初中数学知识点精讲精析 圆的对称性
九年级数学《3-2 圆的对称性》课件

B
E
·
C
O
D
A
例2 如图,AB是⊙O 的直径, BC=CD=DE, ∠COD=35°,求∠AOE 的度数.
ED
C
A
· O
B
例3 如图,在⊙O中, A⌒B=A⌒C ,∠ACB=60°,
求证:∠AOB=∠BOC=∠AOC.
A
O·
B
C
4.如图,已知AB、CD为⊙O的两条弦,AD BC
求证:AB=CD.
第三章 圆
3.2 圆的对称性
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.掌握圆是轴对称图形及圆的中心对称性和旋 转不变性.
2.探索圆心角、弧、弦之间关系定理并利用其 解决相关问题.(重点)
3.理解圆心角、弧、弦之间关系定理中的“在 同圆或等圆”条件的意义.(难点)
圆的对称性
自主学习
圆的对称性: 圆是轴对称图形,其对称轴是任意一条过圆心的直线.
在 同 圆 或 等 圆 中
当堂练习
1.如果两个圆心角相等,那么 ( D ) A.这两个圆心角所对的弦相等 B.这两个圆心角所对的弧相等 C.这两个圆心角所对的弦的弦心距相等 D.以上说法都不对
2.弦长等于半径的弦所对的圆心角等于 60 °.
3.在同圆中,圆心角∠AOB=2∠COD,则A⌒B与C⌒D
弦AB与弦CD有怎样的数量关系?
C B
D
归纳 由圆的旋转不变性,我们发现:
·
在⊙O中,如果∠AOB= ∠COD
O
A
那么,AB CD ,弦AB=弦CD
在等圆中探究
如图,在等圆中,如果∠AOB=∠CO ′ D,你发现的等量关
系是否依然成立?为什么?
《圆的对称性》圆PPT课件四

E
F
O
⌒⌒ AC = BD
D B
B
C 如果AB=CD,则图中有哪些弧相等?
O A
A⌒B = C⌒D
A⌒C = B⌒D?
D⌒ AB +
B⌒C
=
⌒ CD
+
B⌒C
⌒ AC
=
B⌒D
AC = BD ?
1.(2011·舟山中考)如图,AB是半圆直径,半径OC⊥AB于 点O,AD平分∠CAB交弧BC于点D,连结CD、OD,给出以下四 个结论:①AC∥OD;②CE=OE;③△ODE∽△ADO;④CD2= CE·AB.其中正确结论的序号是 .
1.我们这节主要研究的是圆的旋转不变性,即同圆或等 圆中圆心角、弦、弧之间的关系. 2.我们使用了折叠、旋转、证明等方法 .
忍耐和时间往往比力量和愤怒更有效。 ——拉封丹
要有生活目标,一辈子的目标,一段时期的目标,一个阶段的目标,一年的目标,一个月的目标,一个星期的目标,一天的目标,一个小时的 目标,一分钟的目标。——列夫·托尔斯泰说 用伤害别人的手段来掩饰自己缺点的人,是可耻的。 人生,不可能一帆风顺,有得就有失,有爱就有恨,有快乐就会有苦恼,有生就有死,生活就是这样。
前提条件
A
O B
AB CD
C
O'
D
初三苏科版数学上册圆的对称性知识点

初三苏科版数学上册圆的对称性知识点
初三苏科版数学上册圆的对称性知识点
理解圆的对称性及相关性质,进一步体会和理解研究几何图形的各种方法,是本课需要掌握的重点。
查字典数学网为大家编辑了
圆的对称性知识点,希望对大家有用。
知识点
在生成圆算法中计算考虑使用对称性计算开销可以减小到原来的1/8。
对称性质原理:
(1)圆是满足x轴对称的,这样只需要计算原来的1/2点的位置;
(2)圆是满足y轴对称的,这样只需要计算原来的1/2点的位置;
(3)圆是满足y = x or y = -x轴对称的,这样只需要计算原来的1/2点的位置;
通过上面三个性质分析得知,对于元的计算只需要分析其中1/8的点即可。
例如:分析出来目标点(x,y)必然存在
(x,-y),(-x,y),(-x,-y),(y,x),(y,-x),(-y,x),(-y,-x)的另外7个点。
课后练习
1. 下列说法中,不成立的是( )。
北师大版九年级下册数学第13讲《圆的对称性》知识点梳理

北师大版九年级下册数学第 13 讲《圆的对称性》知识点梳理【学习目标】1.理解圆的对称性;并能运用其特有的性质推出在同一个圆中,圆心角、弧、弦之间的关系,能运用这些关系解决问题,培养学生善于从实验中获取知识的科学的方法;理解弦、弧、半圆、优弧、劣弧、等弧等与圆有关的概念,理解概念之间的区别和联系;2.通过探索、观察、归纳、类比,总结出垂径定理等概念,在类比中理解深刻认识圆中的圆心角、弧、弦三者之间的关系;3.掌握在同圆或等圆中,三组量:两个圆心角、两条弦、两条弧,只要有一组量相等,就可以推出其它两组量对应相等,及其它们在解题中的应用.【要点梳理】要点一、圆的对称性圆是轴对称图形,过圆心的直线是它的对称轴,有无数条对称轴.圆是中心对称图形,对称中心为圆心.要点诠释:圆具有旋转不变的特性.即一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合.要点二、与圆有关的概念1.弦弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.要点诠释:直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.为什么直径是圆中最长的弦?如图,AB 是⊙O 的直径,CD 是⊙O 中任意一条弦,求证:AB≥CD.证明:连结OC、OD2. 弧 ∵AB=AO+OB=CO+OD ≥CD(当且仅当 CD 过圆心 O 时,取“=”号) ∴直径 AB 是⊙O 中最长的弦.弧:圆上任意两点间的部分叫做圆弧,简称弧.以 A 、B 为端点的弧记作 ,读作“圆弧 AB ”或“弧 AB ”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;优弧:大于半圆的弧叫做优弧;劣弧:小于半圆的弧叫做劣弧.要点诠释:①半圆是弧,而弧不一定是半圆;②无特殊说明时,弧指的是劣弧.3. 等弧在同圆或等圆中,能够完全重合的弧叫做等弧.要点诠释:①等弧成立的前提条件是在同圆或等圆中,不能忽视;②圆中两平行弦所夹的弧相等.要点三、垂径定理1. 垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2. 推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:(1) 垂径定理是由两个条件推出两个结论,即(2) 这里的直径也可以是半径,也可以是过圆心的直线或线段.要点四、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)要点五、弧、弦、圆心角的关系1.圆心角与弧的关系:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.2.圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.要点诠释:(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)注意关系中不能忽视“同圆或等圆”这一前提.3.圆心角的度数与它所对的弧的度数相等.【典型例题】类型一、应用垂径定理进行计算与证明1.(2015•巴中模拟)如图,AB 为半圆直径,O 为圆心,C 为半圆上一点,E 是弧AC 的中点,OE 交弦AC 于点D,若AC=8cm,DE=2cm,求OD 的长.【答案与解析】解:∵E 为弧AC 的中点,∴OE⊥AC,∴AD= AC=4cm,∵OD=OE﹣DE=(OE﹣2)cm,OA=OE,∴在Rt△OAD 中,OA2=OD2+AD2 即OA2=(OE﹣2)2+42,又知0A=OE,解得:OE=5,∴OD=OE﹣DE=3cm.【总结升华】主要是解由半径、弦的一半和弦心距(圆心到弦的垂线段的长度)构成的直角三角形.举一反三:【变式】如图,⊙O 中,弦AB⊥弦CD 于E,且AE=3cm,BE=5cm,求圆心O 到弦CD 距离。
3.2圆的对称性- 九年级数学下册课件(北师大版)

2 如图,AB 是⊙O 的直径,若∠COA=∠DOB=60°,则与 线段AO 的长度相等的线段有( D )
A.3条 B.4条 C.5条 D.6条
3 在⊙O 中,圆心角∠AOB=2∠COD,则A︵B 与C︵D 的关系是( A )
︵︵
A. AB=2CD
︵︵
B. AB>2CD
C. A︵B<2C︵D
D.不能确定
A.40° B.45° C.50° D.60°
2 把一张圆形纸片按如图所示的方式折叠两次后展开,图中的
虚线表示折痕,则B︵C 的度数是( C )
A.120° B.135° C.150° D.165°
3 如图,AB 是⊙O 的直径,AC=CD,∠COD=60°. (1)△AOC 是等边三角形吗?请说明理由. (2)求证:OC∥BD.
1. 圆的中心对称性:圆是中心对称图形,具有旋转不变性. 2. 弧、弦、圆心角之间的关系: (1)在同圆或等圆中,相等的圆心角所对的弧相等,所对
的弦相等. (2)在同圆或等圆中,如果两个圆心角、两条弧、两条弦
中有一组量相等,那么它们所对应的其余各组量都分 别相等.
同学们, 下节课见!
5 如图,以▱ABCD 的顶点A 为圆心,AB 为半径作圆,
分别交AD,BC 于点E,F,延长BA 交⊙A于点G. (1)求证:GE=EF; (2)若BF 的度数为50°,求∠C 的度数.
(1)证明:如图,连接AF,则AB=AF, ∴∠ABF=∠AFB. ∵四边形ABCD 是平行四边形, ∴AD∥BC. ∴∠EAF=∠AFB,∠GAE=∠ABF. ∴∠GAE=∠EAF.∴GE=EF.
总结
将一个图形绕一个定点旋转时, 具有下列特性: 一是旋转角度、方向相同,二是图形的形状、大小保持不变, 因此本题圆中变换位置前后对应的弧、角、线段都相等.
九年级数学圆的对称性知识点

九年级数学圆的对称性知识点圆是数学中一个非常重要的几何概念,它具有丰富的对称性质。
在九年级数学中,我们学习了许多有关圆对称性的知识点。
本文将围绕这一主题,探讨圆的对称性在数学中的应用和意义。
1. 点、线和面的对称性在数学中,几何图形可以根据其对称性质进行分类。
点对称性是最基本的对称性质,它是指图形绕着一个固定点旋转180度后能够重合。
线对称性是指图形相对于一条线对称,两侧对应部分完全一致。
面对称性则是指图形相对于一个面对称,两侧对应部分完全一致。
对称性在几何学中具有重要的应用,它能够帮助我们分析和解决许多问题。
2. 圆的旋转对称性圆具有旋转对称性,这是因为任何一个圆可以绕着其圆心旋转一定角度后得到一个与原圆完全一致的新圆。
这个旋转角度称为圆的旋转角,它可以是任意角度。
利用圆的旋转对称性,我们可以解决许多有关圆的问题,比如确定两个圆是否相等、快速计算圆的周长和面积等。
3. 圆的轴对称性除了旋转对称性,圆还具有轴对称性。
轴对称性是指圆相对于一条直线对称,即对于圆上的任意一点P,当P的关于直线L的对称点也在圆上时,称直线L为圆的轴线。
利用圆的轴对称性,我们可以判断一个图形是否关于某条直线对称,从而简化几何证明的过程。
4. 圆的纵轴对称性和横轴对称性圆的轴对称性可以进一步分为纵轴对称性和横轴对称性。
当圆相对于一条垂直于x轴的直线对称时,称这条直线为圆的纵轴线;当圆相对于一条垂直于y轴的直线对称时,称这条直线为圆的横轴线。
纵轴对称性和横轴对称性在解决一些几何问题时非常有用,可以帮助我们找到图形的对称性质,简化问题的分析。
5. 圆的切线与辅助线的对称性在与圆相关的问题中,切线和辅助线的对称性也是常见且有用的。
以圆的切线为例,对于圆上的任意一点P,过点P作一条切线,这条切线与半径的夹角为90度,且在切点处与圆相切。
利用切线的对称性,我们可以解决一些与圆的切线有关的几何问题,比如判断切线与圆的位置关系、计算切线的长度等。
九年级下册数学精品课件2 圆的对称性

2019/5/15
3
1、判别下列各图中的角是不是圆心角,并
说明理由。
①
②
2019/5/15
4
③
④
任意给圆心角,对应出现三个量:
A
圆心角
弧
·
O B
弦
疑问:这三个量之间会有什么关系呢?
2019/5/15
5
如图,将圆心角∠AOB绕圆心O旋转到∠A’OB’的位置, 你能发现哪些等量关系?为什么?
A′ B′ B
2019/5/15
1、 如图,AB、CD是⊙O的两条弦.
AB = CD , (1)如果AB=CD,那么___________
=2CD AB ( )如果
AB=CD ,那么____________ ,
A E B D F
(3)如果∠AOB=∠COD,那么 AB=CD 于F,OE与OF相等吗?为什么?
(4)如果AB=CD,OE⊥AB于E,OF⊥CD
10
2019/5/15
例1
如图,在⊙O中, AB = AC ,∠ACB=60°,
A
⌒
⌒
求证:∠AOB=∠BOC=∠AOC 证明:
∵ AB = ∴
AC
B
AB=AC.⊿ABC是等腰三角形
又∠ACB=60°,
·
O
60°
C
∴ ⊿ABC是等边三角形 , AB=BC=CA. ∴
11
∠AOB=∠BOC=∠AOC.
A′
B′
B
·O
A
·O
A
根据旋转的性质,将圆心角∠AOB绕圆心O旋转到∠A′OB′的 位置时, ∠AOB=∠A′OB′,射线 OA与OA′重合,OB与OB′ 重合.而同圆的半径相等,OA=OA′,OB=OB′,∴点 A与 A′ 重合,B与B′重合. ︵ ︵
圆的对称性PPT演示课件

7
结论
二、点与圆的位置关系有三种:
A C O 到圆心的距离小于半径 的点叫作圆内的点; 到圆心的距离大于半径 B 的点叫作圆外的点.
8
要点归纳
二、点和圆的位置关系
设点到圆心的距离为d,圆的半径为r,在点和圆三种不同位 置关系时,d与r有怎样的数量关系?
P d P d P r
d
r
r d<r
点P在⊙O内 点P在⊙O外
练一练 如图. (1)请写出以点A为端点的优弧及劣弧; AF, AD, AC, AE. 劣弧: AFE, AFC,AED, ACD. 优弧: (
D F A O C B E
(
(2)请写出以点A为端点的弦及直径.
弦AF,AB,AC.其中弦AB又是直径.
(
(
(
(
(
(
14
探究
1.如图,在一块硬纸板和一张薄的白纸分别画一个圆,使 它们的半径相等,把白纸放在硬纸板上面,使两个圆的圆 心重合,观察这两个圆是否重合.
C
·
1.圆是中心对称图形,圆心是它的对称中心 . 2.圆是轴对称图形,任意一条直径所在的直 线都是圆的对称轴
18
O
D
议一议
如图,为什么通常要把车轮设计成圆形? 请说说理由.
19
议一议 为什么通常把车轮设计成圆形?说说理由.
把车轮做成圆形,车轮上各点到车轮中心(圆心)的
距离都等于车轮的半径,当车轮在平面上滚动时,车轮中
D E B
四 条.
A
O
F
C
32
2.正方形ABCD的边长为2cm,以A为圆心2cm为半径作 ⊙A,则点B在⊙A 上 ;点C在⊙A 外 ;点D在⊙A 上 . 3.⊙O的半径r为5㎝,O为原点,点P的坐标为(3,4), 则点P与⊙O的位置关系为 ( B ) A.在⊙O内 C.在⊙O外 B.在⊙O上 D.在⊙O上或⊙O外
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3·2圆的对称性
1.圆弧:圆上任意两点间的部分叫做圆弧,简称弧(arc).
2.弦:连接圆上任意两点的线段叫做弦(chord).
3.直径:经过圆心的弦叫直径(diameter).Array如右图。
以A、B为端点的弧记作AB,
渎作“圆弧AB”或“弧AB”;线段AB是
⊙O的一条弦,弧CD是⊙O的一条直径.
注意:
①弧包括优弧(major arc)和劣弧(minor are),大于半圆的弧称为优弧,小于半圆的
弧称为劣弧.如上图中,以A、D为端点的弧有两条:优弧ACD(记作ACD),劣弧ABD(记作
AD).半圆,圆的任意一条直径的两个端点分圆成两条弧,每一条弧叫半圆弧,简称半圆.半
圆是弧,但弧不一定是半圆;半圆既不是劣弧,也不是优弧.
②直径是弦,但弦不一定是直径.
4.圆是轴对称图形,过圆心的直线是它的对称轴,有无数条对称轴.
5.垂径定理:
垂直于弦的直径平分这条弦,并且平分弦所对的弧.
注意:①条件中的“弦”可以是直径.②结论中的“平分弧”指平分弦所对的劣弧、优弦.
证明此定理:
如图,连结OA、OB,则OA=OB.在Rt△OAM和Rt△OBM中,
∵OA=OB,OM=OM,∴Rt△OAM≌Rt△OBM,
∴AM=BM.∴点A和点墨关于CD对称.∵⊙O关于直径CD对称,
∴当圆沿着直径CD对折时,点A与点B重合,
弧AC与弧BC重合,弧AD与弧BD重合.∴AC=∴BC, 弧AD与弧BD重合.
可将原定理叙述为:一条直线若满足:(1)过圆心;(2)垂直于弦,那么可推出:①平分
弦,②平分弦所对的优弧,③平分弦所对的劣弧.
即垂径定理的条件有两项,结论有三项.用符号语言可表述为:
如图3—7,在⊙O中,
AM=BM ,
CD 是直径
弧AD=弧BD ,
CD ⊥AB 于M
AC=弧BC.
6.垂径定理的一个逆定理
平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.
如上图,连结OA 、OB ,则OA =OB .
在等腰△OAB 中,∵AM =MB ,∴CD ⊥AB(等腰三角形的三线合一).
∵⊙O 关于直径CD 对称.∴当圆沿着直径CD 对折时,点A 与点B 重合,弧AC 与弧BC 重合,弧AD 与弧BD 重合.∴弧AC=弧BC ,弧AD=弧BD
7.如果圆的两条弦互相平行,那么这两条弦所夹的弧相等.
圆的两条平行弦所夹的弧相等.
符合条件的图形有三种情况:(1)圆心在平行弦外,(2)在其中一条线弦上,(3)在平行弦内,但理由相同.
理由:如右图示,过圆心O 作垂直于弦的直
径EF ,由垂径定理设弧AF=弧BF ,弧CF=弧DF ,用等
量减等量差相等,得弧AF-弧CF=弧BF-弧DF ,即弧
AC=弧BD ,故结论成立.
7.中心对称:
中心对称图形是指把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫中心对称图形.这个点就是它的对称中心.
圆既是一个轴对称图形又是一个中心对称图形.
圆具有旋转不变的特性.即一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合.圆的中心对称性是其旋转不变性的特例.即圆是中心对称图形,对称中心为圆心.
8.圆心角、弧、弦之间相等关系定理:
圆心角 顶点在圆心的角(如∠AOB).
弦心距 过圆心作弦的垂线,圆心与垂足之间的距离(如线段OD)
在等圆中,相等的圆心角所对的弧相等,所对的弦相等.
如上图所示,已知:⊙O和⊙O′是两个半径相等的圆,∠AOB=∠A′O′B′.求证:弧AB=弧A′B′,AB=A′B′.
证明:将⊙O和⊙O′叠合在一起,固定圆心,将其中的一个圆旋转,一个角度,使得半径OA与O′A′重合,∵∠AOB=∠A′O′B′,∴半径OB与O′B′重合.∵点A与点A′重合,点D与点B′重合,
∴弧AB与弧A′B′重合,弦AB与弦A′B′重合.∴弧AB=弧A′B′,AB=A′B′.上面的结论,在同圆中也成立.于是得到下面的定理,
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.
注意:在运用这个定理时,一定不能忘记“在同圆或等圆中”这个前提.否则也不一定有所对的弧相等、弦相等这样的结论.
两个圆心角用①表示;两条弧用表示:两条弦用③表示.我
们就可以得出这样的结论:
在同圆或等圆中②
也相等
①相等③
在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.
在同圆或等圆中,如果两个圆心角,两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.
注意:(1)不能忽略“在同圆或等圆中”这个前提条件,否则,丢掉这个前提,虽然圆心角相等,但所对的弧、弦、弦心距不一定相等.
(2)此定理中的“弧”一般指劣弧.
(3)要结合图形深刻体会圆心角、弧、弦、弦心距这四个概念和“所对”一词的含义.否则易错用此关系.
(4)在具体应用上述定理解决问题时,可根据需要,择其有关部分.
1.如右图所示,
一条公路的转弯处是一段圆弧(即图中弧CD ,点O 是弧CD 的圆心),
其中CD=600m ,E 为弧CD 上一点,且OE ⊥CD ,垂足为F ,EF=90 m .求
这段弯路的半径.
[分析]要求弯路的半径,连结OC ,只要求出OC 的长便可以了.因为已知OE ⊥CD ,所以CF =2
1CD =300 cm ,OF =OE-EF ,此时就得到了一个Rt △CFO. 【解析】
连结OC ,设弯路的半径为Rm ,则
OF =(R-90)m ,∵OE ⊥CD ,∴CF =CD=×600=300(m).
据勾股定理,得 OC 2=CF 2+OF 2, 即R 2=3002+(R-90)2
.
解这个方程,得R =545.∴这段弯路的半径为545 m .
2.如图,点A 是半圆上的三等分点,B 是BN 的中点,P 是直径MN 上一动点.⊙O 的半径为1,问P 在直线MN 上什么位置时,AP+BP 的值最小?并求出AP+BP 的最小值.
【解析】
作点B 关于直线MN 的对称点B′,则B′必在⊙O 上,且'B N NB .
由已知得∠AON=60°,
故∠B′ON=∠BON= 12
∠AON=30°,∠AOB′=90°.
连接AB′交MN 于点P′,则P′即为所求的点.
此时
,
即AP+BP .
3.已知:如图
,在⊙O 中,弦AB 的长是半径OA ,C 为AB 的中点,AB 、OC
相交于
N
M B
P A
O
点M.试判断四边形OACB的形状,并说明理由.
【解析】
是菱形,理由如下:由BC AC
=,得∠BOC=∠AOC.
故OM⊥AB,从而AM=BM.
在Rt △AOM中,sin∠
AOM=
AM
OA
=,
故∠AOM=60°,
所以∠BOM=60°.由于OA=OB=OC, 故△BOC 与△AOC都是等边三角形, 故OA=AC=BC=BO=OC,
所以四边形OACB是菱形.
M
C
B A
O。