333x πππ⎡⎤∴-∈-⎢⎥⎣⎦令22,333t x πππ⎡⎤=-∈-⎢⎥⎣⎦,函数()2sin g t t =在,32ππ⎡⎤-⎢⎥⎣⎦上单调递增,在2,23ππ⎡⎤⎢⎥⎣⎦上单调递减2si ()(n 33)g ππ--==2si 2()2n 2g ππ==, 222sin (3)3g ππ==所以函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的值域为[2]故答案为:[2]【点睛】本题主要考查了正弦型函数的值域,属于中档题. 16.已知函数1()f x x=,()2sin g x x =,则函数()f x 图象的对称中心为_____,函数()y f x =的图象与函数()y g x =的图象所有交点的横坐标与纵坐标之和为____. 【答案】 (1). (0,0) (2). 0 【解析】 【分析】判断函数()f x ,()g x 为奇函数,即可得出函数()f x ,()g x 图象的对称中心都为原点; 根据对称性即可得出所有交点的横坐标与纵坐标之和. 【详解】1()()f x f x x-=-=-,则函数()f x 为奇函数,即函数()f x 图象的对称中心为(0,0) ()()2sin 2sin ()g x x x g x -=-=-=-,则函数()g x 为奇函数,即函数()g x 的对称中心为(0,0)所以函数()y f x =的图象与函数()y g x =的图象所有交点都关于原点对称 即所有交点的横坐标之和为0,纵坐标之和也为0则函数()y f x =的图象与函数()y g x =的图象所有交点的横坐标与纵坐标之和为0 故答案为:(0,0);0【点睛】本题主要考查了函数奇偶性的应用以及对称性的应用,属于中档题.四、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.已知α为锐角,且3cos 5α=. (1)求tan 4πα⎛⎫+ ⎪⎝⎭的值;(2)求cos sin(2)2παπα⎛⎫-+-⎪⎝⎭的值. 【答案】(1)-7(2)4425【解析】 【分析】(1)利用平方关系以及商数关系得出tan α,再利用两角和的正切公式求解即可; (2)利用诱导公式以及二倍角的正弦公式求解即可. 【详解】解:(1)因为α为锐角,且3cos 5α=. 所以24sin 1cos 5αα, 所以sin 4tan cos 3ααα==, 所以41tan tan34tan 7441tan tan 1143παπαπα++⎛⎫+===- ⎪⎝⎭--⨯. (2)因为cos sin 2παα⎛⎫-=⎪⎝⎭, sin(2)sin 2παα-=,所以cos sin(2)sin sin 22παπααα⎛⎫-+-=+ ⎪⎝⎭sin 2sin cos ααα=+4432555=+⨯⨯ 4425= 【点睛】本题主要考查了两角和的正切公式,诱导公式,二倍角的正弦公式,属于中档题. 18.已知集合{}|2216xA x =<<,{|sin 0,(0,2)}B x x x π=>∈. (1)求AB ;(2)集合{|1}C x x a =<<()a ∈R ,若AC C =,求a 的取值范围.【答案】(1){|04}A B x x ⋃=<<(2)4a 【解析】 【分析】(1)利用指数函数以及正弦函数的性质化简集合,A B ,再求并集即可;(2)由题设条件得出C A ⊆,分别讨论集合C =∅和C ≠∅的情况,即可得出答案.【详解】解:(1)依题意{|14}A x x =<<,{|0}B x x π=<<,所以{|04}A B x x ⋃=<<. (2)因为AC C =,所以C A ⊆.①当C =∅时,1a ,满足题意;②当C ≠∅时,1a >,因为C A ⊆,得4a ≤,所以14a <; 综上,4a .【点睛】本题主要考查了集合的并集运算以及根据集合间的包含关系求参数范围,属于中档题.19.已知函数()2sin (sin cos )f x x x x =⋅+. (1)求()f x 的最小正周期; (2)求()f x 的单调区间.【答案】(1)最小正周期为π.(2)单调递增区间为3,()88k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z ,()f x 的单调递减区间为37,()88k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z .【解析】 【分析】利用倍角公式以及辅助角公式化简函数()f x ,根据周期公式得出第一问;根据正弦函数的单调增区间和减区间求()f x 的单调区间,即可得出第二问. 【详解】解:因为2()2sin 2sin cos f x x x x =+⋅22sin sin 2x x =+1cos2sin2x x =-+ sin2cos21x x =-+214x π⎛⎫=-+ ⎪⎝⎭(1)所以函数()f x 的最小正周期为22T ππ==.(2)由222,242k x k k πππππ-+-+∈Z ,得3222,44k x k k ππππ-++∈Z , 即3,88k xk k ππππ-++∈Z , 所以()f x 的单调递增区间为3,()88k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z ,同理可得,()f x 的单调递减区间为37,()88k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z .【点睛】本题主要考查了求正弦型函数的最小正周期以及单调区间,属于中档题. 20.已知2()1x af x x bx +=++是定义在[1,1]-上的奇函数. (1)求a 与b 的值;(2)判断()f x 的单调性,并用单调性定义加以证明; (3)若[0,2)απ∈时,试比较(sin )f α与(cos )f α的大小.【答案】(1)0a =. 0b =.(2)()f x 在[1,1]-单调递增.见解析 (3)见解析 【解析】 【分析】(1)根据奇函数的性质得出(0)0f =,(1)(1)f f -=-,求解方程,即可得出a 与b 的值; (2)利用函数单调性的定义证明即可;(3)分别讨论α的取值使得sin cos αα=,sin cos αα<,sin cos αα>,结合函数()f x 的单调性,即可得出(sin )f α与(cos )f α的大小.【详解】解:(1)因为()f x 是定义在[1,1]-上的奇函数,所以(0)0f =,得0a =.又由(1)(1)f f -=-,得到1122b b -=--+,解得0b =. (2)由(1)可知2()1xf x x =+,()f x 在[1,1]-上为增函数.证明如下:任取12,[1,1]x x ∈-且设12x x <, 所以()()1212221211x x f x f x x x -=-++()()22121212221211x x x x x x x x +--=++ ()()()()122112221211x x x x x x x x -+-=++()()()()21122212111x x x x xx --=++由于12x x <且12,[1,1]x x ∈-,所以210x x ->,且2110x x -<,又2110x +>,2210x +>,所以()()()()211222121011x x x x xx --<++,所以()()12f x f x <,从而()f x 在[1,1]-单调递增. (3)当4πα=或54πα=时,sin cos αα=,所以(sin )(cos )f f αα=;当04πα<或524παπ<<时,sin cos αα<, 又因为sin [1,1]α∈-,cos [1,1]α∈-,且()f x 在[1,1]-上为增函数,所以(sin )(cos )f f αα<当544ππα<<时,sin cos αα>,同理可得(sin )(cos )f f αα>; 综上,当4πα=或54πα=时,(sin )(cos )f f αα=;当50,,244ππαπ⎡⎫⎛⎫∈⋃⎪ ⎪⎢⎣⎭⎝⎭时,(sin )(cos )f f αα<;当5,44ππα⎛⎫∈ ⎪⎝⎭时,(sin )(cos )f f αα>.【点睛】本题主要考查由函数的奇偶性求参数,判断函数的单调性以及利用单调性比较函数值大小,属于中档题.21.海水受日月的引力,在一定的时候发生涨落的现象叫潮.一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节每天的时间与水深关系表: .(1)设港口在x 时刻的水深为y 米,现给出两个函数模型:sin()(0,0,)y A x h A ωϕωπϕπ=++>>-<<和2(0)y ax bx c a =++≠.请你从两个模型中选择更为合适的函数模型来建立这个港口的水深与时间的函数关系式(直接选择模型,无需说明理由);并求出7x =时,港口的水深.(2)一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1.5米的安全间隙(船底与洋底的距离),问该船何时能进入港口,何时应离开港口?一天内货船可以在港口呆多长时间?【答案】(1)选择函数模型Asin()y x h ωϕ=++更适合. 水深为3米 (2)货船可以在1时进入港口,在5时出港;或者在13时进港,17时出港.一天内货船可以在港口呆的时间为8小时. 【解析】 【分析】(1)观察表格中水深的变化具有周期性,则选择函数模型Asin()y x h ωϕ=++更适合,由表格数据得出,,,A h ωϕ的值,将7x =代入解析式求解即可; (2)由题意 5.5y 时,船可以进港,解不等式2.5sin4.255.56x π+,得出x 的范围,由x的范围即可确定进港,出港,一天内在港口呆的时间. 【详解】解:(1)选择函数模型Asin()y x h ωϕ=++更适合因为港口在0:00时刻的水深为4.25米,结合数据和图象可知 4.25h =6.75 1.752.52A -==因为12T =,所以22126T πππω===, 所以 2.5sin 4.256y x πϕ⎛⎫=++⎪⎝⎭, 因为0x =时, 4.25y =,代入上式得sin 0ϕ=,因为πϕπ-<<,所以0ϕ=, 所以 2.5sin4.256y x π=+.当7x =时,712.5sin4.25 2.5 4.25362y π⎛⎫=+=⨯-+= ⎪⎝⎭, 所以在7x =时,港口的水深为3米(2)因为货船需要的安全水深是4 1.5 5.5+=米, 所以 5.5y 时,船可以进港, 令2.5sin4.255.56x π+,则1sin62xπ, 因为024x <,解得15x 或1317x ,所以货船可以在1时进入港口,在5时出港;或者在13时进港,17时出港. 因为(51)(173)8-+-=,一天内货船可以在港口呆的时间为8小时. 【点睛】本题主要考查了三角函数在生活中的应用,属于中档题. 22.已知函数3(1)log (1)f x a x +=+,且(2)1f =. (1)求()f x 的解析式;(2)已知()f x 的定义域为[2,)+∞. (ⅰ)求()41xf +的定义域;(ⅱ)若方程()()412xxf f k k x +-⋅+=有唯一实根,求实数k 取值范围.【答案】(1)2()log f x x =(2)(ⅰ)[0,)+∞.(ⅱ)1k = 【解析】 【分析】(1)利用换元法以及(2)1f =,即可求解()f x 的解析式;(2)(ⅰ)解不等式412x +≥,即可得出()41xf +的定义域;(ⅱ)根据()41xf +,()2x f k k ⋅+的定义域得出1k ,结合函数()f x 的解析式将方程化为()2(1)2210x x k k -⋅+⋅-=,利用换元法得出2()(1)1,[1,)g t k t k t t =-+⋅-∈+∞,讨论k的值,结合二次函数的性质即可得出实数k 的取值范围.【详解】解:(1)令1(0)t x t =+>,则3()log f t a t =,所以3()log f x a x =, 因为3(2)log 21f a ==,所以231log 3log 2a ==, 所以3232()log log 3log log f x a x x x ==⨯= (2)(ⅰ)因为()f x 的定义域为[2,)+∞, 所以412x +≥,解得0x , 所以()41xf +的定义域为[0,)+∞.(ⅱ)因为0,22,x x k k ⎧⎨⋅+⎩,所以221xk +在[0,)+∞恒成立, 因为221x y =+在[0,)+∞单调递减,所以221x y =+最大值为1,所以1k .又因为()()412xxf f k k x +-⋅+=,所以()()22log 41log 2xxk k x +-⋅+=, 化简得()2(1)2210xx k k -⋅+⋅-=,令2(1)xt t =,则2(1)10k t k t -⋅+⋅-=在[1,)+∞有唯一实数根, 令2()(1)1,[1,)g t k t k t t =-+⋅-∈+∞,当1k =时,令()0g t =,则1t =,所以21x =,得0x =符合题意,所以1k =; 当1k >时,2440k k ∆=+->,所以只需(1)220g k =-,解得1k ,因为1k >,所以此时无解; 综上,1k =.【点睛】本题主要考查了利用换元法求函数解析式以及根据函数的零点确定参数的范围,属于较难题.。

2020-2021学年南通一中高一上学期期末数学试卷(含解析)

2020-2021学年南通一中高一上学期期末数学试卷(含解析)

2020-2021学年南通一中高一上学期期末数学试卷一、单选题(本大题共12小题,共60.0分) 1.函数f(x)=8x 的值域是( )A. (−∞,+∞)B. (−∞,0)C. (0,+∞)D. (−∞,0)∪(0,+∞)2.已知sin(π+α)=−12,那么cosα的值为( )A. ±12B. 12C. √32D. ±√323.对于正弦函数y =sinx 的图象,下列说法错误的是( )A. 向左右无限伸展B. 与y =cosx 的图象形状相同,只是位置不同C. 与x 轴有无数个交点D. 关于y 轴对称4.设e 1⃗⃗⃗ 与e 2⃗⃗⃗ 是两个不共线的向量,AB ⃗⃗⃗⃗⃗ =e 1⃗⃗⃗ +2e 2⃗⃗⃗ ,CB ⃗⃗⃗⃗⃗ =k e 1⃗⃗⃗ +e 2⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ =3e 1⃗⃗⃗ −2k e 2⃗⃗⃗ ,若A ,B ,D 共线,则k 的值为( )A. −94B. −49C. −38D. 不存在5.如图,以Ox 为始边作角α与β(0<β<α<π),它们终边分别与单位圆相交于点P ,Q ,已知点P 的坐标为(−35,45),β=30°,则sin(α−β)=( )A. 4+3√310B. 4√3+310C. 4−3√310D. 4√3−3106.将最小正周期为3π的函数f(x)=cos(ωx +φ)−sin(ωx +φ)(ω>0,|φ|<π2)的图象向左平移π4个单位,得到偶函数图象,则满足题意的φ的一个可能值为( )A. 7π12B. −5π12C. −π4D. π47.的最大值为( )A.B.C. D.8.已知扇形的面积为4,弧长为4,求这个扇形的圆心角是( )A. 4B. 2°C. 2D. 4°9.设A,B,C ∈(0,π2),且cosA +cosB =cosC ,sinA −sinB =sinC ,则C −A =( ).A. −π6B. −π3C. π3D. π3或−π310. 如图,在△ABC 中,∠A =π2,AB =3,AC =5,AF ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ ,CE ⃗⃗⃗⃗⃗ =25CA ⃗⃗⃗⃗⃗ ,BD ⃗⃗⃗⃗⃗⃗ =14BC ⃗⃗⃗⃗⃗ ,则DE ⃗⃗⃗⃗⃗⃗ ⋅DF ⃗⃗⃗⃗⃗ 的值为( ) A. 34 B. 12 C. −2 D. −1211. 定义域为R 的函数y =f(x),若对任意两个不相等的实数x 1,x 2,都有x 1f(x 1)+x 2f(x 2)>x 1f(x 2)+x 2f(x 1),则称函数为“H 函数”,现给出如下函数:①y =−x 3+x +1②y =3x −2(sinx −cosx)③y =e x +1④f(x)={ln|x|,x ≠00,x =0其中为“H 函数”的有( )A. ①②B. ③④C. ②③D. ①②③12. 设向量a ⃗ =(−1,2),b ⃗ =(λ,−1),且|a ⃗ −b ⃗ |=√a ⃗ 2+b⃗ 2,则λ等于( ) A. 2 B. ±2 C. −2 D. 0二、单空题(本大题共4小题,共20.0分)13. 设0<θ<π2,向量a ⃗ =(sin2θ,cosθ),b ⃗ =(cosθ,1),若a ⃗ //b ⃗ ,则cos2θ=______. 14. 已知(a +1)−23<(3−2a)−23,则a 的取值范围 . 15. 抛物线的准线与轴交于点,点在抛物线对称轴上,过可作直线交抛物线于点、,使得,则的取值范围是 .16. 在下列四个命题中,正确的命题有______.①若实数x ,y 满足x 2+y 2−2x −2y +1=0,则y−4x−2的取值范围为[43,+∞);②点M 是圆(x −3)2+(y −2)2=2上一动点,点N(0,−2)为定点,则|MN|的最大值是7;③若圆(x −3)2+(y +5)2=r 2(r >0)上有且只有两个点到直线4x −3y =2的距离为1,则4<r <6;④已知直线ax +by +c −1=0(bc >0)经过圆x 2+y 2−2y −5=0的圆心,则4b +1c 的最小值是10. 三、解答题(本大题共6小题,共70.0分)17. 已知向量a ⃗ 与b ⃗ 的夹角为2π3,|a ⃗ |=2,|b ⃗ |=3,记m ⃗⃗⃗ =3a ⃗ −2b ⃗ ,n ⃗ =2a ⃗ +k b ⃗(I) 若m ⃗⃗⃗ ⊥n ⃗ ,求实数k 的值;(II) 当k =−43时,求向量m ⃗⃗⃗ 与n ⃗ 的夹角θ.18. 已知函数f(x)=cosωx(sinωx +√3cosωx)(ω>0). (1)求函数f(x)的值域;(2)若方程f(x)=√32在区间[0,π]上恰有两个实数解,求ω的取值范围.19. 设函数f(x)=log 3(9x)⋅log 3(3x),19≤x ≤9,若t =log 3x. (1)求t 的取值范围. (2)求f(x)的值域.20. 如图,在菱形ABCD 中,若|AB ⃗⃗⃗⃗⃗ |=2√3,∠BAD =60°,BE ⃗⃗⃗⃗⃗ =12BC ⃗⃗⃗⃗⃗ ,CF ⃗⃗⃗⃗⃗ =2FD ⃗⃗⃗⃗⃗ .(1)若AE ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAD ⃗⃗⃗⃗⃗⃗ ,EF ⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗⃗ +y AD ⃗⃗⃗⃗⃗⃗ ,求λ,μ,x ,y 的值; (2)求AE ⃗⃗⃗⃗⃗ ⋅EF ⃗⃗⃗⃗⃗ .21. 已知函数f(x)=3xx+2,x ∈[0,4). (1)判别f(x)的单调性,并证明; (2)求函数f(x)的最值.22. 设函数y =f(x)的定义域为A ,区间I ⊆A.如果∃x 1,x 2∈I ,使得f(x 1)f(x 2)<0,那么称函数y =f(x)为区间I 上的“变号函数”.(1)判断下列函数是否为区间I上的“变号函数”,并说明理由.,+∞);①p(x)=1−3x,I=[13);②q(x)=sinx−cosx,I=(0,π2,1]上的“变号函数”.求实数a的取值范围.(2)若函数r(x)=ax2+(1−2a)x+1−a为区间[−12参考答案及解析1.答案:D解析:解:令y =8x ,则解析式中y 的取值范围即为函数的值域 则原函数的解析式可变形为x =8y , 要使该表达式有意义,分母y ≠0. ∴y ∈(−∞,0)∪(0,+∞) 故选:D .根据已知中函数的解析式,我们可使用“反表示法”求函数的值域,即根据已知函数的解析式,写出用y 表示x 的形式,令表达式有意义,即可求出满足条件的y 的取值范围,即原函数的值域. 本题考查的知识点是函数的值域,函数的值域的求法是函数中的难点之一,其中根据函数的解析式形式,选择适当的方法是求值域的问题.2.答案:D解析:利用诱导公式求出sinα,再利用同角三角函数关系式求出cosα即可. 本题考查诱导公式,同角三角函数关系式的应用.属于基础题.解:sin(π+α)=−12,则sinα=12,cosα=±√32.故选D .3.答案:D解析:解:y =sinx 是周期函数,图象可以向左右无限伸展,故A 正确,y =sin(x +π2)=cosx ,则与y =cosx 的图象形状相同,只是位置不同,故B 正确, 与x 轴有无数个交点,故C 正确,y =sinx 是奇函数,图象关于原点对称,故D 错误, 故选:D .根据y =sinx 的图象和性质分别进行判断即可.本题主要考查三角函数图象和性质,结合三角函数的图象是解决本题的关键.比较基础.4.答案:D解析:解:e 1⃗⃗⃗ 与e 2⃗⃗⃗ 是两个不共线的向量,且AB ⃗⃗⃗⃗⃗ =e 1⃗⃗⃗ +2e 2⃗⃗⃗ ,CB ⃗⃗⃗⃗⃗ =k e 1⃗⃗⃗ +e 2⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ =3e 1⃗⃗⃗ −2k e 2⃗⃗⃗ , ∴BD ⃗⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ −CB ⃗⃗⃗⃗⃗ =(3−k)e 1⃗⃗⃗ −(2k +1)e 2⃗⃗⃗ ,若A ,B ,D 共线, 则BD ⃗⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ ,即(3−k)e 1⃗⃗⃗ −(2k +1)e 2⃗⃗⃗ =λe 1⃗⃗⃗ +2λe 2⃗⃗⃗ ,∴{3−k =λ−(2k +1)=2λ, 解得k 的值不存在. 故选:D .根据平面向量的线性运算法则,利用共线定理和向量相等列出方程组,即可求出k 的值不存在. 本题考查了平面向量的线性运算与共线定理和向量相等的应用问题,是基础题目.5.答案:B解析:解:以Ox 为始边作角α与β(0<β<α<π),它们终边分别与单位圆相交于点P ,Q ,已知点P 的坐标为(−35,45),β=30°, 可得sinα=45,cosα=−35,sin(α−β)=sinαcos30°−cosαsin30°=45×√32+35×12=3+4√310. 故选:B .利用任意角的三角函数的定义,求出α、β的三角函数值,然后利用两角差的正弦函数求解. 本题考查三角函数的定义的应用,两角差的正弦函数,考查计算能力.6.答案:B解析:本题主要考查由函数y =Acos(ωx +φ)的部分图象求解析式,函数y =Acos(ωx +φ)的图象变换规律,正弦函数、余弦函数的图象的奇偶性,属于基础题.由周期求得ω,可得函数f(x)的解析式,再根据函数y =Acos(ωx +φ)的图象变换规律,可得结论. 解:由于函数f(x)=cos(ωx +φ)−sin(ωx +φ)=√2cos(ωx +φ+π4)的最小正周期为3π=2πω,求得ω=23,∴函数f(x)=√2cos(23x +φ+π4).再把f(x)的图象向左平移π4个单位,得到偶函数y =√2cos[23(x +π4)+φ+π4] =√2cos(23x +5π12+φ),则满足题意的φ的一个可能值为−5π12, 故选B .7.答案:C解析:试题分析:因为函数,所以因此结合不等式的性质,得到,可知函数的最大值为4.选C.考点:本题主要考查三角函数的性质中值域的求解运用。

期末测试卷(二)-2020-2021学年高一数学必修第一册单元提优卷(人教A版(2019))(含答案)

期末测试卷(二)-2020-2021学年高一数学必修第一册单元提优卷(人教A版(2019))(含答案)

2020-2021学年高一数学第一册单元提优卷(人教A 版(2019))期末测试卷(二)(满分:150分,测试时间:120分钟)一、单选题1.【2020年高考全国Ⅰ卷理数】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =A .–4B .–2C .2D .42.【2020·广东省高三月考(文)】命题“10,ln 1x x x∀>≥-”的否定是A .10ln 1x x x ∃≤≥-,B .10ln 1x x x ∃≤<-,C .10ln 1x x x∃>≥-,D .10ln 1x x x∃><-,.3.【2020·北京市八一中学高三月考】函数()()213f x ax a x =---在区间[)1,-+∞上是增函数,则实数a 的取值范围是A .1,3⎛⎤-∞ ⎥⎝⎦B .(],0-∞C .10,3⎛⎤ ⎥⎝⎦D .10,3⎡⎤⎢⎥⎣⎦4.【2020·福建省福州第一中学高三其他(理)】已知函数()f x 的定义域为[0,2],则()()21f xg x x =-的定义域为A .[)(]0,11,2B .[)(]0,11,4C .[)0,1D .(]1,45.设函数要想得到函数sin21y x =+的图像,只需将函数cos2y x =的图象()A .向左平移4π个单位,再向上平移1个单位B .向右平移4π个单位,再向上平移1个单位C .向左平移2π个单位,再向下平移1个单位D .向右平移2π个单位,再向上平移1个单位6.【2020·北京高三月考】已知函数()y f x =满足(1)2()f x f x +=,且(5)3(3)4f f =+,则(4)f =A .16B .8C .4D .27.已知3sin(3)cos()0πθπθ-++-=,则sin cos cos 2θθθ=()A .3B .﹣3C .38D .38-8.【2020·南昌市八一中学】已知函数sin (0)y ax b a =+>的图象如图所示,则函数log ()a y x b =-的图象可能A .B .C .D .9.【2020年新高考全国Ⅰ卷】基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rtI t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)A .1.2天B .1.8天C .2.5天D .3.5天10.【2020年高考北京】已知函数()21x f x x =--,则不等式()0f x >的解集是A .(1,1)-B .(,1)(1,)-∞-+∞C .(0,1)D .(,0)(1,)-∞⋃+∞11.【2020年高考全国Ⅱ卷理数】若2x −2y <3−x −3−y ,则A .ln(y −x +1)>0B .ln(y −x +1)<0C .ln|x −y |>0D .ln|x −y |<012.【2020年高考天津】已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是A .1(,))2-∞-+∞ B .1(,)(0,2-∞-C .(,0)-∞D .(,0))-∞+∞ 二.填空题13.【2020年高考北京】函数1()ln 1f x x x =++的定义域是____________.14.【2020年高考江苏】已知2sin ()4απ+=23,则sin 2α的值是____________.15.【2020·江苏省高三月考】已知函数()2,0228,2x x x f x x x ⎧+<<=⎨-+≥⎩,若()()2f a f a =+,则1f a ⎛⎫⎪⎝⎭的值是____________.16.【2020·六盘山高级中学高三其他(理)】设函数2()2cos ()sin(284f x x x ππ=+++,(0,3π)∈x 则下列判断正确的是____________.①.函数的一条对称轴为6x π=②.函数在区间5,24ππ⎡⎤⎢⎥⎣⎦内单调递增③.0(0,3π)x ∃∈,使0()1f x =-④.∃∈R a ,使得函数()y f x a =+在其定义域内为偶函数三.解答题17.(本题满分10分)已知0a >,0b >.(1)求证:()2232a b b a b +≥+;(2)若2a b ab +=,求ab 的最小值.18.(本题满分12分)已知集合,2|2162xA x ⎧⎫⎪⎪=<<⎨⎬⎪⎪⎩⎭,{|3221}B x a x a =-<<+.(1)当0a =时,求A B ;(2)若A B φ⋂=,求a 的取值范围.19.(本题满分12分)已知函数()21sin sin cos 2f x x x x =+-,x ∈R .(1)求函数()f x 的最大值,并写出相应的x 的取值集合;(2)若()26f α=,3,88ππα⎛⎫∈-⎪⎝⎭,求sin 2α的值.20.(本题满分12分)已知函数()0.52log 2axf x x -=-为奇函数.(1)求常数a 的值;(2)若对任意10,63x ⎡⎤∈⎢⎥⎣⎦都有()3f x t >-成立,求t 的取值范围.21(本题满分12分)【江苏省盐城市第一中学2020届高三下学期6月调研考试数学试题某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍稀水果树的单株产量W (单位:千克)与施用肥料x (单位:千克)满足如下关系:()253,02()50,251x x W x x x x⎧+≤≤⎪=⎨<≤⎪+⎩,肥料成本投入为10x 元,其它成本投入(如培育管理、施肥等人工费)20x 元.已知这种水果的市场售价大约为15元/千克,且销路畅通供不应求.记该水果树的单株利润为()f x (单位:元).(Ⅰ)求()f x 的函数关系式;(Ⅱ)当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少?22.(本题满分12分)已知函数2()2sin cos 0)f x x x x ωωωω=+->的最小正周期为π.(1)求函数()f x 的单调增区间;(2)将函数()f x 的图象向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图象,若()y g x =在[0,](0)b b >上至少含有10个零点,求b 的最小值.2020-2021学年高一数学第一册单元提优卷期末测试卷(二)(满分:150分,测试时间:120分钟)一、单选题1.【2020年高考全国Ⅰ卷理数】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =A .–4B .–2C .2D .4【答案】B求解二次不等式240x -≤可得{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得|2a B x x ⎧⎫=≤-⎨⎩⎭.由于{}|21A B x x ⋂=-≤≤,故12a-=,解得2a =-.故选B .2.【2020·广东省高三月考(文)】命题“10,ln 1x x x∀>≥-”的否定是A .10ln 1x x x ∃≤≥-,B .10ln 1x x x ∃≤<-,C .10ln 1x x x ∃>≥-,D .10ln 1x x x∃><-,【答案】D【解析】因为全称命题的否定是特称命题,所以命题“0x ∀>,1ln 1x x ≥-”的否定为“0x ∃>,1ln 1x x<-”.故选D .3.【2020·北京市八一中学高三月考】函数()()213f x ax a x =---在区间[)1,-+∞上是增函数,则实数a 的取值范围是A .1,3⎛⎤-∞ ⎥⎝⎦B .(],0-∞C .10,3⎛⎤ ⎥⎝⎦D .10,3⎡⎤⎢⎥⎣⎦【答案】D【解析】若0a =,则()3f x x =-,()f x 在区间[)1,-+∞上是增函数,符合.若0a ≠,因为()f x 在区间[)1,-+∞上是增函数,故0112a a a>⎧⎪-⎨≤-⎪⎩,解得103a <≤.综上,103a ≤≤.故选:D .4.【2020·福建省福州第一中学高三其他(理)】已知函数()f x 的定义域为[0,2],则()()21f xg x x =-的定义域为A .[)(]0,11,2 B .[)(]0,11,4 C .[)0,1D .(]1,4【答案】C【解析】函数()f x 的定义域是[0,2],要使函数()()21f xg x x =-有意义,需使()2f x 有意义且10x -≠.所以10022x x -≠⎧⎨≤≤⎩,解得01x ≤<.故答案为C .5.设函数要想得到函数sin21y x =+的图像,只需将函数cos2y x =的图象()A .向左平移4π个单位,再向上平移1个单位B .向右平移4π个单位,再向上平移1个单位C .向左平移2π个单位,再向下平移1个单位D .向右平移2π个单位,再向上平移1个单位【答案】B【解析】cos 2sin(2)sin 2()24y x x x ππ==+=+,因此把函数cos 2y x =的图象向右平移4π个单位,再向上平移1个单位可得sin 21y x =+的图象,故选B6.【2020·北京高三月考】已知函数()y f x =满足(1)2()f x f x +=,且(5)3(3)4f f =+,则(4)f =A .16B .8C .4D .2【答案】B【解析】因为(1)2()f x f x +=,且(5)3(3)4f f =+,故()()324442f f =+,解得()48f =.故选:B7.已知3sin(3)cos()0πθπθ-++-=,则sin cos cos 2θθθ=()A .3B .﹣3C .38D .38-【答案】D 【解析】∵3sin(3)cos()0πθπθ-++-=,∴3sin cos 0θθ--=,即cos 3sin θθ=-,∴sin cos cos 2θθθ2222sin cos sin (3sin )3cos sin (3sin )sin 8θθθθθθθθ⋅-===----.故选:D .8.【2020·南昌市八一中学】已知函数sin (0)y ax b a =+>的图象如图所示,则函数log ()a y x b =-的图象可能A .B .C .D .【答案】C【解析】由函数sin (0)y ax b a =+>的图象可得201,23b a πππ<<<<,213a ∴<<,故函数log ()a y xb =-是定义域内的减函数,且过定点(1,0)b +.结合所给的图像可知只有C 选项符合题意.故选:C .9.【2020年新高考全国Ⅰ卷】基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rt I t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)A .1.2天B .1.8天C .2.5天D .3.5天【答案】B【解析】因为0 3.28R =,6T =,01R rT =+,所以 3.2810.386r -==,所以()0.38rt t I t e e ==,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为1t 天,则10.38()0.382t t t e e +=,所以10.382t e =,所以10.38ln 2t =,所以1ln 20.691.80.380.38t =≈≈天.故选:B .10.【2020年高考北京】已知函数()21x f x x =--,则不等式()0f x >的解集是A .(1,1)-B .(,1)(1,)-∞-+∞C .(0,1)D .(,0)(1,)-∞⋃+∞【解析】因为()21xf x x =--,所以()0f x >等价于21x x >+,在同一直角坐标系中作出2x y =和1y x =+的图象如图:两函数图象的交点坐标为(0,1),(1,2),不等式21x x >+的解为0x <或1x >.所以不等式()0f x >的解集为:()(),01,-∞⋃+∞.故选:D .11.【2020年高考全国Ⅱ卷理数】若2x −2y <3−x −3−y ,则A .ln(y −x +1)>0B .ln(y −x +1)<0C .ln|x −y |>0D .ln|x −y |<0【答案】A【解析】由2233x y x y ---<-得:2323x x y y ---<-,令()23ttf t -=-,2x y = 为R 上的增函数,3x y -=为R 上的减函数,()f t ∴为R 上的增函数,x y ∴<,0y x ->Q ,11y x ∴-+>,()ln 10y x ∴-+>,则A 正确,B 错误;x y -Q 与1的大小不确定,故CD 无法确定.12.【2020年高考天津】已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是A .1(,))2-∞-+∞ B .1(,(0,2-∞-C .(,0)-∞D .(,0))-∞+∞ 【答案】D【解析】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根即可,令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点.因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩,当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有2个不同交点,不满足题意;当k 0<时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意;当0k >时,如图3,当2y kx =-与2y x =相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得k =k >.综上,k 的取值范围为(,0))-∞+∞ .故选:D .二.填空题13.【2020年高考北京】函数1()ln 1f x x x =++的定义域是____________.【答案】(0,)+∞【解析】由题意得010x x >⎧⎨+≠⎩,0x ∴>故答案为:(0,)+∞14.【2020年高考江苏】已知2sin ()4απ+=23,则sin 2α的值是____________.【答案】13【解析】22221sin ()(cos sin )(1sin 2)4222παααα+=+=+Q 121(1sin 2)sin 2233αα∴+=∴=故答案为:1315.【2020·江苏省高三月考】已知函数()2,0228,2x x x f x x x ⎧+<<=⎨-+≥⎩,若()()2f a f a =+,则1f a ⎛⎫ ⎪⎝⎭的值是____________.【答案】2【解析】由2x ≥时,()28f x x =-+是减函数可知,当2a ≥,则()()2f a f a ≠+,所以02a <<,由()(+2)f a f a =得22(2)8a a a +=-++,解得1a =,则21(1)112f f a ⎛⎫==+= ⎪⎝⎭.故答案为:2.16.【2020·六盘山高级中学高三其他(理)】设函数2()2cos ()sin(2)84f x x x ππ=+++,(0,3π)∈x 则下列判断正确的是_____.①.函数的一条对称轴为6x π=②.函数在区间5,24ππ⎡⎤⎢⎥⎣⎦内单调递增③.0(0,3π)x ∃∈,使0()1f x =-④.∃∈R a ,使得函数()y f x a =+在其定义域内为偶函数【答案】④【解析】函数()1cos 2sin 21244f x x x x ππ⎛⎫⎛⎫=++++=+ ⎪ ⎪⎝⎭⎝⎭,当(0,3π)∈x 时,当6x π=时,23x π=不能使函数取得最值,所以不是函数的对称轴,①错;当5,24x π⎡⎤∈π⎢⎥⎣⎦时,52,2x ⎡⎤∈ππ⎢⎥⎣⎦,函数先增后减,②不正确;若()1f x =-,那么cos 2x =不成立,所以③错;当3 2a =π时,()12f x a x +=函数是偶函数,④正确,三.解答题17.(本题满分10分)已知0a >,0b >.(1)求证:()2232a b b a b +≥+;(2)若2a b ab +=,求ab 的最小值.【答案】(1)证明见解析;(2)1.【解析】证明:(1)∵()()222223220a b b a b a ab b a b +-+=-+=-≥,∴()2232a b b a b +≥+.(2)∵0a >,0b >,∴2ab a b =+≥2ab ≥1≥,∴1≥ab .当且仅当1a b ==时取等号,此时ab 取最小值1.18.(本题满分12分)已知集合,|2162x A x ⎧⎫⎪⎪=<<⎨⎬⎪⎪⎩⎭,{|3221}B x a x a =-<<+.(1)当0a =时,求A B ;(2)若A B φ⋂=,求a 的取值范围.【答案】(1)1|12A B x x ⎧⎫⋂=-<<⎨⎬⎩⎭;(2)3,[2,)4⎛⎤-∞-⋃+∞ ⎥⎝⎦.【解析】(1)1|42A x x ⎧⎫=-<<⎨⎬⎩⎭,0a =时,{|21}B x x =-<<,∴1|12A B x x ⎧⎫⋂=-<<⎨⎬⎩⎭(2)∵A B φ⋂=,∴当B φ=时,3221a a -≥+,即3a ≥,符合题意;当B φ≠时,31213242a a a <⎧⎪⎨+≤--≥⎪⎩或,解得34a ≤-或23a ≤<,综上,a 的取值范围为3,[2,)4⎛⎤-∞-⋃+∞ ⎥⎝⎦.19.(本题满分12分)已知函数()21sin sin cos 2f x x x x =+-,x ∈R .(1)求函数()f x 的最大值,并写出相应的x 的取值集合;(2)若()26f α=,3,88ππα⎛⎫∈- ⎪⎝⎭,求sin 2α的值.【答案】(1)()f x 的最大值为22,此时x 的取值集合为3,8x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;(2)4sin 26α=.【解析】(1)因为()()211cos 2111sin sin cos sin 2sin 2cos 222222x f x x x x x x x -=+-=+-=-22sin 2cos cos 2sin sin 224424x x x πππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,当()2242x k k Z πππ-=+∈,即()38x k k Z ππ=+∈时,函数()y f x =取最大值2,所以函数()y f x =的最大值为22,此时x 的取值集合为3,8x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;(2)因为()26f α=,则sin 2246πα⎛⎫-= ⎪⎝⎭,即1sin 243πα⎛⎫-= ⎪⎝⎭,因为3,88ππα⎛⎫∈- ⎪⎝⎭,所以2,422πππα⎛⎫-∈- ⎪⎝⎭,则cos 243πα⎛⎫-= ⎪⎝⎭,所以sin 2sin 2sin 2cos cos 2sin 444444ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=-+=-+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1432326+=+⋅=.20.(本题满分12分)已知函数()0.52log 2ax f x x -=-为奇函数.(1)求常数a 的值;(2)若对任意10,63x ⎡⎤∈⎢⎥⎣⎦都有()3f x t >-成立,求t 的取值范围.【答案】(1)1a =-;(2)(),1-∞【解析】(1)因为函数()0.52log 2ax f x x -=-为奇函数,所以()()220.50.50.52224log log log 0224ax ax a x f x f x x x x-+-+-=+==----,所以222414a x x-=-,即21a =,1a =或1-,当1a =时,函数()0.50.52log log 12x f x x -==--,无意义,舍去,当1a =-时,函数()0.52log 2x f x x +=-定义域(-∞,-2)∪(2,+∞),满足题意,综上所述,1a =-。

福建省宁德市2020_2021学年高一数学下学期期末考试质量检测试题含解析

福建省宁德市2020_2021学年高一数学下学期期末考试质量检测试题含解析

福建省宁德市2020-2021学年高一数学下学期期末考试质量检测试题(含解析)一、单项选择题(共8小题,每小题5分,共40分).1.已知复数z满足z=i(1+i),则是()A.﹣1+i B.﹣1﹣i C.1+i D.1﹣i2.掷两枚质地均匀的骰子,记事件A=“第一枚出现奇数点”,事件B=“第二枚出现偶数点”,则事件A与事件B的关系为()A.A与B互斥B.A与B对立C.A与B独立D.A与B相等3.如图1、图2分别是甲、乙两户居民家庭全年各项支出的统计图.根据统计图,下列对两户居民旅游支出占全年总支出的百分比作出的判断中,正确的是()A.甲户比乙户大B.乙户比甲户大C.甲、乙两户一般大D.无法确定哪一户大4.如图是正方体的平面展开图,则在这个正方体中,AM与BN所成角的大小为()A.0°B.45°C.60°D.90°5.已知m,n是两条直线.α,β是两个平面,下列说法正确的是()A.若m∥n,n∥α,则m∥αB.若α⊥β,m⊂α,则m⊥βC.若m∥α,n⊂α,则m∥n D.若m⊂α,m⊥β,则α⊥β6.已知某运动员每次投篮命中的概率是40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下10组随机数:204 978 171 935 263 321 947 468 579 682,据此估计,该运动员三次投篮恰有两次命中的概率为()A.B.C.D.7.《史记》中讲述了田忌与齐王赛马的故事.其中,田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.若双方各自拥有上等马、中等马、下等马各1匹,且双方各自随机选1匹马进行1场比赛,则田忌的马获胜的概率为()A.B.C.D.8.如图,由四个全等的直角三角形与一个小正方形拼成的一个大正方形,已知,则=()A.B.C.D.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.设向量,则()A.B.C.D.在上的投影向量为(1,0)10.任何一个复数z=a+bi(其中a、b∈R,i为虚数单位)都可以表示成:z=r(cosθ+i sinθ)的形式,通常称之为复数z的三角形式.法国数学家棣莫弗发现:z n=[r(cosθ+i sinθ)]n =r n(cos nθ+i sin nθ)(n∈N+),我们称这个结论为棣莫弗定理.根据以上信息,下列说法正确的是()A.当时,B.C.|z4|=|z|4D.在复平面内对应的点的坐标为第三象限11.已知正四面体的外接球、内切球的球面上各有一动点M、N,若线段MN的最小值为,则()A.正四面体的外接球的表面积为96πB.正四面体的内切球的体积为C.正四面体的棱长为12D.线段MN的最大值为12.新冠肺炎期间,某社区规定:若任意连续7天,每天不超过6人体温高于37.3℃,则称没有发生群体性发热.下列连续7天体温高于37.3℃人数的统计特征数中,能判定该社区没有发生群体性发热的为()A.中位数为4,众数为3 B.均值小于1,中位数为1C.均值为2,标准差为D.均值为3,众数为4三、填空题:本题共4小题,每小题5分,共20分.13.已知z=,则|z|=.14.在△ABC中,若b=1,c=,∠C=,则a=.15.如图,桌面上放置一个装有水的圆柱形玻璃水杯,AB为杯底直径,现以点B为支点将水杯倾斜,使AB所在直线与桌面所成的角为,则圆柱母线与水面所在平面所成的角等于.16.菱形ABCD的边长为2,∠A=60°,M为DC的中点,若N为菱形内任意一点(含边界),则的最小值为.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知向量满足=(1,1),||=1.(1)若的夹角θ为,求;(2)若,求与的夹角.18.如图,在三棱柱ABC﹣A1B1C1中,AB⊥AC,AB=AC=1,D是BC的中点.(1)求证:A1B∥平面ADC1;(2)若面ABB1A1⊥面ABC,AA1⊥AB,AA1=2,求几何体ABD﹣A1B1C1的体积.19.某公司生产某种产品,从生产的正品中随机抽取1000件,测得产品质量差(质量差=生产的产品质量﹣标准质量,单位mg)的样本数据统计如下:(1)求样本数据的80%分位数;(2)公司从生产的正品中按产品质量差进行分拣,若质量差在(﹣s,+s)范围内的产品为一等品,其余为二等品.其中分别为样本平均数和样本标准差,计算可得s ≈10(同一组中的数据用该组区间的中点值作代表).①若产品的质量差为62mg,试判断该产品是否属于一等品;②假如公司包装时要求,3件一等品和2件二等品装在同一个箱子中,质检员每次从箱子中摸出2件产品进行检验,求摸出2件产品中至少有1件一等品的概率.20.现给出两个条件:①2b sin A=a tan B,②a(sin A﹣sin C)=b sin B﹣c sin C,从中选出一个条件补充在下面的问题中,并以此为依据求解问题.(选出一种可行的条件解答,若两个都选,则按第一个解答计分)在△ABC中,a,b,c分别为内角A,B,C所对的边,若_____.(1)求B;(2)若点D是边AC靠近A的三等分点,且BD长为1,求△ABC面积的最大值.21.甲、乙、丙三人参加一家公司的招聘面试,面试合格者可正式签约.甲表示只要面试合格就签约,乙丙则约定:两人面试都合格就一同签约,否则两人都不签约.设甲面试合格的概率为,乙丙每人面试合格的概率都是,且三人面试是否合格互不影响.求:(1)恰有一人面试合格的概率;(2)至多一人签约的概率.22.在我国古代数学名著《九章算术》中将由四个直角三角形组成的四面体称为“鳖臑”.已知三棱锥P﹣ABC中,PA⊥平面ABC.(1)从三棱锥P﹣ABC中选择合适的两条棱填空.若⊥,则该三棱锥为“鳖臑”;(2)已知三棱锥P﹣ABC是一个“鳖臑”,且AC=1,AB=2,∠BAC=60°,①若△PAC上有一点D,如图1所示,试在平面PAC内作出一条过点D的直线l,使得l与BD垂直,说明作法,并给予证明;②若点D在线段PC上,点E在线段PB上,如图2所示,且PB⊥平面EDA,证明∠EAB是平面EAD与平面BAC的二面角的平面角.参考答案一、单项选择题(共8小题,每小题5分,共40分).1.已知复数z满足z=i(1+i),则是()A.﹣1+i B.﹣1﹣i C.1+i D.1﹣i【分析】根据已知条件,结合共轭复数的概念,以及复数代数形式的乘法运算,即可求解.解:∵z=i(1+i)=﹣1+i,∴.故选:B.2.掷两枚质地均匀的骰子,记事件A=“第一枚出现奇数点”,事件B=“第二枚出现偶数点”,则事件A与事件B的关系为()A.A与B互斥B.A与B对立C.A与B独立D.A与B相等【分析】事件A与事件B能同时发生,故事件A与事件B既不是互斥事件,也不是对立事件;P(A)==,P(B)==,P(AB)==,由P(AB)=P(A)P (B),得A与B独立;事件A与事件B不相等.解:掷两枚质地均匀的骰子,记事件A=“第一枚出现奇数点”,事件B=“第二枚出现偶数点”,事件A与事件B能同时发生,故事件A与事件B既不是互斥事件,也不是对立事件,故A,B均错误;P(A)==,P(B)==,P(AB)==,∵P(AB)=P(A)P(B),A与B独立,故C正确;事件A与事件B不相等,故D错误.故选:C.3.如图1、图2分别是甲、乙两户居民家庭全年各项支出的统计图.根据统计图,下列对两户居民旅游支出占全年总支出的百分比作出的判断中,正确的是()A.甲户比乙户大B.乙户比甲户大C.甲、乙两户一般大D.无法确定哪一户大【分析】由柱状图计算出乙户的旅游支出占比,再与甲的比较即可.解:由饼状图,甲户的旅游支出占25%;由柱状图,乙户的旅游支出占<25%.故选:A.4.如图是正方体的平面展开图,则在这个正方体中,AM与BN所成角的大小为()A.0°B.45°C.60°D.90°【分析】把正方体的平面展开图还原成正方体ADNE﹣CMFB,由此能求出AM与BN所成角的大小.解:如图,把正方体的平面展开图还原成正方体ADNE﹣CMFB,∵CD∥BN,CD⊥AM,∴AM⊥BN,∴在这个正方体中,AM与BN所成角的大小为90°.故选:D.5.已知m,n是两条直线.α,β是两个平面,下列说法正确的是()A.若m∥n,n∥α,则m∥αB.若α⊥β,m⊂α,则m⊥βC.若m∥α,n⊂α,则m∥n D.若m⊂α,m⊥β,则α⊥β【分析】对于A,m∥α或m⊂α;对于B,m与β相交、平行或m⊂β;对于C,m与n 平行或异面;对于D,由面面垂直的判定定理得α⊥β.解:由m,n是两条直线.α,β是两个平面,知:对于A,若m∥n,n∥α,则m∥α或m⊂α,故A错误;对于B,若α⊥β,m⊂α,则m与β相交、平行或m⊂β,故B错误;对于C,若m∥α,n⊂α,则m与n平行或异面,故C错误;对于D,若m⊂α,m⊥β,则由面面垂直的判定定理得α⊥β,故D正确.故选:D.6.已知某运动员每次投篮命中的概率是40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下10组随机数:204 978 171 935 263 321 947 468 579 682,据此估计,该运动员三次投篮恰有两次命中的概率为()A.B.C.D.【分析】找出10组随机数中三次投篮恰有两次命中的事件,计算所求的概率值.解:根据10组随机数:204 978 171 935 263 321 947 468 579 682,表示三次投篮恰有两次命中的事件是204,171,263,共3件;所以该运动员三次投篮恰有两次命中的概率为P=.故选:B.7.《史记》中讲述了田忌与齐王赛马的故事.其中,田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.若双方各自拥有上等马、中等马、下等马各1匹,且双方各自随机选1匹马进行1场比赛,则田忌的马获胜的概率为()A.B.C.D.【分析】基本事件总数n=3×3=9,利用列举法求出田忌的马获胜包含的基本事件有3种情况,由此能求出田忌的马获胜的概率.解:田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.若双方各自拥有上等马、中等马、下等马各1匹,且双方各自随机选1匹马进行1场比赛,基本事件总数n=3×3=9,分别为:田忌的上等马对阵齐王的上等马,田忌的上等马对阵齐王的中等马,田忌的上等马对阵齐王的下等马,田忌的中等马对阵齐王的上等马,田忌的中等马对阵齐王的中等马,田忌的上等马对阵齐王的下等马,田忌的下等马对阵齐王的上等马,田忌的下等马对阵齐王的中等马,田忌的下等马对阵齐王的下等马,田忌的马获胜包含的基本事件有3种情况,分别为:田忌的上等马对阵齐王的中等马,田忌的上等马对阵齐王的下等马,田忌的中等马对阵齐王的下等马,则田忌的马获胜的概率为P=.故选:C.8.如图,由四个全等的直角三角形与一个小正方形拼成的一个大正方形,已知,则=()A.B.C.D.【分析】利用平面向量的线性运算及平面向量的基本定理求解即可.解:∵=2,∴=+=+=+(﹣)=+﹣×,∴=+,∴=+.故选:C.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.设向量,则()A.B.C.D.在上的投影向量为(1,0)【分析】根据平面向量数量积的运算性质逐一进行判断即可解:因为,所以=(﹣1,﹣1),对A:||=,||=,所以||=||,故A正确;对B:因为1×(﹣1)﹣(﹣1)×(﹣1)=﹣2≠0,所以与不平行,故B错误;对C:()•=﹣1+1=0,所以()⊥,故C正确;对D:在上的投影为==1,则在上的投影向量为(1,0),故D正确;故选:ACD.10.任何一个复数z=a+bi(其中a、b∈R,i为虚数单位)都可以表示成:z=r(cosθ+i sinθ)的形式,通常称之为复数z的三角形式.法国数学家棣莫弗发现:z n=[r(cosθ+i sinθ)]n =r n(cos nθ+i sin nθ)(n∈N+),我们称这个结论为棣莫弗定理.根据以上信息,下列说法正确的是()A.当时,B.C.|z4|=|z|4D.在复平面内对应的点的坐标为第三象限【分析】根据已知条件,结合复数z的三角形式和共轭复数的概念,即可求解.解:对于A选项,当时,z=cos+=,,故A选项正确,对B选项,=cosπ+sinπi=﹣1,故B选项错误,对于C选项,∵z=r(cosθ+i sinθ),∴z4=r4(cos4θ+i sin4θ),则|z4|=r4,|z|4=r4,∴|z4|=|z|4,故C选项正确,对于D选项,==,即在复平面对应的点为(,)位于第四象限,故D选项错误.故选:AC.11.已知正四面体的外接球、内切球的球面上各有一动点M、N,若线段MN的最小值为,则()A.正四面体的外接球的表面积为96πB.正四面体的内切球的体积为C.正四面体的棱长为12D.线段MN的最大值为【分析】设这个四面体的棱长为a,利用分割补形法求其外接球的半径,由等体积法求其内切球半径,再由已知列式求解a,然后逐一分析四个选项得答案.解:设这个四面体的棱长为a,四面体可看作棱长为的正方体截得的,故四面体的外接球即为正方体的外接球,外接球直径为正方体体对角线长,2R外==,∴R外=a,四面体的高h=a,根据等体积法,S•h=4×S•r内,解得r内=a,依题意得R外﹣r内=a﹣a=,∴a=12,故C正确;正四面体外接球的半径,则正四面体外接球的表面积为4π×54=216π,故A错误;正四面体内切球的半径为,则内切球的体积V=×=,故B正确;线段MN的最大值为:R外+r内=,故D错误.故选:BC.12.新冠肺炎期间,某社区规定:若任意连续7天,每天不超过6人体温高于37.3℃,则称没有发生群体性发热.下列连续7天体温高于37.3℃人数的统计特征数中,能判定该社区没有发生群体性发热的为()A.中位数为4,众数为3 B.均值小于1,中位数为1C.均值为2,标准差为D.均值为3,众数为4【分析】根据题意,假设设连续7天,每天的体温高于37.3℃的人数分别为a,b,c,d,e,f,g,且0≤a≤b≤c≤d≤e≤f≤g,由此依次分析选项,可得答案.解:由题意,设连续7天,每天的体温高于37.3℃的人数分别为a,b,c,d,e,f,g,且0≤a≤b≤c≤d≤e≤f≤g,依次分析选项:对于A,a,b,c,d,e,f,g依次取3,3,3,4,5,5,7,则满足中位数为4,众数为3,但是第7天的人数为7>6,不符合题意;对于B,若g≥7,中位数为1,则有(a+b+c+d+e+f+g)>g≥1,与均值小于1矛盾,可以判定该社区没有发生群体性发热,符合题意;对于C,若均值为2,标准差为,则有(a+b+c+d+e+f+g)=2,[(a﹣2)2+…+(g﹣2)2]=3,变形可得a+b+c+d+e+f+g=14,(a﹣2)2+…+(g﹣2)2=21,若g≥7,则(g﹣2)2≥25,与标准差为矛盾,可以判定该社区没有发生群体性发热,符合题意;对于D,a,b,c,d,e,f,g依次取0,1、2,3,4,4,7,满足均值为3,众数为4,但是第7天的人数为7>6,不符合题意;故选:BC.三、填空题:本题共4小题,每小题5分,共20分.13.已知z=,则|z|= 1 .【分析】根据已知条件,运用复数的运算法则,以及复数模的公式,即可求解.解:∵z==,∴.故答案为:1.14.在△ABC中,若b=1,c=,∠C=,则a= 1 .【分析】先根据b,c,∠c,由正弦定理可得sin B,进而求得B,再根据正弦定理求得a.解:在△ABC中由正弦定理得,∴sin B=,∵b<c,故B=,则A=由正弦定理得∴a==1故答案为:115.如图,桌面上放置一个装有水的圆柱形玻璃水杯,AB为杯底直径,现以点B为支点将水杯倾斜,使AB所在直线与桌面所成的角为,则圆柱母线与水面所在平面所成的角等于.【分析】作出图形,数形结合能求出结果.解:如图,以点B为支点将水杯倾斜,使AB所在直线与桌面所成的角为,,水面所在直线EF∥桌面所在直线CD,,∴,∴圆柱母线与水面所在平面所成的角∠EFB=∠CBF=.故答案为:.16.菱形ABCD的边长为2,∠A=60°,M为DC的中点,若N为菱形内任意一点(含边界),则的最小值为﹣4 .【分析】设在向量方向上的投影为x,结合图形可知当N点与A点重合时x最小,所以,进而可得答案.解:设在向量方向上的投影为x,则,当x最小时,取得最小值,结合图形可知当N点与A点重合时x最小,所以=.故答案为:﹣4.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知向量满足=(1,1),||=1.(1)若的夹角θ为,求;(2)若,求与的夹角.【分析】(1)根据平面向量数量积运算公式求解即可;(2)由得,进而求出,再根据平面向量夹角公式求解即可.解:(1),所以,所以,(2)因为,所以,所以,所以,所以,因为θ∈[0,π],所以.故与的夹角为.18.如图,在三棱柱ABC﹣A1B1C1中,AB⊥AC,AB=AC=1,D是BC的中点.(1)求证:A1B∥平面ADC1;(2)若面ABB1A1⊥面ABC,AA1⊥AB,AA1=2,求几何体ABD﹣A1B1C1的体积.【分析】(1)连接A1C,交AC1于O,连接OD,可得OD∥A1B,再由直线与平面平行的判定得AB1∥平面ADC1;(2)由平面ABB1A1⊥平面ABC,AB⊥AA1,利用平面与平面垂直的性质可得AA1⊥平面ABC,再由已知求得三棱锥ABC﹣A1B1C1与三棱锥C1﹣ADC的体积,作差可得几何体ABD﹣A1B1C1的体积.【解答】(1)证明:连接A1C,交AC1于O,连接OD,∵OD是ΔCA1B的中位线,∴OD∥A1B,又OD⊂平面ADC1,AB1⊄平面ADC1,∴AB1∥平面ADC1;(2)解:∵平面ABB1A1⊥平面ABC,平面ABB1A1∩平面ABC=AB,AB⊥AA1,AA1⊂平面ABB1A1,∴AA1⊥平面ABC,∵AB⊥AC,AB=AC=1,且AA1=2,∴,,故.19.某公司生产某种产品,从生产的正品中随机抽取1000件,测得产品质量差(质量差=生产的产品质量﹣标准质量,单位mg)的样本数据统计如下:(1)求样本数据的80%分位数;(2)公司从生产的正品中按产品质量差进行分拣,若质量差在(﹣s,+s)范围内的产品为一等品,其余为二等品.其中分别为样本平均数和样本标准差,计算可得s ≈10(同一组中的数据用该组区间的中点值作代表).①若产品的质量差为62mg,试判断该产品是否属于一等品;②假如公司包装时要求,3件一等品和2件二等品装在同一个箱子中,质检员每次从箱子中摸出2件产品进行检验,求摸出2件产品中至少有1件一等品的概率.【分析】(1)求出频率f1=0.1,f2=0.2,f3=0.45,f4=0.2,f5=0.05,f1+f2+f3+f4=0.95;f1+f2+f3=0.75,从而80%分位数一定位于[76,86)内,由此能估计样本数据的80%分位数.(2)①求出平均数,得到,再由62∈(60,80),得该产品属于一等品.②记三件一等品为A,B,C,两件二等品为a,b,利用列举法求出摸出两件产品总基本事件共10个,法一:记A:摸出两件产品中至少有一个一等品,利用列举法求出A包含的基本事件共9个,由此能求出所求概率.法二:记事件A:摸出两件产品中至少有一个一等品,:摸出两个产品,没有一个一等品,基本事件共一个(a,b).利用对立事件概率计算公式能求出所求概率.解:(1)因为频率f1=0.1,f2=0.2,f3=0.45,f4=0.2,f5=0.05,f1+f2+f3+f4=0.95;f1+f2+f3=0.75,所以,80%分位数一定位于[76,86)内,所以=.所以估计样本数据的80%分位数约为78.5.(2)①,所以,又62∈(60,80)可知该产品属于一等品.②记三件一等品为A,B,C,两件二等品为a,b,这是古典概型,摸出两件产品总基本事件共10个,分别为:(A,B),(A,C),(A,a),(A,b),(B,C),(B,a),(B,b),(C,a),(C,b),(a,b),方法一:记A:摸出两件产品中至少有一个一等品,A包含的基本事件共9个,分别是:(A,B),(A,C),(A,a),(A,b),(B,C),(B,a),(B,b),(C,a),(C,b),所以.方法二:记事件A:摸出两件产品中至少有一个一等品,:摸出两个产品,没有一个一等品,基本事件共一个(a,b).所以.20.现给出两个条件:①2b sin A=a tan B,②a(sin A﹣sin C)=b sin B﹣c sin C,从中选出一个条件补充在下面的问题中,并以此为依据求解问题.(选出一种可行的条件解答,若两个都选,则按第一个解答计分)在△ABC中,a,b,c分别为内角A,B,C所对的边,若_____.(1)求B;(2)若点D是边AC靠近A的三等分点,且BD长为1,求△ABC面积的最大值.【分析】(1)①根据正弦定理以及同角关系进行转化求解;②利用正弦定理和余弦定理进行转化求解即可.(2)根据点D是边AC靠近A的三等分点,方法1:根据条件得到关于a,c的关系式,然后利用基本不等式求出ac的范围,再得到面积的最大值;方法2,直接利用余弦定理,结合基本不等式进行转化求解即可.解:(1)若选①,由2b sin A=a tan B,得2 sin B sin A=由sin A≠0,sin B≠0,得因为B∈(0,π),所以B=60°.若选②,由a(sin A﹣sin C)=b sin B﹣c sin C,得a2+c2﹣b2=ac所以因为B∈(0,π),所以B=60°.(2)方法一:,,由,平方得,即,所以,所以,即,当且仅当时,取等号,所以,此时且.方法二:△ABC中,由余弦定理,可得b2=a2+c2﹣ac,由∠ADB+∠CDB=π,得cos∠ADB=﹣cos∠CDB,所以,所以,即a2+4c2+2ac=9,由基本不等式,得即,当且仅当,取等号,所以,即,所以,此时且.21.甲、乙、丙三人参加一家公司的招聘面试,面试合格者可正式签约.甲表示只要面试合格就签约,乙丙则约定:两人面试都合格就一同签约,否则两人都不签约.设甲面试合格的概率为,乙丙每人面试合格的概率都是,且三人面试是否合格互不影响.求:(1)恰有一人面试合格的概率;(2)至多一人签约的概率.【分析】(1)利用对立事件的概率公式以及相互独立事件的概率乘法公式求解即可;(2)事件E:至多一人签约,事件F:恰好一人签约,事件G:没人签约,然后由互斥事件的加法公式得到P(E)=P(F)+P(G),再利用对立事件的概率公式以及相互独立事件的概率乘法公式分别求解P(F),P(G),即可得到答案.解:(1)记事件A:甲面试合格,事件B:乙面试合格事件C:丙面试合格事件D:恰好有一人面试合格,依题意,事件A、B、C相互独立,所以==;(2)事件E:至多一人签约,事件F:恰好一人签约,事件G:没人签约,因为F与G互斥,所以P(E)=P(F)+P(G),又==,==,,所以至多一人签约的概率为.22.在我国古代数学名著《九章算术》中将由四个直角三角形组成的四面体称为“鳖臑”.已知三棱锥P﹣ABC中,PA⊥平面ABC.(1)从三棱锥P﹣ABC中选择合适的两条棱填空.若AB⊥BC,则该三棱锥为“鳖臑”;(2)已知三棱锥P﹣ABC是一个“鳖臑”,且AC=1,AB=2,∠BAC=60°,①若△PAC上有一点D,如图1所示,试在平面PAC内作出一条过点D的直线l,使得l与BD垂直,说明作法,并给予证明;②若点D在线段PC上,点E在线段PB上,如图2所示,且PB⊥平面EDA,证明∠EAB是平面EAD与平面BAC的二面角的平面角.【分析】(1)由“鳖臑”的定义求解即可;(2)①连接CD,在△PAC内,过点D作l⊥CD,即可得l为所求直线,利用线面垂直的判定定理和性质证明l⊥平面BCD,即可证明l⊥BD;②延长ED,BC,交于点F,连接AF,利用线面垂直的判定定理证明AF⊥平面PAB,由二面角的平面角的定义即可证明.解:(1)因为PA⊥平面ABC,AB,AC,BC⊂平面ABC,则PA⊥AB,PA⊥AC,PA⊥BC,故△PAC与△PAB是两个直角三角形,当AB⊥BC时,则△BAC为直角三角形,因为PA∩AB=A,PA,AB⊂平面PAB,则BC⊥平面PAB,又PB⊂平面PAB,所以BC⊥PB,则△BPC为直角三角形,故该三棱锥为“鳖臑”;(2)①连接CD,在△PAC内,过点D作l⊥CD,即可得l为所求直线,证明如下:在△ABC中,由余弦定理可得,由勾股定理逆定理可知,BC⊥AC,又因为PA⊥底面ABC,BC⊂平面ABC,所以PA⊥BC,又PA∩AC=A,PA,AC⊂平面PAC,所以BC⊥平面PAC,又l⊂平面PAC,则l⊥BC,又l⊥CD,CD∩BC=C,CD,BC⊂平面BCD,所以l⊥平面BCD,又BD⊂平面BCD所以l⊥BD;②延长ED,BC,交于点F,连接AF,因为点F∈平面ADE,点F∈平面ABC,所以平面ADE∩平面ABC=AF,因为PA⊥底面ABC,且AF⊂平面ABC所以PA⊥AF,因为PB⊥平面EDA,AF⊂平面EDA,所以PB⊥AF,又因为PB∩PA=P,PA,PB⊂平面PAB,所以AF⊥平面PAB,所以AF⊥AE,AF⊥AB,故∠EAB是平面EAD与平面BAC所形成的二面角的平面角.21。

精品解析:福建师范大学第二附属中学等五校2022-2023学年高一上学期期末联考数学试题(解析版)

2020-2021学年第一学期高一年段期末五校联考数 学 试 卷一,单项选择题1. 设全集U =R ,{}220A x x x =-<,{}10B x x =->,则如图阴影部分表示地集合为()A. {}1x x ≥ B. {}1x x ≤C. {}01x x <≤ D. {}12x x ≤<【结果】D 【思路】【思路】解出集合A ,B ,然后利用图中阴影部分所表示地集合地含义得出结果.【详解】{}{}22002A x x x x x =-<=<< ,{}{}101B x x x x =->=<.图中阴影部分所表示地集合为{x x A ∈且}{}12x B x x ∉=≤<.故选:D.【点睛】本题考查韦恩图表示地集合地求解,同时也考查了一圆二次不等式地解法,解题地关键就是弄清楚阴影部分所表示地集合地含义,考查运算求解能力,属于基础题.2. 设p:x >,q :22x >,则p 是q 地( )A. 充要款件B. 充分不必要款件C. 必要不充分款件D. 既不充分也不必要款件【结果】B 【思路】思路】解出不等式22x >,依据集合地包含关系,可得到结果.【详解】解:因为q :22x >,【所以q :x >或x <,因为p :x >,所以p 是q 地充分不必要款件.故选:B【点睛】本题考查了充分不必要款件地判断,两个命题均是范围形式,解决问题常见地方式是判断出集合之间包含关系.3. 设2log 0.3,a =0.53,b =0.50.3c =,则a ,b ,c 地大小关系是A. a b c >> B. c a b>> C. c b a>> D. b c a>>【结果】D 【思路】【思路】运用对数函数,指数函数地单调性,利用中间值法进行比较即可.【详解】22log 0.3log 10,a =<=0.50331,b =>=050.00.30.0131c <=∴<<< ,因此可得b c a >>.故选:D【点睛】本题考查了对数式,指数式之间地大小比较问题,考查了对数函数,指数函数地单调性,考查了中间值比较法,属于基础题.4. 已知函数f (x )=6x-log 2x ,则f (x )地零点所在地区间是( )A. (0,1) B. (2,3)C. (3,4) D. (4,+∞)【结果】C 【思路】【思路】先判断出函数地单调性,然后得出()()3,4f f 地函数符号,从而得出结果.【详解】由6y x=在()0,∞+上单调递减,2log y x =在()0,∞+上单调递减所以函数()26log f x x x=-在()0,∞+上单调递减又()()22243132log 3log 0,4log 40322f f =-=>=-=-<依据函数f (x ) 在()0,∞+上单调递减,由零点存在定理可得函数在(3,4)之间存在零点.故选:C5. 一个扇形地弧长为6,面积为6,则这个扇形地圆心角是( )A. 1 B. 2C. 3D. 4【结果】C 【思路】【思路】依据扇形地弧长公式和扇形地面积公式,列出方程组,即可求解,得到结果.【详解】设扇形所在圆地半径为r ,由扇形地弧长为6,面积为6,可得26162l r S r αα==⎧⎪⎨==⎪⎩,解得3α=,即扇形地圆心角为3rad .故选C.【点睛】本题主要考查了扇形地弧长公式,以及扇形地面积公式地应用,其中解答中熟练应用扇形地弧长公式和扇形地面积公式,准确运算是解答地关键,着重考查了推理与运算能力,属于基础题.6. 福州新港江阴港区地处福建最大海湾兴化湾西北岸,全年全日船泊进出港不受航道及潮水地限制,是迄今为止“我国少有,福建最佳”地天然良港.如图,是港区某个泊位一天中6时到18时地水深变化曲线近似满足函数3sin()y x k ωϕ=++,据此可知,这段时长水深(单位:m )地最大值为( )A. 5B. 6C. 8D. 10【结果】C 【思路】【思路】从图象中地最小值入手,求出5k =,进而求出函数地最大值,即为结果.【详解】从图象可以看出,函数3sin()y x k ωϕ=++最小值为-2,即当sin()1x ωϕ+=-时,函数得到最小值,即32k -+=,解得:5k =,所以3sin()5y x ωϕ=++,当sin()1x ωϕ+=时,函数得到最大值,max 358y =+=,这段时长水深(单位:m )地最大值为8m.7. 若函数()()222,1log 1,1xx f x x x ⎧+≤⎪=⎨->⎪⎩在(],a -∞上地最大值为4,则a 地取值范围为( )A. []0,17B. (],17-∞C. []1,17D. [)1,+∞【结果】C 【思路】【思路】先分别探究函数()122,1xf x x =+≤与()()22log 1,1f x x x =->地单调性,再求()f x 地最大值.【详解】因为()122xf x =+在(],1-∞上单调递增,()()22log 1f x x =-在()1,+∞上单调递增.而()14f =,()174f =,所以a 地取值范围为[]1,17.【点睛】本题主要考查分段函数地最值以及指数函数,对数函数地单调性,属于中档题.8. 用函数()M x 表示函数()f x 和()g x 中地较大者,记为:()max{(),()}M x f x g x =,若()(0)f x x =≠,2()g x x -=,则()M x 地大约图像为( )A. B.C. D.【结果】A 【思路】【思路】利用特殊值确定正确选项.【详解】依题意()max{(),()}M x f x g x =,()()()21222214f g M -==⇒=>,排除CD 选项.()()()()21222214f g M ---=-=⇒-=>,排除B 选项.所以A 选项正确.9. 十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐步被数学界接受,不等号地引入对不等式地发展影响深远. 已知01a b <<<,则下面不等式成立地是( )A. 1122a b⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭B. ln ln a b> C.11a b> D.11ln ln a b>【结果】ACD 【思路】【思路】利用指数函数地单调性可判断A 选项。

2020-2021学年高一上学期期末考试数学卷及答案

2020-2021学年高一上学期期末考试数学卷及答案1.集合A和B分别表示y=x+1和y=2两个函数的图像上所有的点,求A和B的交集。

答案:A={(-∞,1]}。

B={2}。

A∩B=A={(-∞,1]}2.已知函数y=(1-x)/(2x^2-3x-2),求函数的定义域。

答案:分母2x^2-3x-2=(2x+1)(x-2),所以函数的定义域为x∈(-∞,-1/2]∪(2,∞)。

3.如果直线mx+y-1=0与直线x-2y+3=0平行,求m的值。

答案:两条直线平行,说明它们的斜率相等,即m=2.4.如果直线ax+by+c=0经过第一、第二,第四象限,求a、b、c应满足的条件。

答案:第一象限中x>0.y>0,所以ax+by+c>0;第二象限中x0,所以ax+by+c0.y<0,所以ax+by+c<0.综上所述,应满足ab<0.bc<0.5.已知两条不同的直线m和n,两个不同的平面α和β,判断下列命题中正确的是哪个。

答案:选项A是正确的。

因为如果m与α垂直,n与β平行,那么m和n的夹角就是α和β的夹角,所以m和n垂直。

6.已知圆锥的表面积为6π,且它的侧面展开图是一个半圆,求这个圆锥的底面半径。

答案:设底面半径为r,侧面的母线长为l,则圆锥的侧面积为πrl。

根据题意,πrl=6π,所以l=6/r。

而侧面展开图是一个半圆,所以底面周长为2πr,即底面直径为2r,所以侧面母线长l=πr。

将上述两个式子代入公式S=πr^2+πrl中,得到r=2.7.已知两条平行线答案:两条平行线的距离等于它们的任意一点到另一条直线的距离。

我们可以先求出l2上的一点,比如(0,7/8),然后带入l1的方程,得到距离为3/5.8.已知函数y=ax-1/(3x^2+5),如果它的图像经过定点P,求点P的坐标。

答案:点P的坐标为(1,2)。

因为当x=1时,y=a-1/8,所以a=17/8.又因为当x=2时,y=1/13,所以17/8×2-1/13=2,解得a=17/8,所以y=17x/8-1/(3x^2+5),当x=1时,y=2.9.已知a=3/5,b=1/3,c=4/3,求a、b、c的大小关系。

2020-2021学年上海市杨浦区控江中学高一上学期期末数学试题(解析版)

2020-2021学年上海市杨浦区控江中学高一上学期期末数学试题一、单选题1.函数111y x =-+的值域是( ) A .(,1)-∞B .(1,)+∞C .(,1)(1,)-∞⋃+∞D .(,)-∞+∞【答案】C 【分析】由反比例函数的性质可知101x ≠+,从而推出所求函数的值域. 【详解】解:由反比例函数的性质可知:101y x =≠+,则1111y x =-≠+,故值域为()(),11,+-∞⋃∞. 故选:C.2.若,0a b c a b c >>++=,则下列各式正确的是( )A .ab bc >B .ac bc >C .a b b c >D .ab ac > 【答案】D【分析】已知a b c >>,且0a b c ++=,于是可以推出得到最大数0a >和最小数0c <,而b 为正、负、零均有可能,所以每个选项代入不同的b ,逐一验证.【详解】a b c >>且0a b c ++=.当0a ≤时,0c b a <<,则0a b c ++<,与已知条件0a b c ++=矛盾,所以必有0a >,同理可得0c <.A 项,当1a =,0b =,1c =-时,ab bc =,故A 项错误;B 项,()0ac bc c a b -=-<,即ac bc <,故B 项错误;C 项,0b =时,a b c b =,故C 项错误;D 项,()0ab ac a b c -=->,即ab ac >,故D 项正确.故选:D3.已知函数1,0()0,01,0x f x x x >⎧⎪==⎨⎪-<⎩,若2()()F x x f x =⋅,则()F x 是( )A .奇函数,在(,)-∞+∞上为严格减函数B .奇函数,在(,)-∞+∞上为严格增函数C .偶函数,在(,0)-∞上严格减,在(0,)+∞上严格增D .偶函数,在(,0)-∞上严格增,在(0,)+∞上严格减【答案】B【分析】由()()f x f x -=-可知()f x 为奇函数,利用奇偶函数的概念即可判断设2()()F x x f x =⋅的奇偶性,从而得到答案.【详解】1,01,0()0,00,0()1,01,0x x f x x x f x x x ⎧->>⎧⎪⎪-===-==-⎨⎨⎪⎪<-<⎩⎩()f x ∴为奇函数,又2()()F x x f x =⋅22()()()()()F x x f x x f x F x ∴-=-⋅-=-⋅=-()F x ∴是奇函数,可排除C,D.又222,0()()0,0,0x x F x x f x x x x ⎧>⎪=⋅==⎨⎪-<⎩()F x ∴在(,)-∞+∞上单调递增.故选:B4.设0a b c >>>,则()221121025a ac c ab a a b ++-+-取得最小值时,a 的值为( ) AB .2C .4 D.【答案】A 【分析】转化条件为原式211()(5)()ab a a b a c ab a a b =+++-+--,结合基本不等式即可得解. 【详解】()221121025a ac c ab a a b ++-+- 2211()()21025()ab a a b ab a a b a ac c ab a a b =+++----+-+- 2211()1025()ab a a b a ac c ab a a b =+++-+-+-211()(5)()ab a a b a c ab a a b =+++-+--04≥=, 当且仅当1()15ab a a b a c =⎧⎪-=⎨⎪=⎩,即a =2b =5c =时,等号成立. 故选:A.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1) “一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.二、填空题5.已知全集{}{}210,27U x x A x x =<≤=<<,则A =_________.【答案】[]7,10【分析】根据补集的定义写出补集即可.【详解】解:{}{}210,27U x x A x x =<≤=<<,则A ={}|710x x ≤≤.故答案为:[]7,10.6.设实数a 满足2log 4a =,则a =_________.【答案】16【分析】根据对数式与指数式的互化即可求解.【详解】因为2log 4a =,所以4216a ==,故答案为:167.已知幂函数235()(1)mm f x m x --=-的图像不经过原点,则实数m =_________.【答案】2【分析】先由幂函数的定义求出m ,再检验得解.【详解】依题意得11m -=,解得2m =.此时()771f x x x -==,其图像不经过原点,符合题意, 因此实数m 的值为2.故答案为: 28.函数2()21f x x ax =--在区间[]1,3上为严格减函数的充要条件是_________.【答案】3a ≥【分析】根据二次函数的性质,建立对称轴与所给区间的关系即可求解.【详解】因为函数2()21f x x ax =--在区间[]1,3为严格减函数,所以二次函数对称轴3x a =≥,故答案为:3a ≥9.函数22()log (1)f x x =-的定义域为_________.【答案】(1,1)-【分析】根据对数的真数大于0求解即可.【详解】()()22log 1f x x =-, 210x ∴->,解得11x -<<所以函数()()2log 1a f x x =-的定义域为()1,1-, 故答案为:()1,1-10.设函数f (x )200x x x x -≤⎧=⎨⎩,,>,若f (α)=9,则α=_____. 【答案】﹣9或3 【分析】对函数值进行分段考虑,代值计算即可求得结果.【详解】由题意可得09αα≤⎧⎨-=⎩或209αα⎧⎨=⎩>, ∴α=﹣9或α=3故答案为:﹣9或3【点睛】本题考查由分段函数的函数值求自变量,属简单题.11.若函数()(1)x f x a a =>在[]1,2-上的最大值为4,则其最小值为_________.【答案】12【分析】根据指数函数的单调性即可求解.【详解】因为函数()(1)x f x a a =>在[]1,2-单调递增,所以24a =,解得2a =,当1x =-,1min 1()(1)22f x f -=-==, 故答案为:1212.在同一平面直角坐标系中,函数()y g x =的图像与3x y =的图像关于直线y x =对称,而函数()y f x =的图像与()y g x =的图像关于y 轴对称,若()1f a =-,则a 的值是______. 【答案】13- 【分析】根据函数的对称性求出()f x 的解析式,代入a 求解即可.【详解】解:因为函数()y g x =的图像与3x y =的图像关于直线y x =对称,则()3log g x x =, 又函数()y f x =的图像与()y g x =的图像关于y 轴对称,则()3()log f x x =-,()3()log 1f a a =-=-,则13a =-. 故答案为:13- 【点睛】知识点点睛:(1)()y g x =与x y a =图像关于直线y x =对称,则()log a g x x =;(2)()y f x =与()y g x =关于y 轴对称,则()()f x g x =-;(3)()y f x =与()y g x =关于x 轴对称,则()()f x g x =-;13.如果关于x 的方程53x x a -++=有解,则实数a 的取值范围是_________.【答案】[)8,+∞【分析】根据绝对值的几何意义求得53x x -++最小值为8,即可求出实数a 的取值范围.【详解】因为53x x -++表示数轴上的x 对应点到-3和5对应点的距离之和,其最小值为8, 故当8a ≥时,关于x 的方程53x x a -++=有解,故实数a 的取值范围为[8,)+∞,故答案为:[8,)+∞.14.若定义在R 上的奇函数()f x 在(0,)+∞上是严格增函数,且(4)0f -=,则使得()0xf x >成立的x 的取值范围是_________.【答案】(,4)(4,)-∞-⋃+∞【分析】由函数的奇偶性和零点,分别求出()0f x >和()0f x <的解集,再分别讨论当0x >和0x <时()0xf x >的解集即可求出结果.【详解】解:因为()f x 为奇函数,且有(4)0f -=,则()f x 在(,0)-∞上是也严格递增,且(4)0f =,所以()0f x >的解集为:()()4,04,-+∞;()0f x <的解集为:()(),40,4-∞-,则当0x >时,()0xf x >的解为()4,+∞,当0x <时,()0xf x >的解为(),4-∞-故()0xf x >成立的x 的取值范围是()(),44,-∞-+∞. 故答案为:()(),44,-∞-+∞【点睛】思路点睛:类似求()0xf x >或求()0f x x >的解集的问题,往往是根据函数的奇偶性和单调性先求出()0f x >或()0f x <的解,再结合x 的范围进行求解.15.函数()lg(221)x x f x a -=++-的值域是R ,则实数a 的取值范围是___________.【答案】](,1-∞-【分析】函数()lg(221)x x f x a -=++-的值域为R ,即()221x x g x a -=++-能取遍一切正实数,利用均值不等式求解即可.【详解】设()221x x g x a -=++-,由()lg(221)x x f x a -=++-的值域为R ,知()221x x g x a -=++-可以取所有的正值,又()22111x x g x a a a -=++-≥-=+,当且仅当0x =时等号成立,故()g x 的值域为[1,)a ++∞,所以只需满足[)()1,0,a ++∞⊇+∞即可,即1a ≤-故答案为:](,1-∞-【点睛】关键点点睛:求出()221x x g x a -=++-的值域,由题意知()221x x g x a -=++-能取遍一切正实数,转化为()g x 的值域包含()0,∞+是解题的关键,属于中档题.16..若直角坐标平面内两点,P Q 满足条件:①,P Q 都在函数()y f x =的图象上;②,P Q 关于原点对称,则称点对(,)P Q 是函数()y f x =的一个“友好点对”(点对(,)P Q 与(,)Q P 看作同一个“友好点对”).已知函数2241,0(){2,0x x x x f x x e++<=≥,则()f x 的“友好点对”有 个. 【答案】2【详解】解:根据题意:“友好点对”,可知,只须作出函数y=2x 2+4x+1(x <0)的图象关于原点对称的图象,看它与函数y="2" /e x (x≥0)交点个数即可.如图,观察图象可得:它们的交点个数是:2.即f (x )的“友好点对”有:2个.故答案为2三、解答题17.已知函数2()21f x ax ax =++.(1)若实数1a =,请写出函数()3f x y =的单调区间(不需要过程);(2)已知函数()y f x =在区间[3,2]-上的最大值为2,求实数a 的值.【答案】(1)增区间是(1,)-+∞,减区间是(,1)-∞-;(2)18a =或1a =-. 【分析】(1)求出()f x 的单调区间,然后根据复合函数的单调性写出()3f x y =的单调区间即可;(2)根据二次函数的性质,讨论0a <,0a =,0a >不同范围下()f x 的最值,解出a .【详解】解:(1)1a =时,()221f x x x =++,在(),1-∞-上单调递减,在()1,-+∞上单调递增;则()3f x y =的单调递减区间为(),1-∞-,单调递增区间为()1,-+∞.(2)()()222111f x ax ax a x a =++=++-,对称轴为1-, 当0a <时,()f x 在1x =-处取得最大值,()112f a -=-=,解得:1a =-当0a =时,()1f x =不成立;当0a >时,()f x 在()3,1--上单调递减,在()1,2-上单调递增,且对称轴为1x =-,()max f x =()2f ()2912f a a =+-=,解得:18a =综上所述:1a =-或18a =. 【点睛】本题考查复合函数的单调性以及二次函数的最值,属于基础题.思路点睛:(1)复合函数的单调性:分别判断内层函数和外层函数的单调性,根据同增异减的原则写出单调区间即可;(2)()221f x ax ax =++的最高次项系数为a ,不一定为二次函数,需讨论a 与0的关系; 18.设函数()|2|,()2f x x a g x x =-=+.(1)当1a =时,求不等式()()f x g x ≤的解集;(2)求证:1,,222b b f f f ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭中至少有一个不小于12. 【答案】(1)1,33⎡⎤-⎢⎥⎣⎦;(2)证明见解析.【分析】(1)利用绝对值的意义,分类讨论,即可求不等式()()f x g x ≤的解集;(2)利用反证法证明即可.【详解】(1)当a =1时,|2x -1|≤x +2, 化简可得12122x x x ⎧≤⎪⎨⎪-≤+⎩或12212x x x ⎧<⎪⎨⎪-≤+⎩ 解得1132x -≤≤或132x <≤ 综上,不等式的解集为)1|33x x ⎧⎫-≤≤⎨⎬⎩⎭.(2)证明:假设1,,222b bf f f⎛⎫⎛⎫⎛⎫-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭都小于12,则1122112211122a ba ba⎧-<+<⎪⎪⎪-<-<⎨⎪⎪-<-<⎪⎩,前两式相加得-12<a<12与第三式12<a<32矛盾.因此假设不成立,故1,,222b bf f f⎛⎫⎛⎫⎛⎫-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭中至少有一个不小于12.【点睛】关键点点睛:证明至少、至多类命题时,考虑反证法是解题的关键,首先要根据题意恰当反设,正常推理,寻求矛盾是重点,属于中档题.19.研究表明:在一节40分钟的网课中,学生的注意力指数y与听课时间x(单位:分钟)之间的变化曲线如图所示,当[0,16]x∈时,曲线是二次函数图像的一部分;当[16,40]x∈时,曲线是函数0.880log()y x a=++图像的一部分,当学生的注意力指数不高于68时,称学生处于“欠佳听课状态”.(1)求函数()y f x=的解析式;(2)在一节40分钟的网课中,学生处于“欠佳听课状态”的时间有多长?(精确到1分钟)【答案】(1)20.81(12)84,(0,16]()4log(15)80,(16,40]x xf xx x⎧--+∈⎪=⎨⎪-+∈⎩;(2)14分钟.【分析】(1)根据题意,分别求得(0,16]x∈和(16,40]x∈上的解析式,即可求解;(2)当(0,16]x∈和(16,40]x∈时,令()68f x<,求得不等式的解集,即可求解.【详解】(1)当(0,16]x∈时,设函数2()(12)84(0)f x b x b=-+<,因为2(16)(1612)8480f b =-+=,所以14b =-,所以21()(12)844f x x =--+, 当(16,40]x ∈时,0.8()log ()80f x x a =++, 由0.8(16)log (16)8080f a =++=,解得15a =-,所以0.8()log (15)80f x x =-+, 综上,函数的解析式为20.81(12)84,(0,16]()4log (15)80,(16,40]x x f x x x ⎧--+∈⎪=⎨⎪-+∈⎩. (2)当(0,16]x ∈时,令21()(12)84684f x x =--+<,即2(12)64x ->,解得4x <或20x >(舍去),所以[0,4]x ∈,当(16,40]x ∈时,令0.8()log (15)8068f x x =-+<,得12150.829.6x -≥+≈,所以[30,40]x ∈,所以学生处于“欠佳听课状态”的时间长为40403014-+-=分钟.20.已知1()log 1a mx f x x -=-(0a >、1a ≠)是奇函数. (1)求实数m 的值;(2)判断函数()f x 在(1,)+∞上的单调性,并给出证明;(3)当(,2)x n a ∈-时,()f x 的值域是(1,)+∞,求实数a 与n 的值.【答案】(1)1m =-;(2)1a >时()f x 在(1,)+∞上严格减;01a <<时.()f x 在(1,)+∞上严格增;(3)21a n ==.【分析】(1)根据奇函数的定义可知f (﹣x )+f (x )=0,建立关于m 的等式关系,解之即可;(2)先利用函数单调性的定义研究真数的单调性,讨论a 的取值,然后根据复合函数的单调性进行判定;(3)先求函数的定义域,讨论(n ,a ﹣2)与定义域的关系,然后根据单调性建立等量关系,求出n 和a 的值.【详解】(1)∵函数()11amx f x log x -=-(a >0,a ≠1)是奇函数. ∴f (﹣x )+f (x )=0 即11log log 011aa mx mx x x +-+=---, 所以11log 011a mx mx x x +-⋅=---, 即222111m x x-=- 解得1m =±,当1m =时,1()log log (1)1a a xf x x -==--无意义,舍去. 故1m =-.(2)由(1)及题设知:()11ax f x log x +=-, 设11221111x x t x x x +-+===+---, ∴当x 1>x 2>1时,()()()211212122221111x x t t x x x x --=-=---- ∴t 1<t 2.当a >1时,log a t 1<log a t 2,即f (x 1)<f (x 2). ∴当a >1时,f (x )在(1,+∞)上是减函数. 同理当0<a <1时,f (x )在(1,+∞)上是增函数.(3)由题设知:函数f (x )的定义域为(1,+∞)∪(﹣∞,﹣1),∴①当n <a ﹣2≤﹣1时,有0<a <1.由(1)及(2)题设知:f (x )在为增函数,由其值域为(1,+∞)知11121an log n a +⎧=⎪-⎨⎪-=-⎩(无解); ②当1≤n <a ﹣2时,有a >3.由(1)及(2)题设知:f (x )在(n ,a ﹣2)为减函数,由其值域为(1,+∞)知1113a n a log a =⎧⎪-⎨=⎪-⎩得2a =+n =1.【点睛】方法点睛:利用定义法判断函数的单调性的一般步骤是:(1)在已知区间上任取21x x >;(2)作差()()21f x f x -;(3)判断()()21f x f x -的符号(往往先分解因式,再判断各因式的符号),()()210f x f x -> 可得()f x 在已知区间上是增函数,()()210f x f x -< 可得()f x 在已知区间上是减函数.21.若函数()f x 的定义域为D ,集合M D ⊆,若存在非零实数t 使得任意x M ∈都有x t D +∈,且()()f x t f x +>,则称()f x 为M 上的t -增长函数.(1)已知函数()g x x =,函数2()h x x =,判断()g x 和()h x 是否为区间[]1,0-上的32-增长函数,并说明理由;(2)已知函数()f x x =,且()f x 是区间[]4,2--上的n -增长函数,求正整数n 的最小值;(3)如果()f x 是定义域为R 的奇函数,当0x ≥时,22()f x x a a =--,且()f x 为R 上的4-增长函数,求实数a 的取值范围.【答案】(1)()g x x =是,2()h x x =不是,理由见解析;(2)9;(3)(1,1)a ∈-. 【分析】(1)利用给定定义推理判断或者反例判断而得; (2)把恒成立的不等式等价转化,再求函数最小值而得解;(3)根据题设条件,写出函数f (x )的解析式,再分段讨论求得,最后证明即为所求. 【详解】(1)g (x )定义域R ,3333[1,0],(),()()()02222x x R g x g x x x ∀∈-+∈+-=+-=>,g (x )是, 取x =-1,311(1)()1(1)224h h h -+==<=-,h (x )不是, 函数()g x x =是区间[]1,0-上的32-增长函数,函数2()h x x =不是;(2)依题意,2[4,2],()()||||20x f x n f x x n x nx n ∀∈--+>⇔+>⇔+>, 而n>0,关于x 的一次函数22nx n +是增函数,x =-4时22min (2)8nx n n n +=-, 所以n 2-8n>0得n>8,从而正整数n 的最小值为9;(3)依题意,2222222,?(),?2,?x a x a f x x a x a x a x a ⎧+≤-⎪=--<<⎨⎪-≥⎩,而,(4)()x R f x f x ∀∈+>, f (x )在区间[-a 2,a 2]上是递减的,则x ,x +4不能同在区间[-a 2,a 2]上,4>a 2-(-a 2)=2a 2, 又x ∈[-2a 2,0]时,f (x )≥0,x ∈[0,2a 2]时,f (x )≤0,若2a 2<4≤4a 2,当x =-2a 2时,x +4∈[0,2a 2],f (x +4)≤f (x )不符合要求, 所以4a 2<4,即-1<a<1.因为:当4a 2<4时,①x +4≤-a 2,f (x +4)>f (x )显然成立;②-a 2<x +4<a 2时,x <a 2-4<-3a 2,f (x +4)=-(x +4)>-a 2,f (x )=x +2a 2<-a 2,f (x +4)>f (x ); ③x +4>a 2时,f (x +4)=(x +4)-2a 2>x +2a 2≥f (x ),综上知,当-1<a<1时,()f x 为R 上的4-增长函数, 所以实数a 的取值范围是(-1,1).【点睛】(1)以函数为背景定义的创新试题,认真阅读,分析转化成常规函数解决;(2)分段函数解析式中含参数,相应区间也含有相同的这个参数,要结合函数图象综合考察,并对参数进行分类讨论.。

2020-2021学年新教材高一数学上学期期末复习练习(四)

2020-2021高一数学期末复习练习(四)考查知识:苏教版必修第一册第I 卷(选择题)请点击修改第I 卷的文字说明一、单选题1.集合{|14}A x N x =∈≤<的真子集的个数是( )A .16B .8C .7D .42.已知:p :A ={x |x 2﹣2x ﹣3≤0},q :B ={x |x 2﹣2mx +m 2﹣4≤0},若p 是¬q 成立的充分不必要条件,求m 的取值范围是( )A .(﹣∞,﹣3)∪(5,+∞)B .(﹣3,5)C .[﹣3,5]D .(﹣∞,﹣3]∪[5,+∞)3.已知a b >,0ab ≠,则下列不等式正确的是( )A .22a b >B .22a b >C .|a |>|b|D .11a b < 4.已知lg 20.3010=,由此可以推断20142是( )位整数.A .605B .606C .607D .6085.设f (x )=12(1),1x x x <<-≥⎪⎩,若f (a )=12,则a =( ) A .14 B .54 C .14或54 D .26.正实数x ,y 满足lg lg 100y x x y =,则xy 的取值范围是( )A .1[,100]100B .1(0,][100,)100⋃+∞ 117.已知扇形的圆心角为23π,面积为24 c m 3π,则扇形的半径为( ) A .12cm B .1cmC .2cmD .4cm 8.复利是一种计算利息的方法.即把前一期的利息和本金加在一起算作本金,再计算下一期的利息.某同学有压岁钱1000元,存入银行,年利率为2.25%;若放入微信零钱通或者支付宝的余额宝,年利率可达4.01%.如果将这1000元选择合适方式存满5年,可以多获利息( )元(参考数据:1.02254=1.093,1,02255=1.170,1.04015=1.217)A .176B .104.5C .77D .88二、多选题9.已知集合{}2A x ax =≤,{B =,若B A ⊆,则实数a 的值可能是( ) A .1- B .1 C .2- D .2 10.设正实数a ,b 满足a +b =1,则( )A .11a b +有最小值4B 12C D .a 2+b 2有最小值12 11.已知定义在R 上的函数()y f x =满足条件()()2f x f x +=-,且函数()1y f x =-为奇函数,则( )A .()4()f x f x +=B .函数()y f x =的图象关于点()1,0-对称C .函数()y f x =为R 上的奇函数D .函数()y f x =为R 上的偶函数12.将函数()sin2f x x =向右平移4π个单位后得到函数()g x ,则()g x 具有性质( ) A .在0,4π⎛⎫ ⎪⎝⎭上单调递增,为偶函数 B .最大值为1,图象关于直线32x π=对称 C .在3,88ππ⎛⎫- ⎪⎝⎭上单调递增,为奇函数 D .周期为π,图象关于点3,04π⎛⎫⎪⎝⎭对称第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题13.已知p :2106x x >--,则“非p ”对应的x 值的集合是___. 14.若对数ln (x 2﹣5x +6)存在,则x 的取值范围为___.15.若()log 3a y ax =+(0a >且1a ≠)在区间(-1,+∞)上是增函数,则a 的取值范围是________.四、双空题16.已知函数()22log (1),02,0x x f x x x x +>⎧=⎨--≤⎩. 若函数()()g x f x m =-有3个零点,则实数m 的取值范围是________;若()f x m =有2个零点,则m =________.17.已知集合{}12A x x =-≤≤,{}2B x a x a =≤≤+.(1)若1a =,求A B ;(2)在①R R A B ⊆,②A B A ⋃=,③A B B =中任选一个作为已知,求实数a 的取值范围.18.已知函数()222y ax a x =-++,a R ∈ (1)32y x <-恒成立,求实数a 的取值范围;(2)当0a >时,求不等式0y ≥的解集;(3)若存在0m >使关于x 的方程()21221ax a x m m-++=++有四个不同的实根,求实数a 的取值.19.计算下列各式的值:(1)lg2+lg50;(2)39log 4log 8; (3))211lg12log 432162lg 20lg 2log 2log 319-⎛⎫++--⋅+ ⎪⎝⎭.20.已知函数f (x )=ax 2﹣2x +1+b (a ≠0)在x =1处取得最小值0.(1)求a ,b 的值;(2)()()f x g x x =,求函数1(|21|),,22x y g x ⎡⎤=-∈⎢⎥⎣⎦的最小值与最大值及取得最小值与最大值时对应的x 值.21.设函数()cos(),0,02f x x πωϕωϕ⎛⎫=+>-<< ⎪⎝⎭的最小正周期为π,且16f π⎛⎫= ⎪⎝⎭. (1)求函数()f x 的解析式;(2)求函数()f x 的单调递增区间;(3)将函数()y f x =的图象向左平移3π个单位长度,再将所得图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )在2,63ππ⎡⎤-⎢⎥⎣⎦上的值域.22.销售甲种商品所得利润为P 万元,它与投入资金t 万元的函数关系为1at P t =+;销售乙种商品所得利润为Q 万元,它与投入资金t 万元的函数关系为Q bt =,其中a ,b 为常数.现将5万元资金全部投入甲、乙两种商品的销售:若全部投入甲种商品,所得利润为52万元;若全部投入乙种商品,所得利润为53万元.若将5万元资金中的x 万元投入甲种商品的销售,余下的投入乙种商品的销售,则所得利润总和为()f x 万元. (1)求函数()f x 的解析式;(2)求()f x 的最大值.2020-2021高一数学期末复习练习(四)考查知识:苏教版必修第一册参考答案1.C【分析】先用列举法写出集合A ,再写出其真子集即可.【详解】解:∵141,2,3{|}{}A x N x =∈≤<=,{|1}4A x N x ∴=∈≤<的真子集为:{}{}{},,,,{}1231,21,{},,3{}2,3∅共7个. 故选:C .2.A【分析】求出集合A ,B ,由题可得[1,3]- ()(),22,m m -∞-⋃+∞,即可求出.【详解】解:由2230x x --≤,解得:13x -≤≤.{}2:230[1,3]p A x x x ∴=--≤=-∣.由22240x mx m -+-≤,解得:22m x m -≤≤+.∴q :B ={x |x 2﹣2mx +m 2﹣4≤0}=[m ﹣2,m +2], {}22:240[2,2]q B x x mx m m m ∴=-+-≤=-+∣.∵p 是¬q 成立的充分不必要条件,[1,3]∴- ()(),22,m m -∞-⋃+∞,32m ∴<-或21m +<-,解得5m >或3m <-.∴m 的取值范围是(,3)(5,)-∞-+∞. 故选:A.【点睛】结论点睛:本题考查根据充分不必要条件求参数,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)若p 是q 的充分不必要条件,则p 对应集合是q 对应集合的真子集; (3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件,则q 对应的集合与p 对应集合互不包含. 3.B【分析】利用不等式性质和指数函数的单调性,以及举反例,逐项判定,即可求解.【详解】对于A 中,令1,2a b ==-,此时满足a b >,0ab ≠,但22a b <,所以不正确; 对于B 中,由函数2x y =为R 上的单调递增函数,因为a b >,所以22a b >,所以正确; 对于C 中,令1,2a b ==-,此时满足a b >,0ab ≠,但|a ||b |<,所以不正确; 对于D 中,令1,2a b ==-,此时满足a b >,0ab ≠,但11a b>,所以不正确. 故选:B.4.C【分析】令20142t =,两边取对数后求得lg t ,由此可得20142的整数位.【详解】解:∵lg 20.3010=,令20142t =,∴2014lg 2lg t ⨯=,则lg 20140.3010606.214t =⨯=,∴20142是607位整数.故选:C.5.C【分析】根据解析式分段讨论可求出.【详解】解:∵()12(1),1x f x x x <<=-≥⎪⎩,1()2f a =,∴由题意知,0112a <<⎧=或()11212a a ≥⎧⎪⎨-=⎪⎩, 解得14a =或54a =. 故选:C .6.B【分析】两边取对数可得lg lg 1x y =,利用基本不等式即可求出xy 的取值范围.【详解】正实数x ,y 满足lg lg 100y x x y =,两边取对数可得2lg lg 2x y =,所以lg lg 1x y =, 所以22lg lg lg()1lg lg 22x y xy x y +⎛⎫⎡⎤=≤= ⎪⎢⎥⎝⎭⎣⎦,即2lg ()4xy ≥, 所以lg()2xy ≥或lg()2xy ≤-,解得100xy ≥或10100xy <≤, 所以xy 的取值范围是1(0,][100,)100⋃+∞. 故选:B【点睛】 关键点点睛:本题的求解关键是两边取对数得到lg lg x y 积为定值. 7.C【分析】利用扇形的面积公式即可求解.【详解】设扇形的半径为R ,则扇形的面积2211242233S R R ππα==⨯⨯=, 解得:2R =,故选:C8.B【分析】由题意,某同学有压岁钱1000元,分别计算存入银行和放入微信零钱通或者支付宝的余额宝所得利息,即可得到答案.【详解】将1000元钱存入微信零钱通或者支付宝的余额宝,选择复利的计算方法,则存满5年后的本息和为51000 1.04011217⨯=,故而共得利息1217–1000=217元.将1000元存入银行,不选择复利的计算方法,则存满5年后的利息为1000×0.0225×5=112.5,故可以多获利息217–112.5=104.5.故选:B .【点睛】本题主要考查了等比数列的实际应用问题,其中解答中认真审题,准确理解题意,合理利用等比数列的通项公式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.9.ABC【分析】由B A ⊆可得出关于实数a 的不等式组,解出实数a 的取值范围,进而可得出实数a 的可能取值.【详解】{}2A x ax =≤,{B =且B A ⊆,所以,222a ≤≤⎪⎩,解得1a ≤. 因此,ABC 选项合乎题意.故选:ABC.10.ABCD由正实数a ,b 满足1a b +=,可得2a b ab +,则104ab <,根据1114a b ab +=判断A ;104ab <开平方判断B =判断C ;利用222222()a b a a b b +++判断D .【详解】正实数a ,b 满足1a b +=,即有2a b ab +,可得104ab <, 即有1114a b a b ab ab ++==,即有12a b ==时,11a b+取得最小值4,无最大值,A 正确;由104ab <可得102<,可得12a b ==有最大值12,B 正确;1122=+⨯,可得12a b ==,C 正确; 由222a b ab +可得2222222()()1a a b a b a b b ++=++=,则2212a b +,当12a b ==时,22a b +取得最小值12,D 正确. 故选:ABCD .【点睛】 利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数是否在定义域内,二是多次用≥或≤时等号能否同时成立).【分析】由()()2f x f x +=-,可得推得()()4f x f x +=,得到A 是正确的;由奇函数的性质和图象的变换,可得判定B 是正确的;由(1)(1)f x f x --=--+,可得推得函数()f x 是偶函数,得到D 正确,C 不正确.【详解】对于A 中,函数()y f x =满足()()2f x f x +=-,可得()()()42f x f x f x +=-+=,所以A 是正确的;对于B 中,()1y f x =-是奇函数,则(1)f x -的图象关于原点对称,又由函数()f x 的图象是由()1y f x =-向左平移1个单位长度得到,故函数()f x 的图象关于点(1,0)-对称,所以B 是正确的;对于C 、D ,由B 可得:对于任意的x ∈R ,都有(1)(1)f x f x --=--+,即(1)(1)0f x f x --+-+=,可变形得(2)()0f x f x --+=,则由(2)()(2)f x f x f x --=-=+对于任意的x ∈R 都成立,令2t x =+,则()()f t f t -=,即函数()f x 是偶函数,所以D 正确,C 不正确.故选:ABD【点睛】函数的周期性有关问题的求解策略:1、求解与函数的周期性有关问题,应根据题目特征及周期定义,求出函数的周期;2、解决函数周期性、奇偶性和单调性结合问题,通常先利用周期性中为自变量所在区间,再利用奇偶性和单调性求解.12.ABD【分析】化简得到()cos 2g x x =-,分别计算函数的奇偶性,最值,周期,轴对称和中心对称,单调区间得到答案.【详解】()sin 2sin 2cos 242g x x x x ππ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭ 因为0,4x π⎛⎫∈ ⎪⎝⎭,则20,2x π⎛⎫∈ ⎪⎝⎭,所以()cos 2g x x =-单调递增,且为偶函数,A 正确,C 错误; 最大值为1,当32x π=时,23x π=,所以32x π=为对称轴,B 正确; 22T ππ==,取2,,242k x k x k Z ππππ=+∴=+∈,当1k =时满足,图像关于点3,04π⎛⎫ ⎪⎝⎭对称,D 正确;故选:ABD【点睛】本题考查了三角函数的平移,最值,周期,单调性 ,奇偶性,对称性,意在考查学生对于三角函数知识的综合应用.13.{}23x x -≤≤【分析】先求出命题p ,再按照非命题的定义求解即可.【详解】p :2106x x >--, 则260x x -->,解得2x <-或3x >,所以“非p ”对应的x 值的集合是{}23x x -≤≤. 故答案为:{}23x x -≤≤.14.()(),23,-∞+∞ 【分析】若对数存在,则真数大于0,解不等式即可.【详解】解:∵对数ln (x 2﹣5x +6)存在,∴x 2﹣5x +6>0,∴解得: x <2或 x >3,即x 的取值范围为:(﹣∞,2)∪(3,+∞).故答案为:(﹣∞,2)∪(3,+∞).15.(]1,3【分析】先利用0a >判断30u ax =+>是增函数,进而得到log a y u =是增函数,列关系计算即得结果.【详解】因为()log 3a y ax =+,(0a >且1a ≠)在区间(-1,+∞)上是增函数,知3u ax =+在区间(-1,+∞)上是增函数,且0>u ,故log a y u =是增函数,所以30101a a a a ⎧⎪-+≥⎪⎪>⎨⎪>⎪≠⎪⎩,解得13a .故a 的取值范围是(]1,3.故答案为:(]1,3.16.(0,1) 0或1【分析】把函数()()g x f x m =-有3个零点,转化为()y f x =和y m =的交点有3个,作出函数()f x 的图象,结合图象,即可求解.【详解】由题意,函数()()g x f x m =-有3个零点,转化为()0f x m -=的根有3个,转化为()y f x =和y m =的交点有3个,画出函数()22log (1),02,0x x f x x x x +>⎧=⎨--≤⎩的图象,如图所示,则直线y m =与其有3个公共点, 又抛物线的顶点为(1,1)-,由图可知实数m 的取值范围是(0,1).若()f x m =有2个零点,则0m =或(1)1m f =-=.故答案为:(0,1);0或1.【点睛】本题主要考查了函数与方程的综合应用,其中解答中把函数的零点问题转化为两个函数的图象的交点个数,结合图象求解是解答的关键,着重考查数形结合思想,以及推理与运算能力. 17.(1){}13A B x x ⋃=-≤≤;(2)选①/②/③,10a -≤≤.【分析】(1)应用集合并运算求A B 即可;(2)根据所选条件有B A ⊆,即可求a 的取值范围.【详解】(1)当1a =时,{}13B x x =≤≤,则{}13A B x x ⋃=-≤≤.(2)选条件①②③,都有B A ⊆, ∴1,22,a a ≥-⎧⎨+≤⎩解得10a -≤≤, ∴实数a 的取值范围为10a -≤≤.【点睛】本题考查了集合的基本运算,利用并运算求并集,由条件得到集合的包含关系求参数范围,属于简单题.18.(1)(4,0]-;(2)当02a <<时,不等式的解集为 {|1x x ≤或2}x a ≥;当2a =时,不等式的解集为R ;当2a >时,不等式的解集为 2{|x x a≤或1}x ≥;(3)(,4-∞-- 【分析】(1)先整理,再讨论0a =和0a ≠,列出恒成立的条件,求出a 的范围;(2)先因式分解,对两根大小作讨论,求出解集; (3)先令11t m m =++,由0m >,则可得3t ≥,再将()21221ax a x m m-++=++有四个不同的实根,转化为2(2)20ax a x t -++-=有两个不同正根,根据根与系数的关系,求出a 的取值范围.【详解】(1)由题有()22232ax a x x -++<-恒成立,即210ax ax -+-<恒成立, 当0a =时,10-<恒成立,符合题意;当0a ≠时,则2040a a a <⎧⎨∆=+<⎩,得040a a <⎧⎨-<<⎩,得40a , 综合可得40a .(2)由题2(2)20,ax a x -++≥ 即 (2)(1)0ax x --≥,由0,a >则2()(1)0x x a --=,且221a a a--= ①当02a <<时,21>a,不等式的解集为 {1x x ≤∣或2}x a ≥; ②当2a =时,不等式的解集为R③当2a >时,21a <,不等式的解集为 {2x x a≤∣或1}x ≥;综上可得:当02a <<时,不等式的解集为 {|1x x ≤或2}x a≥; 当2a =时,不等式的解集为R ;当2a >时,不等式的解集为 2{|x x a≤或1}x ≥; (3)当 0m > 时,令1113t m m =++≥=, 当且仅当1m =时取等号,则关于x 的方程(||)f x t = 可化为2||(2)||20a x a x t -++-=,关于x 的方程 2||(2)||20a x a x t -++-= 有四个不等实根, 即2(2)20ax a x t -++-=有两个不同正根, 则 2(2)4(2)0(1)20(2)20(3)a a t a a t a ⎧⎪∆=+-->⎪+⎪>⎨⎪-⎪>⎪⎩由(3)得0a <,再结合(2)得2a <-,由 (1) 知,存在 [3,)t ∈+∞ 使不等式24(2)80at a a ++->成立,故243(2)80a a a ⨯++->,即 2840,a a ++>解得4a <--或4a >-+综合可得4a <--故实数a的取值范围是(,4-∞--.【点睛】已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解;19.(1)2;(2)43;(3)2. 【分析】(1)根据对数的加法运算法则,即可求得答案;(2)利用换底公式,结合对数的运算性质,即可求得答案;(3)根据对数的运算性质及减法法则,即可求得答案.【详解】(1)2lg 2lg50lg100lg102+===; (2)39lg 4log 42lg 22lg 324lg 32lg8log 8lg 33lg 233lg 9==⨯=⨯=; (3))211lg12log 432162lg 20lg 2log 2log 319-⎛⎫++--⋅+ ⎪⎝⎭=013lg1011)1111244++-+=+-+= 20.(1)a =1,b =0;(2)当x =2时,g (|2x ﹣1|)max =43,x =1时,g (|2x ﹣1|)min =0. 【分析】(1)利用二次函数的性质求出a ,b 的值;(2)求出函数(|21|)x y g =-的解析式,利用换元法对勾函数的性质,得出最值以及取得最值时的x 值.【详解】(1)f (x )=ax 2﹣2x +1+b (a ≠0)在x =1处取得最小值0, 即1a =1,f (1)=a +b ﹣1=0,解得a =1,b =0; (2)由(1)知f (x )=(x ﹣1)2,()()12f x g x x x x==+-,g (|2x ﹣1|)=121221x x -+--,令t =|2x ﹣1|,∵1,22x ⎡∈⎤⎢⎥⎣⎦,则1,3t ⎤∈⎦, 由对勾函数的性质可得()min ()10g t g ==,此时t =1即|2x ﹣1|=1,解得x =1;又)1122g =-=,())14332133g g =+-=>, 当t =3时,解得x =2时,所以当x =2时,g (|2x ﹣1|)max =43,当x =1时,g (|2x ﹣1|)min =021.(1)()cos(2)3f x x π=-;(2)[,],36k k k Z ππππ-+∈;(3)[-. 【分析】(1)由函数()f x 的最小正周期为π,求得2w =,再由16f π⎛⎫=⎪⎝⎭,求得ϕ的值,即可求得函数()f x 的解析式;(2)由(1)知()cos(2)3f x x π=-,根据余弦型函数的性质,即可求得函数的递增区间;(3)根据三角函数的图象变换,求得()cos()3g x x π=+,结合三角函数的性质,即可求解. 【详解】 (1)由题意,函数()cos()f x x =+ωϕ的最小正周期为π, 所以2wππ=,可得2w =,所以()cos(2)f x x ϕ=+, 又由16f π⎛⎫= ⎪⎝⎭,可得()cos(2)cos()1663f πππϕϕ=⨯+=+=, 可得2,3k k Z πϕπ+=∈,即2,3k k Z πϕπ=-∈, 因为02πϕ-<<,所以3πϕ=-, 所以函数()f x 的解析式为()cos(2)3f x x π=-.(2)由(1)知()cos(2)3f x x π=-, 令222,3k x k k Z ππππ-≤-≤∈,解得,36k x k k Z ππππ-≤≤+∈, 所以函数()cos(2)3f x x π=-的单调递增区间为[,],36k k k Z ππππ-+∈. (3)将函数()y f x =的图象向左平移3π个单位长度, 得到函数cos[2()]cos(2)333y x x πππ=+-=+, 再将所得图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数()cos()3y g x x π==+,因为2[,]63x ππ∈-,可得[,]36x πππ+∈,所以()1g x -≤≤,所以函数()g x 的值域为[-. 【点睛】 解答三角函数的图象与性质的基本方法:1、根据已知条件化简得出三角函数的解析式为sin()y A wx ϕ=+的形式;2、熟练应用三角函数的图象与性质,结合数形结合法的思想研究函数的性质(如:单调性、奇偶性、对称性、周期性与最值等),进而加深理解函数的极值点、最值点、零点及有界性等概念与性质,但解答中主要角的范围的判定,防止错解.22.(1)()3513x x f x x -=++,[]0,5x ∈;(2)3万元. 【分析】(1)对甲种商品投资x 万元,则对乙种商品投资为5x -万元,当5t =时,求得3a =,13b =,代入()(5)1ax f x b x x =+-+即可. (2)转化成一个基本不等式的形式,最后结合基本不等式的最值求法得最大值,从而解决问题.【详解】(1)因为1at P t =+,Q bt = 所以当5t =时,55512a P ==+,553Q b ==,解得3a =,13b =. 所以31t P t =+,13=Q t ,从而()3513x x f x x -=++,[]0,5x ∈ (2)由(1)可得()()()313613531+553131313x x x x x f x x x x +--+-+⎛⎫=+==-+≤-= ⎪+++⎝⎭当且仅当3113x x +=+,即2x =时等号成立.故()f x 的最大值为3. 答:当分别投入2万元、3万元销售甲、乙两种商品时总利润最大,为3万元.【点睛】方法点睛:与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

福建省福州市第一中学【最新】高一上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知角α的终边与单位圆的交点为P ⎛ ⎝⎭,则sin cos αα-=( )A .BC .5D . 2.一钟表的秒针长12cm ,经过25s ,秒针的端点所走的路线长为( ) A .10cmB .14cmC .10cm πD .14cm π3.函数cos 23y x π⎛⎫=-⎪⎝⎭的单调递减区间是( ) A .()5,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦B .()511,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦C .()27,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦D .()2,63k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z 4.已知平面直角坐标系中,ABC ∆的顶点坐标分别为()4,6A 、()2,1B -、()4,1C -,G 为ABC ∆所在平面内的一点,且满足()13AG AB AC =+,则G 点的坐标为( ) A .()2,2B .()1,2C .()2,1D .()2,45.sin4,4cos ,tan4的大小关系是( ) A .sin4tan4cos4<< B .tan4sin4cos4<< C .cos4sin4tan4<<D .sin4cos4tan4<<6.将函数sin 2y x =的图象向左平移()0ϕϕ>个单位长度,再向下平移1个单位长度,得到函数22sin y x =-的图象,那么ϕ可以取的值为( )A .6πB .4π C .3π D .2π 7.已知定义在R 上的奇函数()f x 满足()()0f x f x π++=,且当()0,x π∈时,()sin f x x =,则233f π⎛⎫=⎪⎝⎭( )A .12-B .12C . D二、多选题8.下列关于函数()tan 24f x x π⎛⎫=+⎪⎝⎭的相关性质的命题,正确的有( ) A .()f x 的定义域是,82k x x k Z ππ⎧⎫≠+∈⎨⎬⎩⎭B .()f x 的最小正周期是πC .()f x 的单调递增区间是()3,2828k k k Z ππππ⎛⎫-+∈⎪⎝⎭ D .()f x 的对称中心是(),028k k Z ππ⎛⎫-∈⎪⎝⎭ 9.ABC ∆是边长为3的等边三角形,已知向量a 、b 满足3AB a =,3AC a b =+,则下列结论中正确的有( ) A .a 为单位向量 B .//b BC C .a b⊥D .()6a b BC +⊥10.以下函数在区间0,2π⎛⎫⎪⎝⎭上为单调增函数的有( )A .sin cos y x x =+B .sin cos y x x =-C .sin cos y x x =D .sin cos xy x=11.下列命题中,正确的有( )A .向量AB 与CD 是共线向量,则点A 、B 、C 、D 必在同一条直线上 B .若sin tan 0αα⋅>且cos tan 0αα⋅<,则角2α为第二或第四象限角 C .函数1cos 2y x =+是周期函数,最小正周期是2π D .ABC ∆中,若tan tan 1A B ⋅<,则ABC ∆为钝角三角形三、填空题12.已知()()sin 2cos 0παπα-++=,则1sin cos αα=________.13.已知tan 2α=,()tan αβ+=tan β=_________. 14.已知非零向量a 、b 满足2a =,24a b -=,a 在b 方向上的投影为1,则()2b a b ⋅+=_______.四、双空题15.已知O 为ABC ∆的外心,6AB =,10AC =,AO x AB y AC =+,且263x y +=;当0x =时,cos BAC ∠=______;当0x ≠时,cos BAC ∠=_______.五、解答题16.在平面直角坐标系中,已知()1,2a =-,()3,4b =.(Ⅰ)若()()3//a b a kb -+,求实数k 的值;(Ⅱ)若()a tb b -⊥,求实数t 的值.17.已知函数2sin 23y x π⎛⎫=+⎪⎝⎭.(Ⅰ)用“五点法”作出该函数在一个周期内的图象简图;(Ⅱ)请描述如何由函数sin y x =的图象通过变换得到2sin 23y x π⎛⎫=+⎪⎝⎭的图象. 18.某实验室一天的温度(单位:C )随时间t (单位:h )的变化近似满足函数关系:()16cos1212f t t t ππ=-,[)0,24t ∈.(Ⅰ)求实验室这一天的最大温差;(Ⅱ)若要求实验室温度不高于17C ,则在哪个时间段实验室需要降温? 19.已知函数()()2sin 10,2f x x πωϕωϕ⎛⎫=++>< ⎪⎝⎭,()f x 图象上两相邻对称轴之间的距离为2π;_______________; (Ⅰ)在①()f x 的一条对称轴3x π=-;②()f x 的一个对称中心5,112π⎛⎫⎪⎝⎭;③()f x 的图象经过点5,06π⎛⎫⎪⎝⎭这三个条件中任选一个补充在上面空白横线中,然后确定函数的解析式;(Ⅱ)若动直线[]()0,x t t π=∈与()f x 和()cos g x x x =的图象分别交于P 、Q 两点,求线段PQ 长度的最大值及此时t 的值.注:如果选择多个条件分别解答,按第一个解答计分.20.在等腰梯形ABCD 中,已知//AB DC ,4AB =,2BC =,60ABC ∠=,动点E 和F 分别在线段BC 和DC 上(含端点),且BE mBC =,DF nDC =且(m 、n 为常数),设AB a =,BC b =.(Ⅰ)试用a 、b 表示AE 和AF ; (Ⅱ)若1m n +=,求AE AF ⋅的最小值. 21.已知函数()()()()22f x x m x m R =-+∈.(Ⅰ)对任意的实数α,恒有()sin 10f α-≤成立,求实数m 的取值范围; (Ⅱ)在(Ⅰ)的条件下,当实数m 取最小值时,讨论函数()()2cos 15F x f x a =+-在[)0,2x π∈时的零点个数.参考答案1.A 【解析】 【分析】利用三角函数的定义得出sin α和cos α的值,由此可计算出sin cos αα-的值. 【详解】由三角函数的定义得cos α=,sin α=,因此,sin cos αα-=故选:A. 【点睛】本题考查三角函数的定义,考查计算能力,属于基础题. 2.C 【分析】计算出秒针的端点旋转所形成的扇形的圆心角的弧度数,然后利用扇形的弧长公式可计算出答案. 【详解】秒针的端点旋转所形成的扇形的圆心角的弧度数为2552606ππ⨯=, 因此,秒针的端点所走的路线长()512106cm ππ⨯=. 故选:C. 【点睛】本题考查扇形弧长的计算,计算时应将扇形的圆心角化为弧度数,考查计算能力,属于基础题. 3.D 【分析】解不等式()2223k x k k Z ππππ≤-≤+∈,即可得出函数cos 23y x π⎛⎫=- ⎪⎝⎭的单调递减区间. 【详解】解不等式()2223k x k k Z ππππ≤-≤+∈,得()263k x k k Z ππππ+≤≤+∈,因此,函数cos 23y x π⎛⎫=- ⎪⎝⎭的单调递减区间为()2,63k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z . 故选:D. 【点睛】本题考查余弦型函数单调区间的求解,考查计算能力,属于基础题. 4.A 【分析】设点G 的坐标为(),x y ,根据向量的坐标运算得出关于x 、y 的方程组,解出这两个未知数,可得出点G 的坐标. 【详解】设点G 的坐标为(),x y ,()6,5AB =--,()0,7AC =-,()4,6AG x y =--,()()()1160,572,433AG AB AC =+=-+--=--,即4264x y -=-⎧⎨-=-⎩,解得22x y =⎧⎨=⎩,因此,点G 的坐标为()2,2. 故选:A. 【点睛】本题考查向量的坐标运算,考查计算能力,属于基础题. 5.D 【分析】作出4弧度角的正弦线、余弦线和正切线,利用三角函数线来得出sin4、4cos 、tan4的大小关系. 【详解】作出4弧度角的正弦线、余弦线和正切线如下图所示,则sin MP α=,cos OM α=,tan AT α=,其中虚线表示的是角54π的终边, 544π>,则0MP OM AT <<<,即sin4cos4tan4<<. 故选:D.【点睛】本题考查同角三角函数值的大小比较,一般利用三角函数线来比较,考查数形结合思想的应用,属于基础题. 6.B 【分析】写出平移变换后的函数解析式,将函数22sin y x =-的解析式利用二倍角公式降幂,化为正弦型函数,进而可得出ϕ的表达式,利用赋特殊值可得出结果. 【详解】将函数sin 2y x =的图象向左平移()0ϕϕ>个单位长度,再向下平移1个单位长度,所得图象对应的函数的解析式为()sin 221y x ϕ=+-,22sin cos 21sin 212y x x x π⎛⎫=-=-=+- ⎪⎝⎭,()222k k Z πϕπ∴=+∈,解得()4k k Z πϕπ=+∈,当0k =时,4πϕ=.故选:B. 【点睛】本题考查利用三角函数图象变换求参数,解题的关键就是结合图象变换求出变换后所得函数的解析式,考查计算能力,属于中等题. 7.C 【分析】先推导出函数()y f x =的周期为2π,可得出2333f f ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,然后利用函数()y f x =的奇偶性结合函数的解析式可计算出结果.【详解】函数()y f x =是R 上的奇函数,且()()0f x f x π++=,()()f x f x π∴+=-,()()()2f x f x f x ππ∴+=-+=,所以,函数()y f x =的周期为2π,则23sin 33332f f f ππππ⎛⎫⎛⎫⎛⎫=-=-=-=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:C. 【点睛】本题考查利用函数的奇偶性和周期求函数值,解题的关键就是推导出函数的周期,考查计算能力,属于中等题. 8.AC 【分析】分别求出函数()y f x =的定义域、最小正周期、单调递增区间和对称中心坐标,即可判断出四个选项的正误. 【详解】对于A 选项,令()242x k k Z πππ+≠+∈,解得()28k x k Z ππ≠+∈, 则函数()y f x =的定义域是,82k x x k Z ππ⎧⎫≠+∈⎨⎬⎩⎭,A 选项正确; 对于B 选项,函数()y f x =的最小正周期为2π,B 选项错误; 对于C 选项,令()2242k x k k Z πππππ-<+<+∈,解得()32828k k x k Z ππππ-<<+∈, 则函数()y f x =的单调递增区间是()3,2828k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭,C 选项正确; 对于D 选项,令()242k x k Z ππ+=∈,解得()48k x k Z ππ=-∈, 则函数()y f x =的对称中心为(),048k k Z ππ⎛⎫-∈ ⎪⎝⎭,D 选项错误. 故选:AC. 【点睛】本题考查正切型函数的基本性质,考查计算能力,属于基础题. 9.ABD 【分析】求出a 可判断A 选项的正误;利用向量的减法法则求出b ,利用共线向量的基本定理可判断B 选项的正误;计算出a b ⋅,可判断C 选项的正误;计算出()6a b BC +⋅,可判断D 选项的正误.综合可得出结论. 【详解】 对于A 选项,3AB a =,13a AB ∴=,则113a AB ==,A 选项正确; 对于B 选项,3AC a b AB b =+=+,b AC AB BC ∴=-=,//b BC ∴,B 选项正确;对于C 选项,21123cos 0333a b AB BC π⋅=⋅=⨯⨯≠,所以a 与b 不垂直,C 选项错误; 对于D 选项,()()()2260a b BC AB AC AC AB AC AB +⋅=+⋅-=-=,所以,()6a b BC +⊥,D 选项正确.故选:ABD. 【点睛】本题考查向量有关命题真假的判断,涉及单位向量、共线向量的概念的理解以及垂直向量的判断,考查推理能力,属于中等题. 10.BD 【分析】先利用辅助角、二倍角以及同角三角函数的商数关系化简各选项中的函数解析式,然后利用正弦函数和正切函数的单调性判断各选项中函数在区间0,2π⎛⎫⎪⎝⎭上的单调性,由此可得出结论. 【详解】对于A 选项,sin cos 4y x x x π⎛⎫=+=+ ⎪⎝⎭,当0,2x π⎛⎫∈ ⎪⎝⎭时,3,444x πππ⎛⎫+∈ ⎪⎝⎭, 所以,函数sin cos y x x =+在区间0,2π⎛⎫⎪⎝⎭上不单调;对于B 选项,sin cos 4y x x x π⎛⎫=-=- ⎪⎝⎭,当0,2x π⎛⎫∈ ⎪⎝⎭时,,444x πππ⎛⎫-∈- ⎪⎝⎭,所以,函数sin cos y x x =-在区间0,2π⎛⎫⎪⎝⎭上单调递增; 对于C 选项,1sin cos sin 22y x x x ==,当0,2x π⎛⎫∈ ⎪⎝⎭时,()20,x π∈, 所以,函数sin cos y x x =在区间0,2π⎛⎫⎪⎝⎭上不单调; 对于D 选项,当0,2x π⎛⎫∈ ⎪⎝⎭时,sin tan cos x y x x ==,所以,函数sin cos x y x =在区间0,2π⎛⎫⎪⎝⎭上单调递增. 故选:BD. 【点睛】本题考查三角函数单调性的判断,解题的关键就是将三角函数解析式化简,并利用正弦、余弦和正切函数的单调性进行判断,考查推理能力,属于中等题. 11.BCD 【分析】根据共线向量的定义判断A 选项的正误;根据题意判断出角α的终边的位置,然后利用等分象限法可判断出角2α的终边的位置,进而判断B 选项的正误;利用图象法求出函数1cos 2y x =+的最小正周期,可判断C 选项的正误;利用切化弦思想化简不等式tan tan 1A B ⋅<得出cos cos cos 0A B C <,进而可判断出选项D 的正误.综合可得出结论.【详解】对于A 选项,向量AB 与CD 共线,则//AB CD 或点A 、B 、C 、D 在同一条直线上,A 选项错误;对于B 选项,2sin sin tan 0cos αααα⋅=>,cos tan sin 0ααα⋅=<,所以sin 0cos 0αα<⎧⎨>⎩, 则角α为第四象限角,如下图所示:则2α为第二或第四象限角,B 选项正确; 对于C 选项,作出函数1cos 2y x =+的图象如下图所示:由图象可知,函数1cos 2y x =+是周期函数,且最小正周期为2π,C 选项正确; 对于D 选项,tan tan 1A B <,()()cos cos sin sin cos cos sin sin 1tan tan 1cos cos cos cos cos cos cos cos A B C A B A B A B A B A B A B A B A Bπ+--∴-=-===cos 0cos cos CA B=->,cos cos cos 0A B C ∴<,对于任意三角形,必有两个角为锐角,则ABC ∆的三个内角余弦值必有一个为负数, 则ABC ∆为钝角三角形,D 选项正确. 故选:BCD. 【点睛】本题考查三角函数、三角恒等变换与向量相关命题真假的判断,考查共线向量的定义、角的终边位置、三角函数的周期以及三角形形状的判断,考查推理能力,属于中等题. 12.52【分析】利用诱导公式化简等式()()sin 2cos 0παπα-++=,可求出tan α的值,将所求分式变形为221sin cos sin cos sin cos αααααα+=,在所得分式的分子和分母中同时除以2cos α,将所求分式转化为只含tan α的代数式,代值计算即可. 【详解】()()sin 2cos 0παπα-++=,sin 2cos 0αα∴-=,tan 2α∴=,因此,22221sin cos tan 1215sin cos sin cos tan 22αααααααα+++====.故答案为:52. 【点睛】本题考查利用诱导公式和弦化切思想求值,解题的关键就是求出tan α的值,考查计算能力,属于基础题. 13.4【分析】利用两角差的正切公式可计算出()tan tan βαβα=+-⎡⎤⎣⎦的值. 【详解】由两角差的正切公式得()()()tan tan tan tan 1tan tan αβαβαβααβα+-=+-==⎡⎤⎣⎦++=. 【点睛】本题考查利用两角差的正切公式求值,解题的关键就是弄清角与角之间的关系,考查计算能力,属于基础题.14.18 【分析】利用向量数量积的几何意义得出2a b ⋅=,在等式24a b -=两边平方可求出b 的值,然后利用平面向量数量积的运算律可计算出()2b a b ⋅+的值. 【详解】2a =,a 在b 方向上的投影为1,212a b ⋅=⨯=,24a b -=,222222216244444242a b a a b b a a b b b =-=-⋅+=-⋅+=⨯-⨯+,可得22b =,因此,()22222818b a b a b b ⋅+=⋅+=+⨯=. 故答案为:18. 【点睛】本题考查平面向量数量积的计算,涉及利用向量的模求数量积,同时也考查了向量数量积几何意义的应用,考查计算能力,属于基础题. 15.35 59【分析】(1)由0x =可得出O 为AC 的中点,可知AC 为ABC ∆外接圆的直径,利用锐角三角函数的定义可求出cos BAC ∠;(2)推导出外心的数量积性质212AO AB AB ⋅=,212AO AC AC ⋅=,由题意得出关于x 、y 和AB AC ⋅的方程组,求出AB AC ⋅的值,再利用向量夹角的余弦公式可求出cos BAC ∠的值. 【详解】当0x =时,由263x y +=可得12y =,12AO xAB y AC AC ∴=+=, 所以,AC 为ABC ∆外接圆的直径,则2ABC π∠=,此时3cos 5AB BAC AC ∠==; 如下图所示:取AB 的中点D ,连接OD ,则⊥OD AB ,所0DO AB ⋅=,()212AO AB AD DO AB AD AB AB ∴⋅=+⋅=⋅=,同理可得212AO AC AC ⋅=. 所以,()()221212263AO AB xAB y AC AB AB AO AC xAB y AC AC AC x y ⎧⋅=+⋅=⎪⎪⎪⋅=+⋅=⎨⎪+=⎪⎪⎩,整理得361810050263x y AB AC xAB AC y x y ⎧+⋅=⎪⋅+=⎨⎪+=⎩,解得356x =,2756y =,1003AB AC ⋅=,因此,5cos 9AB AC BAC AB AC ⋅∠==⋅. 故答案为:35;59. 【点睛】本题考查三角的外心的向量数量积性质的应用,解题的关键就是推导出212AO AB AB ⋅=,212AO AC AC ⋅=,并以此建立方程组求解,计算量大,属于难题.16.(Ⅰ)13-;(Ⅱ)15-.【分析】(Ⅰ)求出向量3a b -和a kb +的坐标,然后利用共线向量的坐标表示得出关于k 的方程,解出即可;(Ⅱ)由()a tb b -⊥得出()0a tb b -⋅=,利用向量数量积的坐标运算可得出关于实数t 的方程,解出即可. 【详解】 (Ⅰ)()1,2a =-,()3,4b =,()()()331,23,40,10a b ∴-=--=-,()()()1,23,431,42a kb k k k +=-+=+-,()()3//a b a kb -+,()10310k ∴-+=,解得13k =-; (Ⅱ)()()()1,23,413,24a tb t t t -=--=---,()a tb b -⊥,()()()3134242550a tb b t t t ∴-⋅=⨯-+⨯--=--=,解得15t =-. 【点睛】本题考查平面向量的坐标运算,考查利用共线向量和向量垂直求参数,考查计算能力,属于基础题.17.(Ⅰ)图象见解析;(Ⅱ)答案不唯一,见解析. 【分析】 (Ⅰ)分别令23x π+取0、2π、π、32π、2π,列表、描点、连线可作出函数2sin 23y x π⎛⎫=+ ⎪⎝⎭在一个周期内的图象简图;(Ⅱ)根据三角函数图象的变换原则可得出函数sin y x =的图象通过变换得到2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象的变换过程.【详解】(Ⅰ)列表如下:函数2sin 23y x π⎛⎫=+⎪⎝⎭在一个周期内的图象简图如下图所示:(Ⅱ)总共有6种变换方式,如下所示: 方法一:先将函数sin y x =的图象向左平移3π个单位,将所得图象上每个点的横坐标缩短为原来的12倍,再将所得图象上每个点的纵坐标伸长为原来的2倍,可得到函数2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象;方法二:先将函数sin y x =的图象向左平移3π个单位,将所得图象上每个点的纵坐标伸长为原来的2倍,再将所得图象上每个点的横坐标缩短为原来的12倍,可得到函数2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象;方法三:先将函数sin y x =的图象上每个点的横坐标缩短为原来的12倍,将所得图象向左平移6π个单位,再将所得图象上每个点的纵坐标伸长为原来的2倍,可得到函数2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象;方法四:先将函数sin y x =的图象上每个点的横坐标缩短为原来的12倍,将所得图象上每个点的纵坐标伸长为原来的2倍,再将所得图象向左平移6π个单位,可得到函数2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象;方法五:先将函数sin y x =的图象上每个点的纵坐标伸长为原来的2倍,将所得图象上每个点的横坐标缩短为原来的12倍,再将所得图象向左平移6π个单位,可得到函数2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象;方法六:先将函数sin y x =的图象上每个点的纵坐标伸长为原来的2倍,将所得图象向左平移3π个单位,再将所得图象上每个点的横坐标缩短为原来的12倍,可得到函数2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象.【点睛】本题考查利用五点作图法作出正弦型函数在一个周期内的简图,同时也考查了三角函数图象变换,考查推理能力,属于基础题.18.(Ⅰ)4C ;(Ⅱ)从中午12点到晚上20点. 【分析】(Ⅰ)利用辅助角公式化简函数()y f t =的解析式为()162sin 126f t t ππ⎛⎫=-+ ⎪⎝⎭,由此可得出实验室这一天的最大温差; (Ⅱ)由[)0,24t ∈,得出13,12666t ππππ⎡⎫+∈⎪⎢⎣⎭,令()17f t >,得到1sin 1262t ππ⎛⎫+<- ⎪⎝⎭,解此不等式即可得出结论. 【详解】(Ⅰ)()16cos162sin 1261212f t t t t ππππ⎛⎫+ ⎪-=-⎝=-⎭,[)0,24t ∈. 因此,实验室这一天的最大温差为4C ; (Ⅱ)当[)0,24t ∈时,13,12666t ππππ⎡⎫+∈⎪⎢⎣⎭, 令()162sin 17126f t t ππ⎛⎫=-+> ⎪⎝⎭,得1sin 1262t ππ⎛⎫+<- ⎪⎝⎭,所以71161266t ππππ<+<,解得1220t <<,因此,实验室从中午12点到晚上20点需要降温. 【点睛】本题考查三角函数模型在生活中的应用,涉及正弦不等式的求解,考查运算求解能力,属于中等题.19.(Ⅰ)选①或②或③,()2sin 216f x x π⎛⎫=++ ⎪⎝⎭;(Ⅱ)当0t =或t π=时,线段PQ 的长取到最大值2. 【分析】(Ⅰ)先根据题中信息求出函数()y f x =的最小正周期,进而得出2ω=. 选①,根据题意得出()232k k Z ππϕπ-+=+∈,结合ϕ的取值范围可求出ϕ的值,进而得出函数()y f x =的解析式; 选②,根据题意得出()56k k Z πϕπ+=∈,结合ϕ的取值范围可求出ϕ的值,进而得出函数()y f x =的解析式; 选③,根据题意得出51sin 32πϕ⎛⎫+=-⎪⎝⎭,结合ϕ的取值范围可求出ϕ的值,进而得出函数()y f x =的解析式;(Ⅱ)令()()()h x f x g x =-,利用三角恒等变换思想化简函数()y h x =的解析式,利用正弦型函数的基本性质求出()h t 在[]0,t π∈上的最大值和最小值,由此可求得线段PQ 长度的最大值及此时t 的值. 【详解】(Ⅰ)由于函数()y f x =图象上两相邻对称轴之间的距离为2π,则该函数的最小正周期为22T ππ=⨯=,222T ππωπ∴===,此时()()2sin 21f x x ϕ=++. 若选①,则函数()y f x =的一条对称轴3x π=-,则()232k k Z ππϕπ-+=+∈,得()76k k Z πϕπ=+∈,22ππϕ-<<,当1k =-时,6π=ϕ,此时,()2sin 216f x x π⎛⎫=++ ⎪⎝⎭; 若选②,则函数()y f x =的一个对称中心5,112π⎛⎫⎪⎝⎭,则()56k k Z πϕπ+=∈, 得()56k k Z πϕπ=-∈,22ππϕ-<<,当1k =时,6π=ϕ, 此时,()2sin 216f x x π⎛⎫=++ ⎪⎝⎭;若选③,则函数()y f x =的图象过点5,06π⎛⎫⎪⎝⎭,则552sin 1063f ππϕ⎛⎫⎛⎫=++= ⎪ ⎪⎝⎭⎝⎭,得51sin 32πϕ⎛⎫+=- ⎪⎝⎭,22ππϕ-<<,7513636πππϕ∴<+<, 51136ππϕ∴+=,解得6π=ϕ,此时,()2sin 216f x x π⎛⎫=++ ⎪⎝⎭.综上所述,()2sin 216f x x π⎛⎫=++ ⎪⎝⎭;(Ⅱ)令()()()2sin 21cos 6h x f x g x x x x π⎛⎫=-=++- ⎪⎝⎭122cos 212cos 21022x x x x ⎛⎫=++=+≥ ⎪ ⎪⎝⎭,()cos21PQ h t t ∴==+, []0,t π∈,[]20,2t π∴∈,当20t =或22t π=时,即当0t =或t π=时,线段PQ 的长取到最大值2. 【点睛】本题考查利用三角函数的基本性质求解析式,同时也考查了余弦型三角函数在区间上最值的计算,考查计算能力,属于中等题. 20.(Ⅰ)AE a mb =+,12n AF a b +=+;(Ⅱ)6. 【分析】(Ⅰ)过点D 作//DM BC ,交AB 于点M ,证明出2AM BM CD ===,从而得出2AB CD =,然后利用向量加法的三角形法则可将AE 和AF 用a 、b 表示;(Ⅱ)计算出2a 、a b ⋅和2b 的值,由1m n +=得出1n m =-,且有01m ≤≤,然后利用向量数量积的运算律将AE AF ⋅表示为以m 为自变量的二次函数,利用二次函数的基本性质可求出AE AF ⋅的最小值. 【详解】(Ⅰ)如下图所示,过点D 作//DM BC ,交AB 于点M ,由于ABCD 为等腰梯形,则2AD BC ==,且60BAD ABC ∠=∠=,//AB DC ,即//CD BM ,又//DM BC ,所以,四边形BCDM 为平行四边形,则2DM BC AD ===,所以,ADM ∆为等边三角形,且2AM =,2CD BM AB AM ∴==-=,2AB CD ∴=, AE AB BE AB mBC a mb =+=+=+,()()111122n AF AB BC CF AB BC n CD a b n a a b +=++=++-=+--=+; (Ⅱ)2216a AB ==,1cos1204242a b AB BC ⎛⎫⋅=⋅=⨯⨯-=- ⎪⎝⎭,224b BC ==, 由题意可知,01m ≤≤,由1m n +=得出1n m =-, 所以,1112222n m mAF a b a b a b +-+-=+=+=+, ()()22222222m m m m AE AF a mb a b a a b a b mb---⎛⎫∴⋅=+⋅+=+⋅+⋅+ ⎪⎝⎭()222812224m m m =-+=-+,令()()2224f m m =-+,则函数()y f m =在区间[]0,1上单调递减,所以,()()min 16f m f ==,因此,AE AF ⋅的最小值为6. 【点睛】本题考查利用基底表示向量,同时也考查了平面向量数量积最值的计算,考查运算求解能力,属于中等题.21.(Ⅰ)[)0,+∞;(Ⅱ)见解析.【分析】(Ⅰ)由[]sin 12,0α-∈-可知,区间[]2,0-是不等式()0f x ≤解集的子集,由此可得出实数m 的不等式,解出即可;(Ⅱ)由题意可知,0m =,则()224f x x x =+,令()0F x =,可得出()152cos a f x -=,令[]2cos 2,2t x =∈-,对实数a 的取值范围进行分类讨论,先讨论方程()15a f t -=的根的个数及根的范围,进而得出方程2cos t x =的根个数,由此可得出结论.【详解】(Ⅰ)1sin 1α-≤≤,2sin 10α∴-≤-≤,对任意的实数α,恒有()sin 10f α-≤成立,则区间[]2,0-是不等式()0f x ≤解集的子集,02m ∴≥,解得0m ≥, 因此,实数m 的取值范围是[)0,+∞;(Ⅱ)0m ≥,由题意可知,0m =,()()22224f x x x x x =+=+, 令()0F x =,得()152cos a f x -=,令[]2cos 2,2t x =∈-,则()15a f t -=,作出函数15y a =-和函数()y f t =在[]2,2t ∈-时的图象如下图所示:作出函数2cos t x =在[)0,2x π∈时的图象如下图所示:①当152a -<-或1516a ->时,即当1a <-或17a >时,方程()15a f t -=无实根, 此时,函数()y F x =无零点;②当152a -=-时,即当17a =时,方程()15a f t -=的根为1t =-,而方程2cos 1x =-在区间[)0,2π上有两个实根,此时,函数()y F x =有两个零点; ③当2150a -<-<时,即当1517a <<时,方程()15a f t -=有两根1t 、2t ,且()12,1t ∈--,()21,0t ∈-,方程12cos x t =在区间[)0,2π上有两个实根,方程22cos x t =在区间[)0,2π上有两个实根,此时,函数()y F x =有四个零点;④当150a -=时,即当15a =时,方程()15a f t -=有两根分别为2-、0,方程2cos 2x =-在区间[)0,2π上只有一个实根,方程2cos 0x =在区间[)0,2π上有两个实根,此时,函数()y F x =有三个零点;⑤当01516a <-<时,即当115a -<<时,方程()15a f t -=只有一个实根1t ,且()10,2t ∈,方程12cos x t =在区间[)0,2π上有两个实根,此时,函数()y F x =有两个零点; ⑥当1516a -=时,即当1a =-时,方程()15a f t -=只有一个实根2,方程2cos 2x =在区间[)0,2π上只有一个实根,此时,函数()y F x =只有一个零点. 综上所述,当1a <-或17a >时,函数()y F x =无零点;当1a =-时,函数()y F x =只有一个零点;当115a -<<或17a =时,函数()y F x =有两个零点;当15a =时,函数()y F x =有三个零点;当1517a <<时,函数()y F x =有四个零点.【点睛】本题考查利用二次不等式求参数,同时也考查了复合型二次函数的零点个数的分类讨论,解题时要将函数分解为内层函数和外层函数来分析,考查数形结合思想与分类讨论思想的应用,属于难题.。

相关文档
最新文档