变矩器结构与工作原理 图文
合集下载
变矩器结构与工作原理--图文

②“软连接”可以通过液体为介质,吸收传动系统的冲 击和振动,延长零部件的寿命和减少噪声
缺点:
由于液力偶合器不能改变扭矩的大小,结构复杂、成本高、 效率低,故装有此自动变速器的车在低、高速行驶时,油耗 非常大。
1.结构 由泵轮、涡轮、导轮 组成 与变矩器的区别 和偶合器相比,变矩 器在结构上多了导轮 (stator) 导轮 通过导轮座固定于变 速器壳体上
两个相互间没有刚性连接的叶轮,同 样可以进行能量的传递
发动机曲轴凸缘上装有 外壳,泵轮与外壳连接 (或焊接)在一起,随 曲轴一起转动,为液力 偶合器的主动部分。与 泵轮相对安装的涡轮, 与输出轴连接在一起, 为液力变矩器的从动部 分。
工作原理:
液压油就靠泵轮内产生的离心力而冲向涡轮,并在泵轮 与涡轮之间作循环流动,于是就将在泵轮内获得的圆周 运动的能量传给涡轮,驱动涡轮旋转而输出
Mw=Mb-Md 即变矩器输出转矩反 而比输入转矩小。 当 nw=nb ,工作液 在循环圆中的流动停止, 将不能传递动力。
a.当nw=0时,nb>>nw,油液速度流向导轮的正面, Md>0,Mw=Mb+Md,可见Mw>Mb,起变矩作用。 b.当nw>0时,接近0.85nb转速时,油液速度与导轮 叶片相切,Md=0,Mw=Mb,为耦合器(液力联轴器)。 此转速称为“耦合工作点”。 c.当nw≈nb时,油液速度流向导轮的背面,Md 为 负值,导轮欲随泵轮同向旋转,导轮对油液的反作 用力冲向泵轮正面,故Mw=Mb-Md。 d. 当nw=nb时,循环圆内的液体停止流动,停止扭 矩的传递。故nw的增大是有限度的,它与nb的比值 不可能达到1,一般小于0.9。
汽车在变工况下行驶时(如起步、经常加减速),锁止离
缺点:
由于液力偶合器不能改变扭矩的大小,结构复杂、成本高、 效率低,故装有此自动变速器的车在低、高速行驶时,油耗 非常大。
1.结构 由泵轮、涡轮、导轮 组成 与变矩器的区别 和偶合器相比,变矩 器在结构上多了导轮 (stator) 导轮 通过导轮座固定于变 速器壳体上
两个相互间没有刚性连接的叶轮,同 样可以进行能量的传递
发动机曲轴凸缘上装有 外壳,泵轮与外壳连接 (或焊接)在一起,随 曲轴一起转动,为液力 偶合器的主动部分。与 泵轮相对安装的涡轮, 与输出轴连接在一起, 为液力变矩器的从动部 分。
工作原理:
液压油就靠泵轮内产生的离心力而冲向涡轮,并在泵轮 与涡轮之间作循环流动,于是就将在泵轮内获得的圆周 运动的能量传给涡轮,驱动涡轮旋转而输出
Mw=Mb-Md 即变矩器输出转矩反 而比输入转矩小。 当 nw=nb ,工作液 在循环圆中的流动停止, 将不能传递动力。
a.当nw=0时,nb>>nw,油液速度流向导轮的正面, Md>0,Mw=Mb+Md,可见Mw>Mb,起变矩作用。 b.当nw>0时,接近0.85nb转速时,油液速度与导轮 叶片相切,Md=0,Mw=Mb,为耦合器(液力联轴器)。 此转速称为“耦合工作点”。 c.当nw≈nb时,油液速度流向导轮的背面,Md 为 负值,导轮欲随泵轮同向旋转,导轮对油液的反作 用力冲向泵轮正面,故Mw=Mb-Md。 d. 当nw=nb时,循环圆内的液体停止流动,停止扭 矩的传递。故nw的增大是有限度的,它与nb的比值 不可能达到1,一般小于0.9。
汽车在变工况下行驶时(如起步、经常加减速),锁止离
2-液力变矩器结构原理2

闭锁式液力变矩器
使用液力变矩器存在的 问题: 1、与机械传动相比其效 率较低在正常行驶时 油耗较高,经济性差; 2、必须进行强制散 热,从而增大了自动 变速器的体积和重量。
采用闭锁式液力变 矩器可以实现液力 变矩器传动和机械 直接传动两种工 况,把两者的优点 结合于一体。
变矩器闭锁离合器工作原理
液力变矩器的单向离合器
1-内座圈 2-外座圈 3-导轮 4-铆钉 5-滚轮 6-叠片弹簧
综合式液力变矩器的优点
当涡轮处于低速和中速段时,可利用 液力变矩器能增大输入转矩的特点; 在涡轮处于高转速段时,可利用液力 偶合器高效率的特点; 结合了普通液力变矩器和偶合器的优 点。
三元件综合式液力变矩器的特性
变矩器冷却补偿油路系统
1-粗滤清器 2-齿轮泵 3-变矩器 4-单向阀 5-精滤清 器 6-背压器 7-热交换器 8-油箱
第2章、液力变矩器的结构原理
武汉理工大学汽车工程学院 余晨光
三元件综合式液力变矩器
1-滚柱 2-塑料垫片 3-涡轮轮毂 4-曲轴凸缘 5-涡轮 6-起动齿圈 7-变矩器壳 8-泵轮 9导 轮 10-单向离合器 11单 向离合器内座圈 12-泵 轮 轮毂 13-变矩器输出轴 (齿轮变速器第一轴) 14-导轮固定套管 15-推力垫片 16-单向离合器盖
液力变矩器的冷却补偿系统
1、必要性 (1)大量的摩擦热要及时发散; (2)减小气蚀现象的不利影响; (3)保证变矩器内始终充满油液。 2、变矩器冷却补偿油路系统(结构)
气蚀现象
所谓气蚀,是指在液体流动过程中,某处压力 下降到低于该温度下油液的饱和蒸气压力时, 液体形成气泡的现象。当液体中的气泡随液流 运动到压力较高的区域时,气泡在周围压力的 冲击下迅速破裂,又凝结成液态,使体积急剧 缩小,出现真空。于是周围的液体质点即以极 高的速度填补这些空间。在此瞬间,液体质点 相互强烈碰击,产生明显的噪声,同时造成很 高的局部压力,使叶片表面的金属颗粒被击破。 气蚀现象影响液力变矩器正常工作,使其效率 降低,并加速油液变质。
第二章液力变矩器的结构原理

速度冲击涡轮叶片,使涡轮旋转,再沿涡轮叶片冲向导轮,最后返回泵 轮,形成在液力变矩器环形腔内的循环运动。
涡轮
导轮
泵轮
转矩放大:在泵轮与涡轮转速差较大的情况下,从涡轮流出的液 流冲击导轮正面,由于导轮固定不动,液流对涡轮产生反作用力,所以 此时液流对涡轮的冲击力矩大于泵轮的输入力矩。液力变矩器的转矩放 大倍数一般为2.2左右。
(2)传动效率:
nW
nB
泵轮与涡轮的转速差越大,传动效率越低;反之则传动效率高。 汽车起步后,随涡轮转速的增加,其传动效率提高,转矩减小。
二、液力变矩器:
1、基本结构: 有3个工作轮,即泵轮、涡轮和导轮。
液力变矩器的结构
泵轮
泵轮为主动件,与液力变矩器壳体相连,壳体与发动机曲轴后端的 驱动盘相连。
活塞 壳体
扭转减振器
壳体
活塞 扭转减振器
涡轮 轮毂
涡轮轮毂
分离状态
锁止状态
3、工作过程: 起步时:发动机带动泵轮旋转,工作液在泵轮的带动下以一定速
度冲击涡轮叶片,再沿涡轮叶片冲向导轮,由于导轮固定不动,液流对 涡轮产生反作用力,所以此时液流对涡轮的冲击力矩大于泵轮的输入力 矩。
起步后: • 随着涡轮转速的增加,沿着涡轮叶片冲向导轮叶片的液流的方向 逐渐改变,液流对涡轮的反作用力逐渐减小。 • 涡轮达到一定转速时,液流方向与导轮叶片平行,导轮不起作用, 此时为耦合工况。 • 涡轮转速进一步增大,液流冲击导轮叶片背面,使涡轮输出力矩 小于泵轮输入力矩。 • 当涡轮转速增大至与泵轮转速相等时,工作液循环停止,失去传 递动力的能力。
二、带单向离合器的导轮
1、结构特点:导轮不是完全固定不动,而是通过单向离合器支承
在导轮固定套上,单向离合器可使导轮单方向运转。
涡轮
导轮
泵轮
转矩放大:在泵轮与涡轮转速差较大的情况下,从涡轮流出的液 流冲击导轮正面,由于导轮固定不动,液流对涡轮产生反作用力,所以 此时液流对涡轮的冲击力矩大于泵轮的输入力矩。液力变矩器的转矩放 大倍数一般为2.2左右。
(2)传动效率:
nW
nB
泵轮与涡轮的转速差越大,传动效率越低;反之则传动效率高。 汽车起步后,随涡轮转速的增加,其传动效率提高,转矩减小。
二、液力变矩器:
1、基本结构: 有3个工作轮,即泵轮、涡轮和导轮。
液力变矩器的结构
泵轮
泵轮为主动件,与液力变矩器壳体相连,壳体与发动机曲轴后端的 驱动盘相连。
活塞 壳体
扭转减振器
壳体
活塞 扭转减振器
涡轮 轮毂
涡轮轮毂
分离状态
锁止状态
3、工作过程: 起步时:发动机带动泵轮旋转,工作液在泵轮的带动下以一定速
度冲击涡轮叶片,再沿涡轮叶片冲向导轮,由于导轮固定不动,液流对 涡轮产生反作用力,所以此时液流对涡轮的冲击力矩大于泵轮的输入力 矩。
起步后: • 随着涡轮转速的增加,沿着涡轮叶片冲向导轮叶片的液流的方向 逐渐改变,液流对涡轮的反作用力逐渐减小。 • 涡轮达到一定转速时,液流方向与导轮叶片平行,导轮不起作用, 此时为耦合工况。 • 涡轮转速进一步增大,液流冲击导轮叶片背面,使涡轮输出力矩 小于泵轮输入力矩。 • 当涡轮转速增大至与泵轮转速相等时,工作液循环停止,失去传 递动力的能力。
二、带单向离合器的导轮
1、结构特点:导轮不是完全固定不动,而是通过单向离合器支承
在导轮固定套上,单向离合器可使导轮单方向运转。
第2讲液力变矩器结构与原理ppt课件

由泵轮、涡轮、导轮 组成
与变矩器的区别
和偶合器相比,变矩 器在结构上多了导轮 (stator)
导轮
通过导轮座固定于变 速器壳体上
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
液力变矩器
涡流、环流、循环圆
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
二、液力变矩器
2.工作原理
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
使发动机机械能 液体能量
• 涡轮:通过从动轴与变速器的其他部件相连;
将液体能量 涡轮轴上机械能
• 导轮:则通过导轮座与变速器的壳体相连,所有工作轮在
装配后,形成断面为循环圆的环状体。
通过改变工作油的方向而起变矩作用
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
液力偶合器涡流、环流的产生
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
(1)“涡流”的产生
与变矩器的区别
和偶合器相比,变矩 器在结构上多了导轮 (stator)
导轮
通过导轮座固定于变 速器壳体上
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
液力变矩器
涡流、环流、循环圆
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
二、液力变矩器
2.工作原理
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
使发动机机械能 液体能量
• 涡轮:通过从动轴与变速器的其他部件相连;
将液体能量 涡轮轴上机械能
• 导轮:则通过导轮座与变速器的壳体相连,所有工作轮在
装配后,形成断面为循环圆的环状体。
通过改变工作油的方向而起变矩作用
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
液力偶合器涡流、环流的产生
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
(1)“涡流”的产生
自动挡液力变矩器幻灯片

油泵——油泵的结构和工作原理
叶片泵分为: 定量泵—油泵的排量不变。为保证发动机低速时的正常泵油,以满足自动变速器的工作需要,要求油泵的排量应足够大。但发动机高速时,因泵油量增多,此时的泵油还必须排泄掉,从而造成发动机动力损失。 变量泵—油泵的排量可变。以减少高速运转时的发动机动力损失。其结构特点是:定子不固定,而是绕一个销轴作一定的摆动,以改变定子和转子之间的偏心距,从而改变油泵的排量。
液力传动装置——液力变矩器的工作原理
总结: 液力变矩器的输出转矩可以根据涡轮的转速变化。具体为: 涡轮速度低——涡轮转矩大于泵轮转矩; 涡轮速度等于一设定值——涡轮转矩等于泵轮转矩; 涡轮速度继续升高——由于导轮的单项离合器存在,使得MW=MB ,液力变矩器进入偶合工况。 涡轮速度等于泵轮速度——不传递转矩。 液力变矩器能够改变扭矩的原因是在泵轮和涡轮之间加入了导轮。
液力变矩器的扭矩变化规律
液力传动装置——锁止离合器的结构
1.为什么要有锁止离合器
液力变矩器在偶合区以接近1:1的比例将来自发动机的输入转矩传递至变矩器。但在涡轮和泵轮之间存在着至少4%—5%的转速差。所以变矩器并不是将发动机的动力100%地传给了变速器输入轴,而是有能量损失。 为了防止上述油耗的产生,并降低油耗,当车速大于60KM/H时,锁止离合器会通过机械机构将泵轮与涡轮相连。
液力传动装置——液力变矩器
(二)单向离合器 有滚柱式单向离合器 和 楔块式单向离合器 两种。
液力传动装置——液力变矩器结构
(三)导轮 导轮位于涡轮和泵轮之间。通过单向离合器安装在固定的导轮轴上。涡轮中心的液体流向导轮,被改变方向后流向泵轮。 当液体推动导轮以和泵轮相同方向旋转时,单向离合器允许导轮自由旋转,反之则被锁住不能转动。当导轮静止时,变矩器具有增扭作用;当导轮开始转动时,导轮不再具有增扭作用。 从涡轮回流至泵轮的液体方向取决于泵轮和涡轮之间的转速差,决定变矩器是否能增扭。
叶片泵分为: 定量泵—油泵的排量不变。为保证发动机低速时的正常泵油,以满足自动变速器的工作需要,要求油泵的排量应足够大。但发动机高速时,因泵油量增多,此时的泵油还必须排泄掉,从而造成发动机动力损失。 变量泵—油泵的排量可变。以减少高速运转时的发动机动力损失。其结构特点是:定子不固定,而是绕一个销轴作一定的摆动,以改变定子和转子之间的偏心距,从而改变油泵的排量。
液力传动装置——液力变矩器的工作原理
总结: 液力变矩器的输出转矩可以根据涡轮的转速变化。具体为: 涡轮速度低——涡轮转矩大于泵轮转矩; 涡轮速度等于一设定值——涡轮转矩等于泵轮转矩; 涡轮速度继续升高——由于导轮的单项离合器存在,使得MW=MB ,液力变矩器进入偶合工况。 涡轮速度等于泵轮速度——不传递转矩。 液力变矩器能够改变扭矩的原因是在泵轮和涡轮之间加入了导轮。
液力变矩器的扭矩变化规律
液力传动装置——锁止离合器的结构
1.为什么要有锁止离合器
液力变矩器在偶合区以接近1:1的比例将来自发动机的输入转矩传递至变矩器。但在涡轮和泵轮之间存在着至少4%—5%的转速差。所以变矩器并不是将发动机的动力100%地传给了变速器输入轴,而是有能量损失。 为了防止上述油耗的产生,并降低油耗,当车速大于60KM/H时,锁止离合器会通过机械机构将泵轮与涡轮相连。
液力传动装置——液力变矩器
(二)单向离合器 有滚柱式单向离合器 和 楔块式单向离合器 两种。
液力传动装置——液力变矩器结构
(三)导轮 导轮位于涡轮和泵轮之间。通过单向离合器安装在固定的导轮轴上。涡轮中心的液体流向导轮,被改变方向后流向泵轮。 当液体推动导轮以和泵轮相同方向旋转时,单向离合器允许导轮自由旋转,反之则被锁住不能转动。当导轮静止时,变矩器具有增扭作用;当导轮开始转动时,导轮不再具有增扭作用。 从涡轮回流至泵轮的液体方向取决于泵轮和涡轮之间的转速差,决定变矩器是否能增扭。
车辆动力学液力变矩器.pptx

1.静态原始特性模型
λX106 K
10 2.4
2.0 8
1.6 6
1.2 4
0.8
2 0.4
0 0.0 0.0
i0.2
0.4
0.6
传动比 i
η
η
K
1.0
λ
i=nT / nB
0.8 ,D,nB
0.6
M B gBnB2 D5
0.4
M T KM B
0.2
0.0
0.8
1.0
第13页/共26页
四、液力变矩器原始特性模型
TB
(s) (s)
G11(s) G21(s)
G12 G22
(s) (s)
M M
B T
(s) (s)
利用系统 辨识得到
第25页/共26页
感谢您的观看。
第26页/共26页
2 0.4
η
η
K
1.0
λ
0.8
0.6
0.4
0.2
0 0.0
0.0
0
第9页/共26页 i
0.0
0.2
0.4
0.6
0.8
1.0
三、液力变矩器的原始特性
2. 液力变矩器原始特性的确定方法
nB MB nT MT
,D
i nT nB
K MT MB
B
MB
gnB2 D5
h M TnT M BnB
λX106
8
2001
859.8
785
1574.5 0.39 1.83 0.718
9 2002.5 902.4
603.4
1815 0.30 2.01 0.606
液力自动变矩器的结构和工作原理概要PPT学习教案

图 2-2 液 力 偶 合 器 工作示 意图
第9页/共45页
2.1.2 液力耦合器的工作原理
当发动机运转时,曲轴带动液力偶合器的壳体和泵 轮旋转,泵轮叶片内的液压油在泵轮的带动下随泵轮一同 旋转。在离心力的作用下,液压油从泵轮叶片内缘被甩向 外缘,并从外缘冲向涡轮叶片,使涡轮在液压油的冲击作 用下旋转;冲向涡轮叶片的液压油沿涡轮叶片向内缘流动 ,返回到泵轮的内缘,被泵轮再次甩向外缘。
内部有一个由液压操纵的
闭锁离合器,或称锁止离合器。
第35页/共45页
主动盘
从 动 盘 ( 压 盘)
锁止控制阀接通变 矩器压力油路时
锁止控制阀接通变 矩器回油路时
图2-12 闭锁式液力变矩器
第36页/共45页
锁止控制阀接通变 矩器压力油路时
压盘两侧的压力相 同,闭锁离合器呈分离 状态,动力须经液力变 矩器传递,可充分发挥 液力传动减振吸振、自 适应行驶阻力剧烈变化 的优点,适合于汽车起 步、换档或在坏路面上 行驶工况使用。
利用 液体在循 环流动过 程中动能 的变化来 传递动力 的
第2页/共45页
不同型号的液力 变矩器,结构和
原理相同?
自动变速器 的结构相同 吗?为什么
?
第3页/共45页
本章主要介绍基本的液力偶合器和液力
变矩器的结构和工作原理
第4页/共45页
2.1 液力耦合器
2.1.1 液力耦合器的结构
图2-1 液力偶合器结构示意图
量不及时散出,变矩器内的油液温度就会急
剧升高,导致变矩器不能工作,因此必须对
变矩器内的油液进行强制冷却。
第40页/共45页
图2-13 变矩器冷却补偿油路系统图
第41页/共45页
第9页/共45页
2.1.2 液力耦合器的工作原理
当发动机运转时,曲轴带动液力偶合器的壳体和泵 轮旋转,泵轮叶片内的液压油在泵轮的带动下随泵轮一同 旋转。在离心力的作用下,液压油从泵轮叶片内缘被甩向 外缘,并从外缘冲向涡轮叶片,使涡轮在液压油的冲击作 用下旋转;冲向涡轮叶片的液压油沿涡轮叶片向内缘流动 ,返回到泵轮的内缘,被泵轮再次甩向外缘。
内部有一个由液压操纵的
闭锁离合器,或称锁止离合器。
第35页/共45页
主动盘
从 动 盘 ( 压 盘)
锁止控制阀接通变 矩器压力油路时
锁止控制阀接通变 矩器回油路时
图2-12 闭锁式液力变矩器
第36页/共45页
锁止控制阀接通变 矩器压力油路时
压盘两侧的压力相 同,闭锁离合器呈分离 状态,动力须经液力变 矩器传递,可充分发挥 液力传动减振吸振、自 适应行驶阻力剧烈变化 的优点,适合于汽车起 步、换档或在坏路面上 行驶工况使用。
利用 液体在循 环流动过 程中动能 的变化来 传递动力 的
第2页/共45页
不同型号的液力 变矩器,结构和
原理相同?
自动变速器 的结构相同 吗?为什么
?
第3页/共45页
本章主要介绍基本的液力偶合器和液力
变矩器的结构和工作原理
第4页/共45页
2.1 液力耦合器
2.1.1 液力耦合器的结构
图2-1 液力偶合器结构示意图
量不及时散出,变矩器内的油液温度就会急
剧升高,导致变矩器不能工作,因此必须对
变矩器内的油液进行强制冷却。
第40页/共45页
图2-13 变矩器冷却补偿油路系统图
第41页/共45页
液力变矩器PPT.

液力变矩器结构形式多样性的原因;级和相的概念;液力变矩器的分类;液力变矩器的工作 特点;优点和缺点
液力变矩器的特性曲线
液力变矩器的特性曲线;液力变矩器的外特性曲线;原始特性
液压传动基础知识
液压传动的概念;典型的液压传动机构的工作原理;液压传动系统的组成;液压系统图;液 压传动的主要元件之液压泵;液压马达;液压缸;液压传动的特点
➢ 销售人员常见的想法是急于上前接待,可以说百分之八九十以上的销售人员都抱有这种心理状态。有的客户还没进门,销售人员就跃
跃欲试准备去接待了。
化,但变化不大。输出端的转速和扭矩可 “我们已将工作提供给一个技能非常优秀的应聘者,你是二人选。”
客户希望在自己需要的时候能够得到及时的帮助。客户在看车的时候不希望被打扰,而在需要帮助的时候,又希望能够得到及时的帮
液力变矩器是一种借助于液体的高速运动来
第四个等级
传递功率的元件。它的工作特点是: (2)如果摔伤后,在四肢部位有大血管破裂,出血量很能多,应马上找些橡皮管、布带、绷带作为止血带在大腿根部上肢腋窝处勒紧
止血。 三、课堂小结 畅谈收获
输入端的转速和扭矩基本恒定;或虽有变 该广告标题醒目,职位相关信息清楚,明确提出相关要求,强调公司平等雇佣政策。
液力变矩器的基础知识
液力传动概念;液力传动原理简图;液力变矩器的工作过程;
液力变矩器的构造
液力变矩器的结构;循环圆的密封;液力变矩器的供油系统
液力变矩器的分类和特点
液力变矩器结构形式多样性的原因;级和相的概念;液力变矩器的分类;液力变矩器的工作 特点;优点和缺点
液力变矩器的特性曲线
液力变矩器的特性曲线;液力变矩器的外特性曲线;原始特性
液压传动基础知识
液压传动的概念;典型的液压传动机构的工作原理;液压传动系统的组成;液压系统图;液 压传动的主要元件之液压泵;液压马达;液压缸;液压传动的特点
液力变矩器的特性曲线
液力变矩器的特性曲线;液力变矩器的外特性曲线;原始特性
液压传动基础知识
液压传动的概念;典型的液压传动机构的工作原理;液压传动系统的组成;液压系统图;液 压传动的主要元件之液压泵;液压马达;液压缸;液压传动的特点
➢ 销售人员常见的想法是急于上前接待,可以说百分之八九十以上的销售人员都抱有这种心理状态。有的客户还没进门,销售人员就跃
跃欲试准备去接待了。
化,但变化不大。输出端的转速和扭矩可 “我们已将工作提供给一个技能非常优秀的应聘者,你是二人选。”
客户希望在自己需要的时候能够得到及时的帮助。客户在看车的时候不希望被打扰,而在需要帮助的时候,又希望能够得到及时的帮
液力变矩器是一种借助于液体的高速运动来
第四个等级
传递功率的元件。它的工作特点是: (2)如果摔伤后,在四肢部位有大血管破裂,出血量很能多,应马上找些橡皮管、布带、绷带作为止血带在大腿根部上肢腋窝处勒紧
止血。 三、课堂小结 畅谈收获
输入端的转速和扭矩基本恒定;或虽有变 该广告标题醒目,职位相关信息清楚,明确提出相关要求,强调公司平等雇佣政策。
液力变矩器的基础知识
液力传动概念;液力传动原理简图;液力变矩器的工作过程;
液力变矩器的构造
液力变矩器的结构;循环圆的密封;液力变矩器的供油系统
液力变矩器的分类和特点
液力变矩器结构形式多样性的原因;级和相的概念;液力变矩器的分类;液力变矩器的工作 特点;优点和缺点
液力变矩器的特性曲线
液力变矩器的特性曲线;液力变矩器的外特性曲线;原始特性
液压传动基础知识
液压传动的概念;典型的液压传动机构的工作原理;液压传动系统的组成;液压系统图;液 压传动的主要元件之液压泵;液压马达;液压缸;液压传动的特点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工作轮用铝合金精密制造,或用钢板冲压焊接而成; 泵轮:与液力变矩器壳连成一体,用螺栓固定在发动机曲 轴后端的凸缘或飞轮上,壳体做成两半,装配后焊成一体 (有的用螺栓连接); 使发动机机械能 液体能量 涡轮:通过从动轴与变速器的其他部件相连; 将液体能量 涡轮轴上机械能 导轮:则通过导轮座与变速器的壳体相连,所有工作轮在 装配后,形成断面为循环圆的环状体。 通过改变工作油的方向而起变矩作用
缺点:
由于液力偶合器不能改变扭矩的大小,结构复杂、成本高、 效率低,故装有此自动变速器的车在低、高速行驶时,油耗 非常大。
1.结构 由泵轮、涡轮、导轮 组成 与变矩器的区别 和偶合器相比,变矩 器在结构上多了导轮 (stator) 导轮 通过导轮座固定于变 速器壳体上
1.泵轮:泵轮与变矩器壳体连成一体,其内部径 向装有许多扭曲的叶片,叶片内缘则装有让变速 器油液平滑流过的导环。变矩器壳体与曲轴后端 的飞轮相连接。
2.涡轮:涡轮上也装有许多叶片。但涡轮叶片的扭 曲方向与泵轮叶片的扭曲方向相反。涡轮中心有 花键孔与变速器输入轴相连。泵轮叶片与涡轮叶 片相对安装,中间有3~4 mm的间隙。
3.导轮:导轮位于泵轮与涡轮之间,通过单向离合器安装 在与自动变速器壳体连接的导管轴上。它也是由许多扭曲 叶片组成的,通常由铝合金浇铸而成,其目的是为了变矩 器在某些工况下具有增大扭矩的功能。
涡轮转速nw从零逐渐增加。速 度vb的增加,冲向导轮叶片的 液流的绝对速度vc将随着逐渐 向上倾斜,使导轮上所受转矩 值逐渐减小。
当涡轮和泵轮转速之比达 到0.8-0.85左右时: Md=0, Mb=Mw
汽车高速运行
若涡轮转速nw继续增大, 液流绝对速度vc的方向冲 击导轮的背面,导轮转矩 方向与泵轮转矩方向相反 Mw=Mb-Md 即变矩器输出转矩 反而比输入转矩小。 当 nw=nb ,工作液 在循环圆中的流动停止, 将不能传递动力。
a.当nw=0时,nb>>nw,油液速度流向导轮的正面, Md>0,Mw=Mb+Md,可见Mw>Mb,起变矩作用。 b.当nw>0时,接近0.85nb转速时,油液速度与导轮 叶片相切,Md=0,Mw=Mb,为耦合器(液力联轴器)。 此转速称为“耦合工作点”。 c.当nw≈nb时,油液速度流向导轮的背面,Md 为 负值,导轮欲随泵轮同向旋转,导轮对油液的反作 用力冲向泵轮正面,故Mw=Mb-Md。 d. 当nw=nb时,循环圆内的液体停止流动,停止扭 矩的传递。故nw的增大是有限度的,它与nb的比值 不可能达到1,一般小于0.9。
两个相互间没有刚性连接的叶轮,同 样可以进行能量的传递
发动机曲轴凸缘上装有
外壳,泵轮与外壳连接 (或焊接)在一起,随 曲轴一起转动,为液力 偶合器的主动部分。与 泵轮相对安装的涡轮, 与输出轴连接在一起, 为液力变矩器的从动部 分。
工作原理:
液压油就靠泵轮内产生的离心力而冲向涡轮,并在泵轮 与涡轮之间作循环流动,于是就将在泵轮内获得的圆周 运动的能量传给涡轮,驱动涡轮旋转而输出
工作原理 当锁止离合器处于分离状态时,仍具有变矩和偶合两种工 作情况; 当锁止离合器处于接合状态时,此时发动机功率经输入轴、 液力变矩器壳体和锁止离合器直接传至涡轮输出轴,液力 变矩器不起作用,这种工况称为锁止工况。 既利用了液力变矩器在涡轮转速较低时具有的增扭特性, 又利用了液力偶合器在涡轮转速较高时所具有的高传动效 率的特性。 汽车在变工况下行驶时(如起步、经常加减速),锁止离
--
锁止离合器摩擦片、减震弹簧
减振盘:它与涡轮连接在一起,减振盘上装有减振弹簧,在离合器接合 时,可防止产生扭转振动。 锁止离合器压盘:通过凸起卡在减振盘上,可在油压的作用下轴向移 动。 离合器壳:它与泵轮连接在一起,前盖上粘有一层摩擦材料,以增加 离合器接合时的摩擦力。
工作原理
工作原理
矩。可见,循环圆内的液体绕轴旋转形成
“环流”。
上述两种油流的合成,形成一条首尾相 接的螺旋流。只有当涡轮的扭矩大于汽车 的行驶阻力矩时,汽车才能行驶。
(3)油液流动(螺旋形路线)
耦合器传动特点:
如果不计液力损失,传给泵轮的输入转矩与 涡轮上的输出转矩相等
液力偶合器的传动效率为涡轮轴上的输出功率Pt 与泵轮上的输入功率Pp之比用η表示。 η=Pt/Pp=Mt·nt /(Mp·np) 因:Mp=Mt 故:η=nt / np=i 式中: np—泵轮转速; nt—涡轮转速; i—液力偶合器的传动比,即输出轴 转速与输入轴转速之比
液力耦合器优缺点:
耦合器只能传递扭矩,但“软连接”给汽车带来多方面 的好处: ①在没有附加其他机械操纵装置的情况下,能够通过它 平稳地切断和接通发动机和驱动轮之间的动力传递,能 够很好地适应汽车平稳起步的要求。 ②“软连接”可以通过液体为介质,吸收传动系统的冲 击和振动,延长零部件的寿命和减少噪声
组成:
泵轮、涡轮、导轮。
不同之处:
导轮通过单向离合器(oneway overrunning clutch) 固定于变速器壳体上 只允许导轮单方向旋转
常见形式: (1)滚柱斜槽式(液力变矩器常用) (2)楔块式(行星齿轮变速器常用)
楔块式
滚柱斜槽式
(1)滚柱斜槽式单向离合器
(2)楔块式单向离合器
汽车起步工况
汽车起步前:
nw=0,nb>0,nw<<nb (导轮固定) 则 Va(涡流)>Vb (环流) Mw=Md+Mb 涡轮转矩Mw大于 泵轮的转矩Mb,即液 力变矩器起了增大转 矩的作用
当汽车处于起步状态,变矩器具有最大 的扭矩增大值,通常可达1.8-2.5倍
汽车起步后开始加速 (起步后的中间状态)
驱动油泵:ATF在工作的时候需要油泵提供一 定的压力,而油泵一般是由液力变矩器壳体驱动 的。
涡流: 从泵轮→涡轮→导轮→泵轮的液体 流动 环流: 液体绕轴线旋转的流动
变矩器不仅能传递转矩,而且能在泵轮转矩不变的情 况下,随着涡轮的转速(反映着汽车行驶速度)不同而 改变涡轮输出的转矩数值
增矩过程: MW=Mb+Md 变矩器扭矩的增 大值并不是一个 恒定的值,扭矩 增大值与汽车的 速度有关
合器分离,相当于普通液力变矩器;当汽车在稳定工况下
(达到耦合工况)行驶时,锁止离合器接合,动力不经液力 传动,直接通过机械传动传递,变矩器效率为1。
变矩器锁止离合器的主要功能是:
在汽车低速时,利用变矩器低速扭矩增大 的特性,提高汽车起步和坏路的加速性; 在高速时,变矩器锁止离合器作用,使液 力偶合(“软连接”)让位于直接的机械传 动(“硬连接”),提高传动效率,降低燃 油消耗。
(1)“涡流”的产生
当泵轮随飞轮转动时,由于离心力的作用, 液体沿泵轮叶片间的通道向外缘流动,外缘油 压高于内缘油压,油液从泵轮外缘冲向涡轮外 缘,又从涡轮内缘流入泵轮内缘,可见在轴向 断面(循环圆)内,液体流动形成循环流,称
为“涡流”。
(2)环流的产生
因涡流的产生,液体冲向涡轮使两轮
间产生牵连运动,涡轮产生绕轴旋转的扭
涡轮
导轮
泵轮
涡流、环流、循环圆
2.工作原理
受力分析
受力分析
3.输出转矩——随着涡轮转速的变化而变化。 a.涡轮转速低时(nw=0),nB>nw,液体流向导轮正面,涡轮 转矩大于泵轮转矩,MD>0,MW=MB+MD, b.随着涡轮转速的升高(nw>0),接近0.85nB时,涡轮出口 处工作油流向与导轮叶片相切,涡轮转矩等于泵轮转矩, MD=0,Mw=MB(耦合点) c.涡轮转速继续升高,涡轮出口处工作油冲击导轮叶片背面, 此时涡轮转矩小于泵轮输入转矩,MD<0,Mw=MB-MD d.当涡轮转速与泵轮转速( nB=nw )时,不再传递扭矩, Mw=0
2.工作原理 发动机运转时带动液力变矩器的壳体和泵轮一同旋转,泵 轮内的工作油在离心力的作用下,由泵轮叶片外缘冲向涡 轮,并沿涡轮叶片流向导轮,再经导轮叶片流回泵轮叶片 内缘,形成循环的工作油。 在液体循环流动过程中,导轮给涡轮一个反作用力矩,从 而使涡轮输出力矩不同于泵轮输入力矩,具有“变矩”功 能。 导轮的作用:改变涡轮的输出力矩。
液力变矩器特性:
液力变矩器特性--变矩器在 泵轮转速nb和转矩Mb不变的 条件下,涡轮转矩Mw随其 转速nw变化的规律。 液力变矩器传动比i--输出转 速与输入转速之比,即 i=nw/nb≤1。0.8-0.9最佳。 液力变矩器变矩系数 输 出转矩Mw与转入转矩Mb)之 比,用K表示,即K=Mw/Mb。
传递转矩:发动机的转矩通过液力变矩器的主动 元件,再通过ATF传给液力变矩器的从动元件, 最后传给变速器。 无级变速:根据工况的不同,液力变矩器可以 在一定范围内实现转速和转矩的无级变化。
自动离合:液力变矩器由于采用ATF传递动力, 当踩下制动踏板时,发动机也不会熄火,此时相 当于离合器分离;当抬起制动踏板时,汽车可以 起步,此时相当于离合器接合。
缺点:
由于液力偶合器不能改变扭矩的大小,结构复杂、成本高、 效率低,故装有此自动变速器的车在低、高速行驶时,油耗 非常大。
1.结构 由泵轮、涡轮、导轮 组成 与变矩器的区别 和偶合器相比,变矩 器在结构上多了导轮 (stator) 导轮 通过导轮座固定于变 速器壳体上
1.泵轮:泵轮与变矩器壳体连成一体,其内部径 向装有许多扭曲的叶片,叶片内缘则装有让变速 器油液平滑流过的导环。变矩器壳体与曲轴后端 的飞轮相连接。
2.涡轮:涡轮上也装有许多叶片。但涡轮叶片的扭 曲方向与泵轮叶片的扭曲方向相反。涡轮中心有 花键孔与变速器输入轴相连。泵轮叶片与涡轮叶 片相对安装,中间有3~4 mm的间隙。
3.导轮:导轮位于泵轮与涡轮之间,通过单向离合器安装 在与自动变速器壳体连接的导管轴上。它也是由许多扭曲 叶片组成的,通常由铝合金浇铸而成,其目的是为了变矩 器在某些工况下具有增大扭矩的功能。
涡轮转速nw从零逐渐增加。速 度vb的增加,冲向导轮叶片的 液流的绝对速度vc将随着逐渐 向上倾斜,使导轮上所受转矩 值逐渐减小。
当涡轮和泵轮转速之比达 到0.8-0.85左右时: Md=0, Mb=Mw
汽车高速运行
若涡轮转速nw继续增大, 液流绝对速度vc的方向冲 击导轮的背面,导轮转矩 方向与泵轮转矩方向相反 Mw=Mb-Md 即变矩器输出转矩 反而比输入转矩小。 当 nw=nb ,工作液 在循环圆中的流动停止, 将不能传递动力。
a.当nw=0时,nb>>nw,油液速度流向导轮的正面, Md>0,Mw=Mb+Md,可见Mw>Mb,起变矩作用。 b.当nw>0时,接近0.85nb转速时,油液速度与导轮 叶片相切,Md=0,Mw=Mb,为耦合器(液力联轴器)。 此转速称为“耦合工作点”。 c.当nw≈nb时,油液速度流向导轮的背面,Md 为 负值,导轮欲随泵轮同向旋转,导轮对油液的反作 用力冲向泵轮正面,故Mw=Mb-Md。 d. 当nw=nb时,循环圆内的液体停止流动,停止扭 矩的传递。故nw的增大是有限度的,它与nb的比值 不可能达到1,一般小于0.9。
两个相互间没有刚性连接的叶轮,同 样可以进行能量的传递
发动机曲轴凸缘上装有
外壳,泵轮与外壳连接 (或焊接)在一起,随 曲轴一起转动,为液力 偶合器的主动部分。与 泵轮相对安装的涡轮, 与输出轴连接在一起, 为液力变矩器的从动部 分。
工作原理:
液压油就靠泵轮内产生的离心力而冲向涡轮,并在泵轮 与涡轮之间作循环流动,于是就将在泵轮内获得的圆周 运动的能量传给涡轮,驱动涡轮旋转而输出
工作原理 当锁止离合器处于分离状态时,仍具有变矩和偶合两种工 作情况; 当锁止离合器处于接合状态时,此时发动机功率经输入轴、 液力变矩器壳体和锁止离合器直接传至涡轮输出轴,液力 变矩器不起作用,这种工况称为锁止工况。 既利用了液力变矩器在涡轮转速较低时具有的增扭特性, 又利用了液力偶合器在涡轮转速较高时所具有的高传动效 率的特性。 汽车在变工况下行驶时(如起步、经常加减速),锁止离
--
锁止离合器摩擦片、减震弹簧
减振盘:它与涡轮连接在一起,减振盘上装有减振弹簧,在离合器接合 时,可防止产生扭转振动。 锁止离合器压盘:通过凸起卡在减振盘上,可在油压的作用下轴向移 动。 离合器壳:它与泵轮连接在一起,前盖上粘有一层摩擦材料,以增加 离合器接合时的摩擦力。
工作原理
工作原理
矩。可见,循环圆内的液体绕轴旋转形成
“环流”。
上述两种油流的合成,形成一条首尾相 接的螺旋流。只有当涡轮的扭矩大于汽车 的行驶阻力矩时,汽车才能行驶。
(3)油液流动(螺旋形路线)
耦合器传动特点:
如果不计液力损失,传给泵轮的输入转矩与 涡轮上的输出转矩相等
液力偶合器的传动效率为涡轮轴上的输出功率Pt 与泵轮上的输入功率Pp之比用η表示。 η=Pt/Pp=Mt·nt /(Mp·np) 因:Mp=Mt 故:η=nt / np=i 式中: np—泵轮转速; nt—涡轮转速; i—液力偶合器的传动比,即输出轴 转速与输入轴转速之比
液力耦合器优缺点:
耦合器只能传递扭矩,但“软连接”给汽车带来多方面 的好处: ①在没有附加其他机械操纵装置的情况下,能够通过它 平稳地切断和接通发动机和驱动轮之间的动力传递,能 够很好地适应汽车平稳起步的要求。 ②“软连接”可以通过液体为介质,吸收传动系统的冲 击和振动,延长零部件的寿命和减少噪声
组成:
泵轮、涡轮、导轮。
不同之处:
导轮通过单向离合器(oneway overrunning clutch) 固定于变速器壳体上 只允许导轮单方向旋转
常见形式: (1)滚柱斜槽式(液力变矩器常用) (2)楔块式(行星齿轮变速器常用)
楔块式
滚柱斜槽式
(1)滚柱斜槽式单向离合器
(2)楔块式单向离合器
汽车起步工况
汽车起步前:
nw=0,nb>0,nw<<nb (导轮固定) 则 Va(涡流)>Vb (环流) Mw=Md+Mb 涡轮转矩Mw大于 泵轮的转矩Mb,即液 力变矩器起了增大转 矩的作用
当汽车处于起步状态,变矩器具有最大 的扭矩增大值,通常可达1.8-2.5倍
汽车起步后开始加速 (起步后的中间状态)
驱动油泵:ATF在工作的时候需要油泵提供一 定的压力,而油泵一般是由液力变矩器壳体驱动 的。
涡流: 从泵轮→涡轮→导轮→泵轮的液体 流动 环流: 液体绕轴线旋转的流动
变矩器不仅能传递转矩,而且能在泵轮转矩不变的情 况下,随着涡轮的转速(反映着汽车行驶速度)不同而 改变涡轮输出的转矩数值
增矩过程: MW=Mb+Md 变矩器扭矩的增 大值并不是一个 恒定的值,扭矩 增大值与汽车的 速度有关
合器分离,相当于普通液力变矩器;当汽车在稳定工况下
(达到耦合工况)行驶时,锁止离合器接合,动力不经液力 传动,直接通过机械传动传递,变矩器效率为1。
变矩器锁止离合器的主要功能是:
在汽车低速时,利用变矩器低速扭矩增大 的特性,提高汽车起步和坏路的加速性; 在高速时,变矩器锁止离合器作用,使液 力偶合(“软连接”)让位于直接的机械传 动(“硬连接”),提高传动效率,降低燃 油消耗。
(1)“涡流”的产生
当泵轮随飞轮转动时,由于离心力的作用, 液体沿泵轮叶片间的通道向外缘流动,外缘油 压高于内缘油压,油液从泵轮外缘冲向涡轮外 缘,又从涡轮内缘流入泵轮内缘,可见在轴向 断面(循环圆)内,液体流动形成循环流,称
为“涡流”。
(2)环流的产生
因涡流的产生,液体冲向涡轮使两轮
间产生牵连运动,涡轮产生绕轴旋转的扭
涡轮
导轮
泵轮
涡流、环流、循环圆
2.工作原理
受力分析
受力分析
3.输出转矩——随着涡轮转速的变化而变化。 a.涡轮转速低时(nw=0),nB>nw,液体流向导轮正面,涡轮 转矩大于泵轮转矩,MD>0,MW=MB+MD, b.随着涡轮转速的升高(nw>0),接近0.85nB时,涡轮出口 处工作油流向与导轮叶片相切,涡轮转矩等于泵轮转矩, MD=0,Mw=MB(耦合点) c.涡轮转速继续升高,涡轮出口处工作油冲击导轮叶片背面, 此时涡轮转矩小于泵轮输入转矩,MD<0,Mw=MB-MD d.当涡轮转速与泵轮转速( nB=nw )时,不再传递扭矩, Mw=0
2.工作原理 发动机运转时带动液力变矩器的壳体和泵轮一同旋转,泵 轮内的工作油在离心力的作用下,由泵轮叶片外缘冲向涡 轮,并沿涡轮叶片流向导轮,再经导轮叶片流回泵轮叶片 内缘,形成循环的工作油。 在液体循环流动过程中,导轮给涡轮一个反作用力矩,从 而使涡轮输出力矩不同于泵轮输入力矩,具有“变矩”功 能。 导轮的作用:改变涡轮的输出力矩。
液力变矩器特性:
液力变矩器特性--变矩器在 泵轮转速nb和转矩Mb不变的 条件下,涡轮转矩Mw随其 转速nw变化的规律。 液力变矩器传动比i--输出转 速与输入转速之比,即 i=nw/nb≤1。0.8-0.9最佳。 液力变矩器变矩系数 输 出转矩Mw与转入转矩Mb)之 比,用K表示,即K=Mw/Mb。
传递转矩:发动机的转矩通过液力变矩器的主动 元件,再通过ATF传给液力变矩器的从动元件, 最后传给变速器。 无级变速:根据工况的不同,液力变矩器可以 在一定范围内实现转速和转矩的无级变化。
自动离合:液力变矩器由于采用ATF传递动力, 当踩下制动踏板时,发动机也不会熄火,此时相 当于离合器分离;当抬起制动踏板时,汽车可以 起步,此时相当于离合器接合。