计量经济学 Multivariate Distribution

合集下载

计量经济学概念题

计量经济学概念题

Cp11.a:Stochastic error term: Stochastic error term is a term that is added to a regression equation to introduce all of the variation in Y that cannot be explained by the included Xs.B:Linear : An equation is linear if plotting the function in terms of X and Y generates a straight line,c: Slope coefficient(β)shows the response of Y to a one-unit increase in X.d:: a linear regression model which has more than one independent variables .e:. Expected value:the expression β0+β1x is called the deterministic component of the regression equation ,this deterministic component can also be thought of as the expected value of Y given X.f:Residual: the difference between the estimated value of the dependent variable and the actual value of the dependent variable is defined as the residualCP2P43:a: Ordinary Least Squares is a regression estimation technique that calculates theβs so as to minimize the sum of the squared residuals.b:multivariate regression coefficient indicates the change in the dependent variable associated with a one-unit increase in the independent variable in question.c: total sum of squares is the squared variations of Y around its mean as a measure of the amount of variation to be explained by the regression. The explained sum of squares is the amount if the squared deviation of Yi from its mean that is explained by the regression line. Residual sum of squares is the unexplained in an empirical sense by the estimated regression equation.d: coefficient of determination is the ratio of the explained sum of squares to the total sum of squares.e: degrees of freedom is the excess of the number of observations(N) over the number of coefficients(including the intercept estimated (K+1).f: R^2 is the coefficient of determination.Chapter 31.a. Review the literature and develop the theoretical model.Specify the model.Hypothesize the expected signs of coefficient.Collect data.Estimate and evaluate the equation.Document the results.b. Apply other researchers’ model to my data set.c. Any mistakes in the specification of a model.d. The excess of the number of observations over the number of coefficient s to be estimated.Chapter 41.a. The regression model is linear.The error term has a zero population mean.All explanatory variables are uncorrelated with the err termObservations of the err term are uncorrelated with each other.The error term has a constant varianceNo explanatory variable is a perfect linear function of any other explanatory variables.The error term is normally distributed.b. An error term satisfying Assumption through one to five.c. A normal distribution with a mean equal to zero and a variance equal to one.d. SE is the square root of the estimated variance of β s.e. An estimate β is an unbiased estimator if its sampling distribution has as its expected value the true value of β.f. Best Linear Unbiased Estimator.g. The probability distribution of these β values across different samples. Chapter 51.a. A statement of the values that the researcher does not expect.b. A statement of the values that the researcher expects.c. We reject a true null hypothesisd. Indicate the probability of observing an estimated t-value greater than the critical t-value if the null hypothesis were correct.e. In which the alternative hypothesis has values on both sides if null hypothesis.f. When testing a hypothesis, you have to calculate a sample statistic and compare it with a critical value selected in advance.g. A value that divides the acceptance region from the rejection region when testing a null hypothesis.h. It is a ratio of departure of an estimated parameter from its notional value and its standard error.i. A range which contains the true value of an item a specified percentage of the time.j. A p-value for a t-score is the probability of observing a t score that big or bigger if the null hypothesis were true.CHAPTER 61.a. The omitted variable is an important explanatory variable that has been left outof a regression equation.b. The irrelevant variable is the variable included in an equation that doesn’t belong there.c. The specification bias is the bias caused by leaving a variable out of an equation.d. sequential specification search 6.4.2e. The specification error results from choosing the incorrect independent variables, the incorrect functional form and the incorrect form of the stochastic error term.f. The four valid criteria are to help decide whether a given variable belongs in the equation:g. expected bias 6.1.3CP71.a. Elasticity of Y with respect to X, the percentage change in the dependent variable caused by a 1 percent increase in the independent variable, holding the other varia bles in the equation constant can be calculated.b. In a doublelog functional form, the natural log of Y is the dependent variables an d the natural log of X is the independent variable.c. The semiology functional form is a variant of double-log equation in which some but not all of the variables are expressed in terms of their natural logsd. Polynomial functional forms express Y as a function of independent variables, so me of which are raised to powers other than one.e. The inverse functional form expresses Y as a function of the reciprocal of one or more of the independent variables.f. A slope dummy is a dummy variable that is multiplied by an independent variabl e to allow the slope of the relationship between the dependent variable and the pa rticular independent variable to change, depending on whether or not a particular condition is met.g. The natural log of a number is its logarithm to the base of the mathematical cons tant e, where e is an irrational and transcendental number approximately equal to2.718.h. The omitted condition, forms the basis against which the included conditions are compared.i. An interaction term is an independent variable in a regression equation that is th e multiple of two or more other independent variables.j. A form that is linear in the variables should be used unless a specific hypothesis s uggestions otherwise.k. An equation is linear in the coefficients only if the coefficients appear in their si mplest form, they are not raised to any powers and not multiplied or divided by ot her coefficients, and do not themselves include some sort of function.。

4.1 多重共线性(计量经济学)

4.1 多重共线性(计量经济学)
第四章 经典单方程计量经济学模型:
放宽基本假定的模型
说明
• 经典多元线性模型在满足若干基本假定的条件下, 应用普通最小二乘法得到了无偏、有效且一致的 参数估计量。
• 在实际的计量经济学问题中,完全满足这些基本 假定的情况并不多见。不满足基本假定的情况, 称为基本假定违背。
• 对截面数据模型来说,违背基本假定的情形主要 包括:
•逐步回归法(Stepwise forward Regression)
– 以Y为被解释变量,逐个引入解释变量,构成回归 模型,进行模型估计。
– 根据拟合优度的变化决定新引入的变量是否独立。 • 如果拟合优度变化显著,则说明新引入的变量是 一个独立解释变量;
• 如果拟合优度变化很不显著,则说明新引入的变 量与其它变量之间存在共线性关系。
§4.1 多重共线性 Multicollinearity
一、多重共线性 二、实际经济问题中的多重共线性 三、多重共线性的后果 四、多重共线性的检验 五、克服多重共线性的方法 六、案例
一、多重共线性的概念
1、多重共线性
Yi 0 1Xi1 2 Xi2 k Xik i i 1, 2, , n
实际上:正态性假设的违背
• 李子奈(2011):计量经济学模型方法论 – 当存在模型关系误差时,如果解释变量是随机的,随 机误差项的正态性将得不到保证。 – 当模型遗漏了显著的变量,如果遗漏的变量是非正态 的随机变量,随机误差项将不具有正态性。 – 如果待估计的模型是原模型经过函数变换得到的,随 机误差项将不再服从正态分布。 – 当模型存在被解释变量的观测误差,如果观测误差相 对于随机误差项的标准差特别大、样本长度又特别小, 随机误差项的正态性假设会导致显著性水平产生一定 程度的扭曲。 – 当模型存在解释变量观测误差时,一般情况下,随机 误差项的正态性假设都是不能成立的;只有在回归函 数是线性的,且观测误差分布是正态的特殊情形下, 随机误差项的正态性才成立。

专业术语

专业术语

现代回归分析专业词汇、术语中英文对照第一章Linear regression model/analysis 线性回归模型/分析Response variable 因变量、解释变量、反应变量、响应变量Predictor variable 自变量、回归变量、预测变量Scatterplot 散点图Scatterplots matrix 散点图矩阵Data 数据Summary graph 描述图、概述图、摘要图The horizontal axis 水平轴、横轴、x轴the vertical axis 垂直轴、纵轴、y轴Separated point 离群点Leverage point 杠杆点Outlier 异常点Base 10 common logarithm 以10为底的常用对数Base-2 logrithm 以2为底的对数Natural logarithm 自然对数Cross-sectional data 截面数据Time series data 时间序列数据Longitudinal data 纵向数据;即panel data 面板数据Mean f unction 均值函数Population mean 总体均值(期望)Nonparam etric estimate 非参数估计nonparametric regression 非参数回归Smoother 光滑Transf ormation 变换Variance f unction 方差函数Summary statistics 描述统计量Smooth curve 光滑曲线Quadratic polynomial 二次多项式Null plotMarginal relationship 边际关系joint relationship 联合关系第二章Simple linear regression 简单线性回归、一元线性回归Parameter 参数Intercept 截距Slope 斜率Expected value 期望值expectation 期望Statistical error 统计误差Random variable 随机变量Assumption 假设Independent 独立Normally distributed 服从正态分布normality 正态性Poisson distribution 泊松分布Binomial distribution 二项分布Ordinary least squares estimation /OLS 普通最小二乘估计The residual sum of squares /RSS 残差平方和Residual 残差f itted value 拟合值predict value 预测值Regression coeff i cients 回归系数Cross-product 叉乘、交叉乘积Corrected sum of squares 修正平方和uncorrected sum of squares 未修正的平方和Corrected cross products 修正的叉积uncorrected cross product 未修正的叉积sample average 样本均值population average 总体均值sample variance 样本方差population variance 总体方差sample covariance (matrix) 样本协方差(矩阵)sample correl ation (matrix) 样本相关系数(矩阵)population correlation 总体相关系数inconsistency 不一致性、非一致性sample 样本sampling 抽样asymmetry 不对称dashed line 虚线solid line实线rounding 舍入、舍去estimated equation 估计出来的方程unbiased estimate 无偏估计degrees of freedom /df自由度residual degrees of freedom 残差自由度mean square 均方和residual mean square 残差均方和square root 平方根standard error 标准误差standard deviation 标准差residual standard error 残差标准误差即regression standard error 回归标准误差normal distribution 正态分布chi-squared distribution 卡方分布t distribution t分布 F distribution F分布linear combination 线性组合Gauss-Markov theorem 高斯-马尔科夫定理Best linear unbiased estimate /BLUE 最佳线性无偏估计Linearity 线性normality 正态性nonlinearity 非线性independently and identically distributed /i.i.d. 独立同分布estimated variance 方差的估计analysis of vari ance /ANOVA 方差分析F-test F检验t-test t检验regression sum of squares /SSreg 回归平方和regression df / model df回归自由度、又称为模型自由度null hypothesis 原假设alternative hypothesis 备择假设sample size 样本量numerator 分子denominator 分母signif icance level 显著性水平p value p值percentage point 分位点percentile 分位数critical value 临界值power of test 检验的势、检验的功效coeff i cient of det ermination 可决系数、判决系数scale-free 无计量单位的、无量纲的conf idence interval 置信区间conf idence level 置信水平hypothesis test 假设检验two-sided test 双边检验one-sided test 单边检验prediction 预测point prediction 点预测predictive interval 预测区间standard error of prediction 预测标准误差joint conf idence region 联合置信域residuals plot 残差图第三章Multiple linear regression model 多元线性回归Fertility 出生率Per person gross domestic product 人均国内生产总值(GDP)Urbanization 城市化Perspective 透视法motion 运动、动画3-dinensional plot 三维图Added-variable plot 附加(增加)变量图Linear f unction of the paramet ers 参数的线性函数Hyperplane 超平面Term 项predictor 自变量Continuous variable 连续变量Discrete variable 离散变量Categorical vari able /data 分类变量/数据Transf ormations of predictors 自变量的变换Interaction term 交叉项、交互作用项Dummy variable 虚拟变量Factor 因子Sample correlation matrix 样本相关矩阵Random vector 随机向量Variance-covariance matrix 方差和协方差矩阵Identity matrix 单位矩阵rounding error 舍入误差matrix decomposition 矩阵分解Q R f actori zation Q R分解total sum of squares 总离差平方和regression sum of squares 回归平方和several orders of magnitude 几个数量级main diagonal elements 主对角线元素different nested sets 不同的嵌套集overall analysis of variance 总方差分析computed signif icance level (实际)计算的显著性水平,即p值multiple correlation coeff icient 复相关系数subtract … f rom … 从… 减去…partial F-test 偏F检验sequential analysis of vari ance 序贯方差分析、依次方差分析第四章Fitting model 拟合模型Units of regression parameters /coeff ici ents 回归参数/系数的单位Rate of change 变化率Signs of parameter estimates 参数估计的符号Straight line直线Weak signif icance 弱显著性,即该自变量对因变量的效应很弱或不显著Quadratic time trend 二次时间趋势Rank def i cient 不满秩over-paramet erized 过度参数化,即模型中参数太多,不能由数据估计nonlinear combination 非线性组合linearly independent 线性独立(无关) linearly dependent 线性相关rank of matrix 矩阵的秩f ull rank 满秩computer package 计算机软件包one-way design 单因素设计、单向设计the column of ones 分量全都是1的列向量place a constraint 施加一个约束the order of f itting 拟合的阶test of signif icance 显著性检验repeated experimentation 反复试验dropping variable /term 遗漏变量/项、删除变量conditional expectation 条件期望rectangl e 矩形quadratic f unction 二次函数the f irst derivative of mean f unction with respect to x 均值函数的关于x的一阶导数the slope of the tangent 切线的斜率differentiating the second equation 对第二个方程求微分experimental data 实验数据、试验数据experimental predictors 试验自变量observational data 观测数据observational predictors 观测自变量fertilizer 肥料、化肥the spacing of plants 作物的间距irrigation 灌溉plots of land 地块charact eristics of the plots 地块的特征drainage 排水exposure 光照、日照时间soil f ertility 土壤肥力weather variable 天气变量yields 产量causation 因果关系association 伴随关系、联系feedlot 养殖场plausible 看似合理的outweigh 大于、超过lurking variable 遗漏变量、潜在变量random assignment 随机分配normal population 正态总体multivariate normal distribution 多元正态分布conditional distribution 条件分布random sampling 随机抽样population multiple correlation coeff i cient 总体复相关系数bivariate normal distribution 二元正态分布nonlinear regression 非线性回归regression through the origin 过原点的回归missing data缺失数据incomplete data 不完全数据、即缺失数据missing at random /MAR 随机缺失censored response 因变量删失cross-cultural demographic study 跨文化的人口研究less-developed count ry 不发达国家EM algorithm EM算法Joint distribution 联合分布multiple imputation 多重插值computationally intensive method 计算量大的方法computer simulation 计算机模拟percentile-based 基于分位数的median 中位数sampling with replacem ent 重复抽样、有放回的抽样bootstrap method bootstrap方法、自助法bootstrap sample bootstrap样本large sample size 大样本skewed distribution 偏态分布、有偏分布bootstrap bias bootstrap偏差bootstrap interval bootstrap区间normal interval 正态区间measured with error 有误差的测量、测量误差capture–recapture experiment 捕获再捕获试验第五章Lack of f it test 拟合失真检验、拟合不足检验、失拟检验Weighted least squares /WLS 加权最小二乘Constant variance 常方差homoscedasticity 同方差、同方差性Nonconstant variance 异方差heteroscedasticity 异方差heteroscedasticity Weighted residual sum of squares 加权残差平方和Identity matrix 单位矩阵Mixed effect model 混合效应模型Variance component model 方差分量模型Econometric model 计量经济学模型Generalized least squares /GLS 广义最小二乘Positive def inite matrix 正定矩阵Gamma distribution 伽马分布Variance stabilizing transf ormation 方差稳定变换Generalized linear model 广义线性模型Logistic regression logistic回归Poisson regression 泊松回归Log-linear regression 对数线性回归Systematic bias 系统性偏差Model-f ree estimate 与模型无关的估计Pooled estimate 联合估计、合并估计Pure error 纯误差Sum of squares f or lack of f it 拟合不足的平方和、失拟平方和general F testing 一般的F检验non-null distribution 非原假设下的分布noncentral chi-squared distribution 非中心卡方分布likelihood ratio test 似然比检验robust 稳健的joint conf idence regions 联合置信域ellipsoid 椭球、椭球体ellipse 椭圆the orientation of ellipse 椭圆的方向第六章Polynomial 多项式polynomial regression 多项式回归Factor 因素、因子Smooth f unction 光滑函数integer powers of the predictors 预测变量的整数次幂quadratic regression 二次回归the range of the predictor 预测变量的值域cubic 三次的polynomial of high-enough degree 足够高次的多项式physical model 物理模型numerical accuracy 数值精度centering 中心化orthogonal polynomial 正交多项式the highest-order term 最高阶的项nonsignif icant 不显著的second-order mean f unction 二阶均值函数quadratic curve 二次曲线delta method 德尔塔方法nonlinear combination 非线性组合elementary calculus 基础微积分Taylor series expansion 泰勒级数展开式Partial derivative 偏导数Regularity conditions 正则条件Symbolic dif ferentiation 符号微分Fractional polynomial 分数次幂多项式fractional powers of predictors 自变量的分数次幂qualitative or categorical predictors 定性或分类自变量two levels 两水平dummy variable 虚拟变量The f actor rule 因素法则、因子准则one-way analysis of vari ance 单因素方差分析Parallel regression 并行回归Within-group 组内的Coincident regression lines 重合的回归直线less stringent model 更(较)不严格的模型main-effects 主效应partial one-dimensional mean f unction 偏一维均值函数random coeff i cient model 随机系数模型wetland contamination 湿地污染chloride concentrations 氯的浓度road runoff路面径流intra-class correlation 类内相关性、组内相关性random intercepts model 随机截距模型linear mixed model 线性混合效应模型第七章Transf ormation 变换nonlinear transf orm ation 非线性变换Uneven 不均匀的In the transf ormed scale 在变换后的尺度中、in log scale 对数尺度Power transf ormation 幂变换Transf ormation f amily 变换族Strictly positive严格大于零的、严格为正的Cube root 三次根log transf ormation 对数变换inverse transf ormation 逆变换、倒数变换empirical rule 经验法则the log rule对数法则the range rule 值域法则multiplicative error 乘法误差、相乘形式的误差scaled power transf ormation 尺度化的幂变换basic power transf ormation 基本幂变换nonlinear least squares 非线性最小二乘inverse f itted value plot 逆拟合值图、倒拟合值图Box-Cox transf orm ation Box-Cox变换modif ied power f amily 修正的幂变换族modif ied power transf ormation 修正的幂变换、调整的幂变换、改进的幂变换geometric mean 几何平均数linear predictors 线性预测变量nonpositive variable 非正变量Y eo-Johnson transf orm ation Y eo-Johnson变换第八章Regression diagnostics 回归诊断graphical diagnostics 图形诊断Residual 残差rescaled residual 重新调整的残差Inf luential case 影响点strong inf luence point 强影响点Diagnostic statistics 诊断统计量Distance measure 距离度量(测度) leverage value 杠杆值Full column rank 列满秩Hat matrix 帽子矩阵Zero mean and uncorrelated el ements 零均值且元素(分量)不相关Common variance 同方差、共同的方差Computed residual 计算出的残差Symmetric matrix 对称矩阵Orthogonal projection 正交投影Column space 列向量空间Leverage 杠杆high leverage point 高杠杆点Elliptical contour 椭圆等高线Weighted hat matrix 加权帽子矩阵Weighted f itted values 加权拟合值weighted residual 加权残差Pearson residual Pearson残差weighted residual sum of squares 加权残差平方和nonconstant variance 非常数方差、即异方差incorrectly speci f ied mean f unction 错误设定的均值函数the right-opening megaphone 右开口喇叭megaphone 麦克风test f or curvature 检验曲率、检验弯曲程度、检验曲线(即非线性)Tukey’s test f or nonadditivity 非可加性的Tukey检验Remedy 补救措施Variance stabilizing transf ormation 方差稳定变换Within group variance 组内方差Generalized least squares 广义最小二乘Remain unbiased 仍然保持无偏性Ineff ici ent 无效的inaccurat e 不精确的Generalized linear model 广义线性模型Diagnostic f or nonconstant variance 异方差的诊断Score test 得分检验、Score检验Asymptotic distribution 渐进分布Model assessment 模型评价第九章Outliers 异常点inf luence 影响点Mean shif t outliers model /MSOM 均值漂移异常点模型Large residual (较)大的残差Candidates of outliers 可能的异常点、异常点的候选者Oil deposits 石油储量Outliers identif ication 异常点的识别outlier test 异常点检验Standardized residual 标准化残差Studentized statistics 学生化统计量studentized residual 学生化残差Critical value 临界值Multiple test 多重检验multiple comparison 多重比较Bonf erroni inequality Bonf erroni不等式Conservative 保守的Robust statistical method 稳健的统计方法Inf luence analysis 影响分析Robustness of the conclusion 结论的稳健性Perturbation 扰动Case deleting model /CDM 数据删除模型、个案删除模型、样本点删除模型Cook’s distance Cook距离Local inf luence analysis 局部影响分析Normality assumption 正态性假设Small sample小样本bootstrap method Nonnormality 非正态性Supernormality of residual 残差的超正态性Normal probability plot 正态概率图、正态PP图Order statistics 秩序统计量、顺序统计量Expected order statistics 期望的秩序统计量、预期的秩序统计量第十章Variable selection 变量选择Cheap data and expensive inf ormation 数据廉价但信息昂贵Training of employees 雇员的培训、员工的培训Supplier of raw materials 原材料的供应Important or active predictors 重要或有效的自变量、起作用的自变量Inactive predi ctors 无效变量、不起作用的自变量To overestimate signif icance 高估显著性Machine learning 机器学习data mining 数据挖掘Identi f ying the active predictors 识别有效自变量Surprisingly dif f icult 非常困难Highly positive correlated 高度正相关Highly negative correlated 高度负相关Collinearity 共线性multicollinearity 多重共线性Exactly collinear 完全共线的、即线性相关linearly dependent 线性相关Approximate collinearity 近似共线性,即常说的共线性Sample correlation 样本相关系数approximately collinear 近似共线性的variance inf l ation factor /VIF 方差膨胀因子inf orm ation criteria 信息准则lack of f it of a model 一个模型的拟合失真(即不足)情况complexity of a model 一个模型的复杂性(由其变量的个数决定,太复杂就会产生过度拟合) model comparison 模型比较Akaike inf ormation criteria /AIC 赤池信息准则Bayes inf orm ation criteria /BIC 贝叶斯信息准则Schwarz inf orm ation criteria 许瓦兹信息准则Mallows’ C pComputationally intensive criteria 计算量大的准则Cross-validation 交叉验证Construction set 构造集、建模集V alidation set 验证集Training set 训练集test set 测试集Predicted residual 预测残差predicted residual sum of squares /PRESS 预测残差平方和leaps and bounds algorithm 跨越式算法、快速算法stepwise method 逐步方法stepwise regression 逐步回归f orward selection 前向选择backward elimination algorithm 后向删除算法best subset 最佳子集subset selection 子集选择normal random deviate 正态随机数random number 随机数overstate signif i cance 夸大显著性,即夸大自变量对因变量效应的显著性calibrate 定标、校正、作为标准。

SVAR介绍[1]

SVAR介绍[1]

约束条件,使得估计出的 VAR 模型对应的系数矩阵、对应的方差矩阵
等统计量的个数不少于 SVAR 模型中待求的未知量的个数。
我们知道,SVAR 模型与 VAR 模型有着内在的联系,而 SVAR 模
型的识别正是基于这种联系的基础上,欲通过对 VAR 模型的估计结
果,估计出 SVAR 模型中的待估计未知量。
(9.7)
基于以上定义,(9.3)就是一个 SVAR(1)模型的形式,其中各个变量的 结构性关系体现在了非单位矩阵的 Γ0 上。而以前我们介绍的简单 VAR 型,无一例外地都假设了当期变量Yt 的系数矩阵为单位阵。
9.1.2 SVAR 与缩减式 VAR 模型
进一步推导可以帮助我们认识到 SVAR 与 VAR 的内在联系和区
所以,(9.1)这个模型系统每个等式都是基于一定的经济理论基础 而建立起来的,并且这三个变量之间通过三个等式形成一个有机地动 态系统。这就是一个典型的 SVAR 模型,在整个系统中,每个变量除 了受各自的滞后项的影响,同时还包含了其它变量的即时(当期)的 影响。
注意,对于(9.1)这样的 SVAR 模型系统,每个等式不再能够使用 OLS 进行回归而获得无偏的估计结果了。这就是计量经济学科经常提 到的联立方程偏倚问题(simultaneous equation bias)。之所以会出现整个 问题,就是因为每个等式中的解释变量,通过整个系统的联系或者称 为传导,实际上是与各自等式中的随机扰动项具有相关性。而这违背 了 OLS 估计的根本假设要求之一。
第9章 结构向量自回归(SVAR)模型
本章内容:
1 SVAR 模型初步 2 SVAR 模型的基本识别方法 3 SVAR 模型的三种类型 4 SVAR 模型的估计方法总结 5 SVAR 与缩减 VAR 模型的脉冲响应及方差分解比较

格林高级计量经济学第二版

格林高级计量经济学第二版

fY ( y ) = f X ( x ) dx . dy
Remark: LHS x=x(y) “Proof”: ! By the definition of probability, within an interval ∆x : Probability = f X ( x ) ∆x Probability = fY ( y ) ∆y ⇒ f X ( x ) ∆ x = fY ( y ) ∆ y ∆x fY ( y ) = f X ( x ) ∆y ∆y dx fY ( y ) = f X ( x ) (taking limit) dy dx as a proportional factor! dy
PDF : A Function of A Random Variable Motivating example: Image that two grading systems - Chianese and American Prob { X ∈ [ 0,100]} = 1 and Prob {Y ∈ [0, 4]} = 1 How to change the PDF from Chinese to American system? Then the transformation is y=x/25 . Special case of scalar: suppose that X : f X ( x ) is known and Y is a function of X, then
a1n x1 a2n x2 ann xn ( y1 , y2 ,..., yn ) .
n
1 1 − 2 y '( AA ')−1 y fY ( y1 , y2 ,..., yn ) = e || A−1 || (一般正态分布) 2π

计量经济学(山东联盟-山东财经大学)智慧树知到答案章节测试2023年

计量经济学(山东联盟-山东财经大学)智慧树知到答案章节测试2023年

第一章测试1.计量经济学是以下哪些学科相结合的综合性学科A:经济统计学B:数理经济学C:任意角度D:统计学E:经济学答案:CDE2.一个计量经济模型由以下哪些部分构成A:变量B:方程式C:参数D:随机误差项E:虚拟变量答案:ABCD3.与其他经济模型相比,计量经济模型有如下特点A:确定性B:随机性C:灵活性D:经验性E:动态性答案:BDE4.一个计量经济模型中,可作为解释变量的有A:外生变量B:联合收获型C:滞后变量D:控制变量E:内生变量答案:ABCDE5.计量经济模型的应用在于A:设定和检验模型B:政策评价C:经济预测D:检验和发展经济理论E:结构分析答案:BCDE第二章测试1.一般地,仅改变自变量自身的度量单位,不会影响截距估计值。

()A:对B:错答案:A2.在线性模型中,被解释变量和解释变量必须为线性形式。

()A:对B:错答案:B3.女性受教育程度(educ)对生育率(kids)影响的回归方程为 ,其中为误差项。

年龄、收入、家庭背景都可能包含在误差项中,但它们必须与受教育程度无关。

()A:对B:错答案:B4.属于线性回归。

()A:错B:对答案:B5.自变量可以为相同的常数。

()A:对B:错答案:B第三章测试1.过原点回归OLS残差的样本平均值为0。

A:错B:对答案:A2.在多元回归中,没有一个自变量是常数,自变量间也不存在严格的线性关系。

A:对B:错答案:A3.在多元回归中,即使模型存在完全共线性问题,依旧可以运用OLS进行估计。

A:对B:错答案:B4.如果多元回归分析中包含了一个或多个无关变量,并不会影响到OLS估计的无偏性。

A:对B:错答案:A5.误差方差越大意味着方程中的“噪音”越多,对于给定的因变量y,可以通过在方程中增加更多的解释变量,来减少误差方差。

A:对B:错答案:A第四章测试1.Which of the following is a statistic that can be used to test hypotheses abouta single population parameter?A:t statisticB:χ2 statisticC:F statisticD:Durbin Watson statistic答案:A2.Which of the following statements is true of confdence intervals?A:Confidence intervals in a CLM do not depend on the degrees of freedom ofa distribution.B:Confdence intervals in a CLM are also referred to as point estimatesC:Confidence intervals in a CLM can be truly estimated whenheteroskedasticity is present.D:Confidence intervals in a CLM provide a range of likely values for thepopulation parameter答案:D3.Which of the following statements is true of hypothesis testing?A:A restricted model will always have fewer parameters than its unrestricted modelB:A test of single restriction is also referred to as a joint hypotheses test.C:OLS estimates maximize the sum of squared residuals.D:The t test can be used to test multiple linear restrictions答案:A4.Which of the following correctly identifies a reason why some authors preferto report the standard errors rather than the t statistic?A:The F statistic can be reported just by looking at the standard errors.B:Having standard errors makes it easier to compute confdence intervals.C:Standard errors are always positive.D:Standard errors can be used directly to test multiple linear regressions答案:B5.Which of the following statements is true?A:Degrees of freedom of a restricted model is always less than the degrees of freedom of an unrestricted model.B:The F statistic is always nonnegative as SSRr is never smaller than SSRur.C:If the calculated value of F statistic is higher than the critical value, wereject the alternative hypothesis in favor of the null hypothesis.D:The F statistic is more flexible than the t statistic to test a hypothesis with asingle restriction.答案:B6.If the calculated value of the t statistic is greater than the critical value, thenull hypothesis, H0 is rejected in favor of the alternative hypothesis, H1.A:错B:对答案:B第五章测试1.In the following equation, gdp refers to gross domestic product, and FDI refers to foreign direct investment.( )log(gdp) = 2.65 + 0.527log(bankcredit ) +0.222FDI(0.13) (0.022) (0.017)Which of the following statements is then true?A:If bank credit increases by 1%, gdp increases by 0.527%, the level of FDI re maining constant.B:If gdp increases by 1%, bank credit increases by 0.527%, the level of FDI re maining constant.C:If bank credit increases by 1%, gdp increases by log(0.527)%, the level of FDI remaining constant.D:If gdp increases by 1%, bank credit increases by log(0.527)%, the level of F DI remaining constant.答案:A2.In the following equation, gdp refers to gross domestic product, and FDI refers to foreign direct investment ( )log(gdp) = 2.65 + 0.527log(bankcredit ) +0.222FDI(0.13) (0.022) (0.017)Which of the following statements is then true?A:If FDI increases by 1%, gdp increases by approximately 22.2%, the amount of bank credit remaining constant.B:If FDI increases by 1%, gdp increases by approximately 52.7%, the amount of bank credit remaining constant.C:If FDI increases by 1%, gdp increases by approximately 26.5%, the amount of bank credit remaining constant.D:If FDI increases by 1%, gdp increases by approximately 24.8%, the amount of bank credit remaining constant.答案:D3.Which of the following correctly represents the equation for adjusted R2? ( )A:B:.C:.D:.答案:D4.在多元回归中,调整后的决定系数与决定系数的关系为()A:B:C:D:与的关系不能确定答案:A5.If a new independent variable is added to a regression equation, the adjustedR2 increases only if the absolute value of the t statistic of the new variable isgreater than one. ( )A:错B:对答案:B第六章测试1.在本身是离散的情况下,把虚拟变量加入回归方程,对于在平均意义下解释回归变量没有影响。

计量经济学第4章课后答案

17CHAPTER 4SOLUTIONS TO PROBLEMS4.2 (i) and (iii) generally cause the t statistics not to have a t distribution under H 0.Homoskedasticity is one of the CLM assumptions. An important omitted variable violates Assumption MLR.3. The CLM assumptions contain no mention of the sample correlations among independent variables, except to rule out the case where the correlation is one.4.3 (i) While the standard error on hrsemp has not changed, the magnitude of the coefficient has increased by half. The t statistic on hrsemp has gone from about –1.47 to –2.21, so now the coefficient is statistically less than zero at the 5% level. (From Table G.2 the 5% critical value with 40 df is –1.684. The 1% critical value is –2.423, so the p -value is between .01 and .05.)(ii) If we add and subtract 2βlog(employ ) from the right-hand-side and collect terms, we havelog(scrap ) = 0β + 1βhrsemp + [2βlog(sales) – 2βlog(employ )] + [2βlog(employ ) + 3βlog(employ )] + u = 0β + 1βhrsemp + 2βlog(sales /employ ) + (2β + 3β)log(employ ) + u ,where the second equality follows from the fact that log(sales /employ ) = log(sales ) – log(employ ). Defining 3θ ≡ 2β + 3β gives the result.(iii) No. We are interested in the coefficient on log(employ ), which has a t statistic of .2, which is very small. Therefore, we conclude that the size of the firm, as measured by employees, does not matter, once we control for training and sales per employee (in a logarithmic functional form).(iv) The null hypothesis in the model from part (ii) is H 0:2β = –1. The t statistic is [–.951 – (–1)]/.37 = (1 – .951)/.37 ≈ .132; this is very small, and we fail to reject whether we specify a one- or two-sided alternative.4.4 (i) In columns (2) and (3), the coefficient on profmarg is actually negative, although its t statistic is only about –1. It appears that, once firm sales and market value have been controlled for, profit margin has no effect on CEO salary.(ii) We use column (3), which controls for the most factors affecting salary. The t statistic on log(mktval ) is about 2.05, which is just significant at the 5% level against a two-sided alternative.18(We can use the standard normal critical value, 1.96.) So log(mktval ) is statistically significant. Because the coefficient is an elasticity, a ceteris paribus 10% increase in market value is predicted to increase salary by 1%. This is not a huge effect, but it is not negligible, either.(iii) These variables are individually significant at low significance levels, with t ceoten ≈ 3.11 and t comten ≈ –2.79. Other factors fixed, another year as CEO with the company increases salary by about 1.71%. On the other hand, another year with the company, but not as CEO, lowers salary by about .92%. This second finding at first seems surprising, but could be related to the “superstar” effect: firms that hire CEOs from outside the company often go after a small pool of highly regarded candidates, and salaries of these people are bid up. More non-CEO years with a company makes it less likely the person was hired as an outside superstar.4.7 (i) .412 ± 1.96(.094), or about .228 to .596.(ii) No, because the value .4 is well inside the 95% CI.(iii) Yes, because 1 is well outside the 95% CI.4.8 (i) With df = 706 – 4 = 702, we use the standard normal critical value (df = ∞ in Table G.2), which is 1.96 for a two-tailed test at the 5% level. Now t educ = −11.13/5.88 ≈ −1.89, so |t educ | = 1.89 < 1.96, and we fail to reject H 0: educ β = 0 at the 5% level. Also, t age ≈ 1.52, so age is also statistically insignificant at the 5% level.(ii) We need to compute the R -squared form of the F statistic for joint significance. But F = [(.113 − .103)/(1 − .113)](702/2) ≈ 3.96. The 5% critical value in the F 2,702 distribution can be obtained from Table G.3b with denominator df = ∞: cv = 3.00. Therefore, educ and age are jointly significant at the 5% level (3.96 > 3.00). In fact, the p -value is about .019, and so educ and age are jointly significant at the 2% level.(iii) Not really. These variables are jointly significant, but including them only changes the coefficient on totwrk from –.151 to –.148.(iv) The standard t and F statistics that we used assume homoskedasticity, in addition to the other CLM assumptions. If there is heteroskedasticity in the equation, the tests are no longer valid.4.11 (i) Holding profmarg fixed, n rdintensΔ = .321 Δlog(sales ) = (.321/100)[100log()sales ⋅Δ] ≈ .00321(%Δsales ). Therefore, if %Δsales = 10, n rdintens Δ ≈ .032, or only about 3/100 of a percentage point. For such a large percentage increase in sales,this seems like a practically small effect.(ii) H 0:1β = 0 versus H 1:1β > 0, where 1β is the population slope on log(sales ). The t statistic is .321/.216 ≈ 1.486. The 5% critical value for a one-tailed test, with df = 32 – 3 = 29, is obtained from Table G.2 as 1.699; so we cannot reject H 0 at the 5% level. But the 10% criticalvalue is 1.311; since the t statistic is above this value, we reject H0 in favor of H1 at the 10% level.(iii) Not really. Its t statistic is only 1.087, which is well below even the 10% critical value for a one-tailed test.1920SOLUTIONS TO COMPUTER EXERCISESC4.1 (i) Holding other factors fixed,111log()(/100)[100log()](/100)(%),voteA expendA expendA expendA βββΔ=Δ=⋅Δ≈Δwhere we use the fact that 100log()expendA ⋅Δ ≈ %expendA Δ. So 1β/100 is the (ceteris paribus) percentage point change in voteA when expendA increases by one percent.(ii) The null hypothesis is H 0: 2β = –1β, which means a z% increase in expenditure by A and a z% increase in expenditure by B leaves voteA unchanged. We can equivalently write H 0: 1β + 2β = 0.(iii) The estimated equation (with standard errors in parentheses below estimates) isn voteA = 45.08 + 6.083 log(expendA ) – 6.615 log(expendB ) + .152 prtystrA(3.93) (0.382) (0.379) (.062) n = 173, R 2 = .793.The coefficient on log(expendA ) is very significant (t statistic ≈ 15.92), as is the coefficient on log(expendB ) (t statistic ≈ –17.45). The estimates imply that a 10% ceteris paribus increase in spending by candidate A increases the predicted share of the vote going to A by about .61percentage points. [Recall that, holding other factors fixed, n voteAΔ≈(6.083/100)%ΔexpendA ).] Similarly, a 10% ceteris paribus increase in spending by B reduces n voteAby about .66 percentage points. These effects certainly cannot be ignored.While the coefficients on log(expendA ) and log(expendB ) are of similar magnitudes (andopposite in sign, as we expect), we do not have the standard error of 1ˆβ + 2ˆβ, which is what we would need to test the hypothesis from part (ii).(iv) Write 1θ = 1β +2β, or 1β = 1θ– 2β. Plugging this into the original equation, and rearranging, givesn voteA = 0β + 1θlog(expendA ) + 2β[log(expendB ) – log(expendA )] +3βprtystrA + u ,When we estimate this equation we obtain 1θ≈ –.532 and se( 1θ)≈ .533. The t statistic for the hypothesis in part (ii) is –.532/.533 ≈ –1. Therefore, we fail to reject H 0: 2β = –1β.21C4.3 (i) The estimated model isn log()price = 11.67 + .000379 sqrft + .0289 bdrms (0.10) (.000043) (.0296)n = 88, R 2 = .588.Therefore, 1ˆθ= 150(.000379) + .0289 = .0858, which means that an additional 150 square foot bedroom increases the predicted price by about 8.6%.(ii) 2β= 1θ – 1501β, and solog(price ) = 0β+ 1βsqrft + (1θ – 1501β)bdrms + u= 0β+ 1β(sqrft – 150 bdrms ) + 1θbdrms + u .(iii) From part (ii), we run the regressionlog(price ) on (sqrft – 150 bdrms ), bdrms ,and obtain the standard error on bdrms . We already know that 1ˆθ= .0858; now we also getse(1ˆθ) = .0268. The 95% confidence interval reported by my software package is .0326 to .1390(or about 3.3% to 13.9%).C4.5 (i) If we drop rbisyr the estimated equation becomesn log()salary = 11.02 + .0677 years + .0158 gamesyr (0.27) (.0121) (.0016)+ .0014 bavg + .0359 hrunsyr (.0011) (.0072)n = 353, R 2= .625.Now hrunsyr is very statistically significant (t statistic ≈ 4.99), and its coefficient has increased by about two and one-half times.(ii) The equation with runsyr , fldperc , and sbasesyr added is22n log()salary = 10.41 + .0700 years + .0079 gamesyr(2.00) (.0120) (.0027)+ .00053 bavg + .0232 hrunsyr (.00110) (.0086)+ .0174 runsyr + .0010 fldperc – .0064 sbasesyr (.0051) (.0020) (.0052) n = 353, R 2 = .639.Of the three additional independent variables, only runsyr is statistically significant (t statistic = .0174/.0051 ≈ 3.41). The estimate implies that one more run per year, other factors fixed,increases predicted salary by about 1.74%, a substantial increase. The stolen bases variable even has the “wrong” sign with a t statistic of about –1.23, while fldperc has a t statistic of only .5. Most major league baseball players are pretty good fielders; in fact, the smallest fldperc is 800 (which means .800). With relatively little variation in fldperc , it is perhaps not surprising that its effect is hard to estimate.(iii) From their t statistics, bavg , fldperc , and sbasesyr are individually insignificant. The F statistic for their joint significance (with 3 and 345 df ) is about .69 with p -value ≈ .56. Therefore, these variables are jointly very insignificant.C4.7 (i) The minimum value is 0, the maximum is 99, and the average is about 56.16. (ii) When phsrank is added to (4.26), we get the following:n log() wage = 1.459 − .0093 jc + .0755 totcoll + .0049 exper + .00030 phsrank (0.024) (.0070) (.0026) (.0002) (.00024)n = 6,763, R 2 = .223So phsrank has a t statistic equal to only 1.25; it is not statistically significant. If we increase phsrank by 10, log(wage ) is predicted to increase by (.0003)10 = .003. This implies a .3% increase in wage , which seems a modest increase given a 10 percentage point increase in phsrank . (However, the sample standard deviation of phsrank is about 24.)(iii) Adding phsrank makes the t statistic on jc even smaller in absolute value, about 1.33, but the coefficient magnitude is similar to (4.26). Therefore, the base point remains unchanged: the return to a junior college is estimated to be somewhat smaller, but the difference is not significant and standard significant levels.(iv) The variable id is just a worker identification number, which should be randomly assigned (at least roughly). Therefore, id should not be correlated with any variable in the regression equation. It should be insignificant when added to (4.17) or (4.26). In fact, its t statistic is about .54.23C4.9 (i) The results from the OLS regression, with standard errors in parentheses, aren log() psoda =−1.46 + .073 prpblck + .137 log(income ) + .380 prppov (0.29) (.031) (.027) (.133)n = 401, R 2 = .087The p -value for testing H 0: 10β= against the two-sided alternative is about .018, so that we reject H 0 at the 5% level but not at the 1% level.(ii) The correlation is about −.84, indicating a strong degree of multicollinearity. Yet eachcoefficient is very statistically significant: the t statistic for log()ˆincome β is about 5.1 and that forˆprppovβ is about 2.86 (two-sided p -value = .004).(iii) The OLS regression results when log(hseval ) is added aren log() psoda =−.84 + .098 prpblck − .053 log(income ) (.29) (.029) (.038) + .052 prppov + .121 log(hseval ) (.134) (.018)n = 401, R 2 = .184The coefficient on log(hseval ) is an elasticity: a one percent increase in housing value, holding the other variables fixed, increases the predicted price by about .12 percent. The two-sided p -value is zero to three decimal places.(iv) Adding log(hseval ) makes log(income ) and prppov individually insignificant (at even the 15% significance level against a two-sided alternative for log(income ), and prppov is does not have a t statistic even close to one in absolute value). Nevertheless, they are jointly significant at the 5% level because the outcome of the F 2,396 statistic is about 3.52 with p -value = .030. All of the control variables – log(income ), prppov , and log(hseval ) – are highly correlated, so it is not surprising that some are individually insignificant.(v) Because the regression in (iii) contains the most controls, log(hseval ) is individually significant, and log(income ) and prppov are jointly significant, (iii) seems the most reliable. It holds fixed three measure of income and affluence. Therefore, a reasonable estimate is that if the proportion of blacks increases by .10, psoda is estimated to increase by 1%, other factors held fixed.。

中级计量经济学讲义_第二章第一节分布函数(Distribution function),数学期望(Expectation)

上课材料之三:第二节 分布函数(Distribution function),数学期望(Expectation)与方差(Variance)本节主要介绍概率及其分布函数,数学期望,方差等方面的基础知识。

一、概率(Probability)1、概率定义(Definition of Probability)在自然界和人类社会中有着两类不同的现象,一类是决定性现象,其特征是在一定条件必然会发生的现象;另一类是随机现象,其特征是在基本条件不变的情况下,观察到或试验的结果会不同。

换句话说,就个别的试验或观察而言,它会时而出现这种结果,时而出现那样结果,呈现出一种偶然情况,这种现象称为随机现象。

随机现象有其偶然性的一面,也有其必然性的一面,这种必然性表现为大量试验中随机事件出现的频率的稳定性,即一个随机事件出现的频率常在某了固定的常数附近变动,这种规律性我们称之为统计规律性。

频率的稳定性说明随机事件发生可能性大小是随机事件本身固定的,不随人们意志而改变的一种客观属性,因此可以对它进行度量。

对于一个随机事件A ,用一个数P (A )来表示该事件发生的可能性大小,这个数P (A )就称为随机事件A 的概率,因此,概率度量了随机事件发生的可能性的大小。

对于随机现象,光知道它可能出现什么结果,价值不大,而指出各种结果出现的可能性的大小则具有很大的意义。

有了概率的概念,就使我们能对随机现象进行定量研究,由此建立了一个新的数学分支——概率论。

概率的定义定义在事件域F 上的一个集合函数P 称为概率,如果它满足如下三个条件: (i )P (A )≥0,对一切∈A F (ii )P (Ω)=1;(iii )若∈i A ,i=1,2…,且两两互不相容,则∑∑∞=∞==⎪⎭⎫ ⎝⎛11)(i ii i AP A P性质(iii )称为可列可加性(conformable addition )或完全可加性。

推论1:对任何事件A 有)(1)(A P A P -=;推论2:不可能事件的概率为0,即0)(=φP ; 推论3:)()()()(AB P B P A P B A P -+=⋃。

(完整版)计量经济学Econometrics专业词汇中英文对照

Econometrics 专业词汇中英文对照(按课件顺序)Ch1-3Causal effects:因果影响,指的是当x变化时,会引起y的变化;Elasticity:弹性;correlation (coefficient) 相关(系数),相关系数没有单位,unit free;estimation:估计;hypothesis testing:假设检验;confidence interval:置信区间;difference-in-means test:均值差异检验,即检验两个样本的均值是否相同;standard error:标准差;statistical inference:统计推断;Moments of distribution:分布的矩函数;conditional distribution (means):条件分布(均值);variance:方差;standard deviation:标准差(指总体方差的平方根);standard error:标准误差,指样本方差的平方根;skewness:偏度,度量分布的对称性;kurtosis:峰度,度量厚尾性,即度量离散程度;joint distribution:联合分布;conditional expectation:条件期望(指总体);randomness:随机性i.i.d., independently and identically distributed:独立同分布的;sampling distribution:抽样分布,指的是当抽取不同的随机样本时,统计量的取值会有所不同,而当取遍所有的样本量为n的样本时,统计量有一个取值规律,即抽样分布,即统计量的随机性来自样本的随机性consistent (consistency):相合的(相合性),指当样本量趋于无穷大时,估计量依概率收敛到真实值;此外,在统计的语言中,还有一个叫模型选择的相合性,指的是能依概率选取到正确的模型Central limit theory:中心极限定理;unbiased estimator:无偏估计量;uncertainty:不确定性;approximation:逼近;least squares estimator:最小二乘估计量;provisional decision:临时的决定,用于假设检验,指的是,我们现在下的结论是基于现在的数据的,如果数据变化,我们的结论可能会发生变化significance level:显著性水平,一般取0.05或者0.01,0.1,是一个预先给定的数值,指的是在原假设成立的假设下,我们可能犯的错误的概率,即拒绝原假设的概率;p-value:p-值,指的是观测到比现在观测到的统计量更极端的概率,一般p-值很小的时候要拒绝原假设,因为这说明要观测到比现在观测到的统计量更极端的情况的概率很小,进而说明现在的统计量很极端。

计量经济学--名词

计量经济学Absolute deviation, 绝对离差Absolute number, 绝对数Absolute residuals, 绝对残差Acceleration array, 加速度立体阵Acceleration in an arbitrary direction, 任意方向上的加速度Acceleration normal, 法向加速度Acceleration space dimension, 加速度空间的维数Acceleration tangential, 切向加速度Acceleration vector, 加速度向量Acceptable hypothesis, 可接受假设Accumulation, 累积Accuracy, 准确度Actual frequency, 实际频数Adaptive estimator, 自适应估计量Addition, 相加Addition theorem, 加法定理Additive Noise, 加性噪声Additivity, 可加性Adjusted rate, 调整率Adjusted value, 校正值Admissible error, 容许误差Aggregation, 聚集性Alpha factoring,α因子法Alternative hypothesis, 备择假设Among groups, 组间Amounts, 总量Analysis of correlation, 相关分析Analysis of covariance, 协方差分析Analysis Of Effects, 效应分析Analysis Of Variance, 方差分析Analysis of regression, 回归分析Analysis of time series, 时间序列分析Analysis of variance, 方差分析Angular transformation, 角转换ANOVA (analysis of variance), 方差分析ANOVA Models, 方差分析模型ANOVA table and eta, 分组计算方差分析Arcing, 弧/弧旋Arcsine transformation, 反正弦变换Area 区域图Area under the curve, 曲线面积AREG , 评估从一个时间点到下一个时间点回归相关时的误差ARIMA, 季节和非季节性单变量模型的极大似然估计Arithmetic grid paper, 算术格纸Arithmetic mean, 算术平均数Arrhenius relation, 艾恩尼斯关系Assessing fit, 拟合的评估Associative laws, 结合律Asymmetric distribution, 非对称分布Asymptotic bias, 渐近偏倚Asymptotic efficiency, 渐近效率Asymptotic variance, 渐近方差Attributable risk, 归因危险度Attribute data, 属性资料Attribution, 属性Autocorrelation, 自相关Autocorrelation of residuals, 残差的自相关Average, 平均数Average confidence interval length, 平均置信区间长度Average growth rate, 平均增长率Bar chart, 条形图Bar graph, 条形图Base period, 基期Bayes' theorem , Bayes定理Bell-shaped curve, 钟形曲线Bernoulli distribution, 伯努力分布Best-trim estimator, 最好切尾估计量Bias, 偏性Binary logistic regression, 二元逻辑斯蒂回归Binomial distribution, 二项分布Bisquare, 双平方Bivariate Correlate, 二变量相关Bivariate normal distribution, 双变量正态分布Bivariate normal population, 双变量正态总体Biweight interval, 双权区间Biweight M-estimator, 双权M估计量Block, 区组/配伍组BMDP(Biomedical computer programs), BMDP统计软件包Boxplots, 箱线图/箱尾图Breakdown bound, 崩溃界/崩溃点Canonical correlation, 典型相关Caption, 纵标目Case-control study, 病例对照研究Categorical variable, 分类变量Catenary, 悬链线Cauchy distribution, 柯西分布Cause-and-effect relationship, 因果关系Cell, 单元Censoring, 终检Center of symmetry, 对称中心Centering and scaling, 中心化和定标Central tendency, 集中趋势Central value, 中心值CHAID -χ2 Automatic Interaction Detector,卡方自动交互检测Chance, 机遇Chance error, 随机误差Chance variable, 随机变量Characteristic equation, 特征方程Characteristic root, 特征根Characteristic vector, 特征向量Chebshev criterion of fit, 拟合的切比雪夫准则Chernoff faces, 切尔诺夫脸谱图Chi-square test, 卡方检验/χ2检验Choleskey decomposition, 乔洛斯基分解Circle chart, 圆图Class interval, 组距Class mid-value, 组中值Class upper limit, 组上限Classified variable, 分类变量Cluster analysis, 聚类分析Cluster sampling, 整群抽样Code, 代码Coded data, 编码数据Coding, 编码Coefficient of contingency, 列联系数Coefficient of determination, 决定系数Coefficient of multiple correlation, 多重相关系数Coefficient of partial correlation, 偏相关系数Coefficient of production-moment correlation, 积差相关系数Coefficient of rank correlation, 等级相关系数Coefficient of regression, 回归系数Coefficient of skewness, 偏度系数Coefficient of variation, 变异系数Cohort study, 队列研究Collinearity, 共线性Column, 列Column effect, 列效应Column factor, 列因素Combination pool, 合并Combinative table, 组合表Common factor, 共性因子Common regression coefficient, 公共回归系数Common value, 共同值Common variance, 公共方差Common variation, 公共变异Communality variance, 共性方差Comparability, 可比性Comparison of bathes, 批比较Comparison value, 比较值Compartment model, 分部模型Compassion, 伸缩Complement of an event, 补事件Complete association, 完全正相关Complete dissociation, 完全不相关Complete statistics, 完备统计量Completely randomized design, 完全随机化设计Composite event, 联合事件Composite events, 复合事件Concavity, 凹性Conditional expectation, 条件期望Conditional likelihood, 条件似然Conditional probability, 条件概率Conditionally linear, 依条件线性Confidence interval, 置信区间Confidence limit, 置信限Confidence lower limit, 置信下限Confidence upper limit, 置信上限Confirmatory Factor Analysis , 验证性因子分析Confirmatory research, 证实性实验研究Confounding factor, 混杂因素Conjoint, 联合分析Consistency, 相合性Consistency check, 一致性检验Consistent asymptotically normal estimate,相合渐近正态估计Consistent estimate, 相合估计Constrained nonlinear regression, 受约束非线性回归Constraint, 约束Contaminated distribution, 污染分布Contaminated Gausssian, 污染高斯分布Contaminated normal distribution, 污染正态分布Contamination, 污染Contamination model, 污染模型Contingency table, 列联表Contour, 边界线Contribution rate, 贡献率Control, 对照, 质量控制图Controlled experiments, 对照实验Conventional depth, 常规深度Convolution, 卷积Corrected factor, 校正因子Corrected mean, 校正均值Correction coefficient, 校正系数Correctness, 正确性Correlation coefficient, 相关系数Correlation, 相关性Correlation index, 相关指数Correspondence, 对应Counting, 计数Counts, 计数/频数Covariance, 协方差Covariant, 共变Cox Regression, Cox回归Criteria for fitting, 拟合准则Criteria of least squares, 最小二乘准则Critical ratio, 临界比Critical region, 拒绝域Critical value, 临界值Cross-over design, 交叉设计Cross-section analysis, 横断面分析Cross-section survey, 横断面调查Crosstabs , 交叉表Crosstabs 列联表分析Cross-tabulation table, 复合表Cube root, 立方根Cumulative distribution function, 分布函数Cumulative probability, 累计概率Curvature, 曲率/弯曲Curvature, 曲率Curve Estimation, 曲线拟合Curve fit , 曲线拟和Curve fitting, 曲线拟合Curvilinear regression, 曲线回归Curvilinear relation, 曲线关系Cut-and-try method, 尝试法Cycle, 周期Cyclist, 周期性D test, D检验Data acquisition, 资料收集Data bank, 数据库Data capacity, 数据容量Data deficiencies, 数据缺乏Data handling, 数据处理Data manipulation, 数据处理Data processing, 数据处理Data reduction, 数据缩减Data set, 数据集Data sources, 数据来源Data transformation, 数据变换Data validity, 数据有效性Data-in, 数据输入Data-out, 数据输出Dead time, 停滞期Degree of freedom, 自由度Degree of precision, 精密度Degree of reliability, 可靠性程度Degression, 递减Density function, 密度函数Density of data points, 数据点的密度Dependent variable, 应变量/依变量/因变量Dependent variable, 因变量Depth, 深度Derivative matrix, 导数矩阵Derivative-free methods, 无导数方法Design, 设计Determinacy, 确定性Determinant, 行列式Determinant, 决定因素Deviation, 离差Deviation from average, 离均差Diagnostic plot, 诊断图Dichotomous variable, 二分变量Differential equation, 微分方程Direct standardization, 直接标准化法Direct Oblimin, 斜交旋转Discrete variable, 离散型变量DISCRIMINANT, 判断Discriminant analysis, 判别分析Discriminant coefficient, 判别系数Discriminant function, 判别值Dispersion, 散布/分散度Disproportional, 不成比例的Disproportionate sub-class numbers, 不成比例次级组含量Distribution free, 分布无关性/免分布Distribution shape, 分布形状Distribution-free method, 任意分布法Distributive laws, 分配律Disturbance, 随机扰动项Dose response curve, 剂量反应曲线Double blind method, 双盲法Double blind trial, 双盲试验Double exponential distribution, 双指数分布Double logarithmic, 双对数Downward rank, 降秩Dual-space plot, 对偶空间图DUD, 无导数方法Duncan's new multiple range method, 新复极差法/Duncan新法Error Bar, 均值相关区间图Effect, 实验效应Eigenvalue, 特征值Eigenvector, 特征向量Ellipse, 椭圆Empirical distribution, 经验分布Empirical probability, 经验概率单位Enumeration data, 计数资料Equal sun-class number, 相等次级组含量Equally likely, 等可能Equivariance, 同变性Error, 误差/错误Error of estimate, 估计误差Error type I, 第一类错误Error type II, 第二类错误Estimand, 被估量Estimated error mean squares, 估计误差均方Estimated error sum of squares, 估计误差平方和Euclidean distance, 欧式距离Event, 事件Event, 事件Exceptional data point, 异常数据点Expectation plane, 期望平面Expectation surface, 期望曲面Expected values, 期望值Experiment, 实验Experimental sampling, 试验抽样Experimental unit, 试验单位Explained variance (已说明方差)Explanatory variable, 说明变量Exploratory data analysis, 探索性数据分析Explore Summarize, 探索-摘要Exponential curve, 指数曲线Exponential growth, 指数式增长EXSMOOTH, 指数平滑方法Extended fit, 扩充拟合Extra parameter, 附加参数Extrapolation, 外推法Extreme observation, 末端观测值Extremes, 极端值/极值F distribution, F分布F test, F检验Factor, 因素/因子Factor analysis, 因子分析Factor Analysis, 因子分析Factor score, 因子得分Factorial, 阶乘Factorial design, 析因试验设计False negative, 假阴性False negative error, 假阴性错误Family of distributions, 分布族Family of estimators, 估计量族Fanning, 扇面Fatality rate, 病死率Field investigation, 现场调查Field survey, 现场调查Finite population, 有限总体Finite-sample, 有限样本First derivative, 一阶导数First principal component, 第一主成分First quartile, 第一四分位数Fisher information, 费雪信息量Fitted value, 拟合值Fitting a curve, 曲线拟合Fixed base, 定基Fluctuation, 随机起伏Forecast, 预测Four fold table, 四格表Fourth, 四分点Fraction blow, 左侧比率Fractional error, 相对误差Frequency, 频率Frequency polygon, 频数多边图Frontier point, 界限点Function relationship, 泛函关系Gamma distribution, 伽玛分布Gauss increment, 高斯增量Gaussian distribution, 高斯分布/正态分布Gauss-Newton increment, 高斯-牛顿增量General census, 全面普查Generalized least squares, 综合最小平方法GENLOG (Generalized liner models), 广义线性模型Geometric mean, 几何平均数Gini's mean difference, 基尼均差GLM (General liner models), 通用线性模型Goodness of fit, 拟和优度/配合度Gradient of determinant, 行列式的梯度Graeco-Latin square, 希腊拉丁方Grand mean, 总均值Gross errors, 重大错误Gross-error sensitivity, 大错敏感度Group averages, 分组平均Grouped data, 分组资料Guessed mean, 假定平均数Half-life, 半衰期Hampel M-estimators, 汉佩尔M估计量Happenstance, 偶然事件Harmonic mean, 调和均数Hazard function, 风险均数Hazard rate, 风险率Heading, 标目Heavy-tailed distribution, 重尾分布Hessian array, 海森立体阵Heterogeneity, 不同质Heterogeneity of variance, 方差不齐Hierarchical classification, 组内分组Hierarchical clustering method, 系统聚类法High-leverage point, 高杠杆率点High-Low, 低区域图Higher Order Interaction Effects,高阶交互作用HILOGLINEAR, 多维列联表的层次对数线性模型Hinge, 折叶点Histogram, 直方图Historical cohort study, 历史性队列研究Holes, 空洞HOMALS, 多重响应分析Homogeneity of variance, 方差齐性Homogeneity test, 齐性检验Huber M-estimators, 休伯M估计量Hyperbola, 双曲线Hypothesis testing, 假设检验Hypothetical universe, 假设总体Image factoring,, 多元回归法Impossible event, 不可能事件Independence, 独立性Independent variable, 自变量Index, 指标/指数Indirect standardization, 间接标准化法Individual, 个体Inference band, 推断带Infinite population, 无限总体Infinitely great, 无穷大Infinitely small, 无穷小Influence curve, 影响曲线Information capacity, 信息容量Initial condition, 初始条件Initial estimate, 初始估计值Initial level, 最初水平Interaction, 交互作用Interaction terms, 交互作用项Intercept, 截距Interpolation, 内插法Interquartile range, 四分位距Interval estimation, 区间估计Intervals of equal probability, 等概率区间Intrinsic curvature, 固有曲率Invariance, 不变性Inverse matrix, 逆矩阵Inverse probability, 逆概率Inverse sine transformation, 反正弦变换Iteration, 迭代Jacobian determinant, 雅可比行列式Joint distribution function, 分布函数Joint probability, 联合概率Joint probability distribution, 联合概率分布K-Means Cluster逐步聚类分析K means method, 逐步聚类法Kaplan-Meier, 评估事件的时间长度Kaplan-Merier chart, Kaplan-Merier图Kendall's rank correlation, Kendall等级相关Kinetic, 动力学Kolmogorov-Smirnove test, 柯尔莫哥洛夫-斯米尔诺夫检验Kruskal and Wallis test, Kruskal及Wallis检验/多样本的秩和检验/H检验Kurtosis, 峰度Lack of fit, 失拟Ladder of powers, 幂阶梯Lag, 滞后Large sample, 大样本Large sample test, 大样本检验Latin square, 拉丁方Latin square design, 拉丁方设计Leakage, 泄漏Least favorable configuration, 最不利构形Least favorable distribution, 最不利分布Least significant difference, 最小显著差法Least square method, 最小二乘法Least Squared Criterion,最小二乘方准则Least-absolute-residuals estimates, 最小绝对残差估计Least-absolute-residuals fit, 最小绝对残差拟合Least-absolute-residuals line, 最小绝对残差线Legend, 图例L-estimator, L估计量L-estimator of location, 位置L估计量L-estimator of scale, 尺度L估计量Level, 水平Leveage Correction,杠杆率校正Life expectance, 预期期望寿命Life table, 寿命表Life table method, 生命表法Light-tailed distribution, 轻尾分布Likelihood function, 似然函数Likelihood ratio, 似然比line graph, 线图Linear correlation, 直线相关Linear equation, 线性方程Linear programming, 线性规划Linear regression, 直线回归Linear Regression, 线性回归Linear trend, 线性趋势Loading, 载荷Location and scale equivariance, 位置尺度同变性Location equivariance, 位置同变性Location invariance, 位置不变性Location scale family, 位置尺度族Log rank test, 时序检验Logarithmic curve, 对数曲线Logarithmic normal distribution, 对数正态分布Logarithmic scale, 对数尺度Logarithmic transformation, 对数变换Logic check, 逻辑检查Logistic distribution, 逻辑斯特分布Logit transformation, Logit转换LOGLINEAR, 多维列联表通用模型Lognormal distribution, 对数正态分布Lost function, 损失函数Low correlation, 低度相关Lower limit, 下限Lowest-attained variance, 最小可达方差LSD, 最小显著差法的简称Lurking variable, 潜在变量Main effect, 主效应Major heading, 主辞标目Marginal density function, 边缘密度函数Marginal probability, 边缘概率Marginal probability distribution, 边缘概率分布Matched data, 配对资料Matched distribution, 匹配过分布Matching of distribution, 分布的匹配Matching of transformation, 变换的匹配Mathematical expectation, 数学期望Mathematical model, 数学模型Maximum L-estimator, 极大极小L 估计量Maximum likelihood method, 最大似然法Mean, 均数Mean squares between groups, 组间均方Mean squares within group, 组内均方Means (Compare means), 均值-均值比较Median, 中位数Median effective dose, 半数效量Median lethal dose, 半数致死量Median polish, 中位数平滑Median test, 中位数检验Minimal sufficient statistic, 最小充分统计量Minimum distance estimation, 最小距离估计Minimum effective dose, 最小有效量Minimum lethal dose, 最小致死量Minimum variance estimator, 最小方差估计量MINITAB, 统计软件包Minor heading, 宾词标目Missing data, 缺失值Model specification, 模型的确定Modeling Statistics , 模型统计Models for outliers, 离群值模型Modifying the model, 模型的修正Modulus of continuity, 连续性模Morbidity, 发病率Most favorable configuration, 最有利构形MSC(多元散射校正)Multidimensional Scaling (ASCAL), 多维尺度/多维标度Multinomial Logistic Regression , 多项逻辑斯蒂回归Multiple comparison, 多重比较Multiple correlation , 复相关Multiple covariance, 多元协方差Multiple linear regression, 多元线性回归Multiple response , 多重选项Multiple solutions, 多解Multiplication theorem, 乘法定理Multiresponse, 多元响应Multi-stage sampling, 多阶段抽样Multivariate T distribution, 多元T分布Mutual exclusive, 互不相容Mutual independence, 互相独立Natural boundary, 自然边界Natural dead, 自然死亡Natural zero, 自然零Negative correlation, 负相关Negative linear correlation, 负线性相关Negatively skewed, 负偏Newman-Keuls method, q检验NK method, q检验No statistical significance, 无统计意义Nominal variable, 名义变量Nonconstancy of variability,变异的非定常性Nonlinear regression, 非线性相关Nonparametric statistics, 非参数统计Nonparametric test, 非参数检验Nonparametric tests, 非参数检验Normal deviate, 正态离差Normal distribution, 正态分布Normal equation, 正规方程组Normal P-P, 正态概率分布图Normal Q-Q, 正态概率单位分布图Normal ranges, 正常范围Normal value, 正常值Normalization 归一化Nuisance parameter, 多余参数/讨厌参数Null hypothesis, 无效假设Numerical variable, 数值变量Objective function, 目标函数Observation unit, 观察单位Observed value, 观察值One sided test, 单侧检验One-way analysis of variance单因素方差分析Oneway ANOVA , 单因素方差分析Open sequential trial, 开放型序贯设计Optrim, 优切尾Optrim efficiency, 优切尾效率Order statistics, 顺序统计量Ordered categories, 有序分类Ordinal logistic regression序数逻辑斯蒂回归Ordinal variable, 有序变量Orthogonal basis, 正交基Orthogonal design, 正交试验设计Orthogonality conditions, 正交条件ORTHOPLAN, 正交设计Outlier cutoffs, 离群值截断点Outliers, 极端值OVERALS , 多组变量的非线性正规相关Overshoot, 迭代过度Paired design, 配对设计Paired sample, 配对样本Pairwise slopes, 成对斜率Parabola, 抛物线Parallel tests, 平行试验Parameter, 参数Parametric statistics, 参数统计Parametric test, 参数检验Pareto, 直条构成线图(又称佩尔托图)Partial correlation, 偏相关Partial regression, 偏回归Partial sorting, 偏排序Partials residuals, 偏残差Pattern, 模式PCA(主成分分析)Pearson curves, 皮尔逊曲线Peeling, 退层Percent bar graph, 百分条形图Percentage, 百分比Percentile, 百分位数Percentile curves, 百分位曲线Periodicity, 周期性Permutation, 排列P-estimator, P估计量Pie graph, 构成图,饼图Pitman estimator, 皮特曼估计量Pivot, 枢轴量Planar, 平坦Planar assumption, 平面的假设PLANCARDS, 生成试验的计划卡PLS(偏最小二乘法)Point estimation, 点估计Poisson distribution, 泊松分布Polishing, 平滑Polled standard deviation, 合并标准差Polled variance, 合并方差Polygon, 多边图Polynomial, 多项式Polynomial curve, 多项式曲线Population, 总体Population attributable risk人群归因危险度Positive correlation, 正相关Positively skewed, 正偏Posterior distribution, 后验分布Power of a test, 检验效能Precision, 精密度Predicted value, 预测值Preliminary analysis, 预备性分析Principal axis factoring,主轴因子法Principal component analysis, 主成分分析Prior distribution, 先验分布Prior probability, 先验概率Probabilistic model, 概率模型probability, 概率Probability density, 概率密度Product moment, 乘积矩/协方差Profile trace, 截面迹图Proportion, 比/构成比Proportion allocation in stratified random sampling, 按比例分层随机抽样Proportionate, 成比例Proportionate sub-class numbers, 成比例次级组含量Prospective study, 前瞻性调查Proximities, 亲近性Pseudo F test, 近似F检验Pseudo model, 近似模型Pseudosigma, 伪标准差Purposive sampling, 有目的抽样QR decomposition, QR分解Quadratic approximation, 二次近似Qualitative classification, 属性分类Qualitative method, 定性方法Quantile-quantile plot, 分位数-分位数图/Q-Q图Quantitative analysis, 定量分析Quartile, 四分位数Quick Cluster, 快速聚类Radix sort, 基数排序Random allocation, 随机化分组Random blocks design, 随机区组设计Random event, 随机事件Randomization, 随机化Range, 极差/全距Rank correlation, 等级相关Rank sum test, 秩和检验Rank test, 秩检验Ranked data, 等级资料Rate, 比率Ratio, 比例Raw data, 原始资料Raw residual, 原始残差Rayleigh's test, 雷氏检验Rayleigh's Z, 雷氏Z值Reciprocal, 倒数Reciprocal transformation, 倒数变换Recording, 记录Redescending estimators, 回降估计量Reducing dimensions, 降维Re-expression, 重新表达Reference set, 标准组Region of acceptance, 接受域Regression coefficient, 回归系数Regression sum of square, 回归平方和Rejection point, 拒绝点Relative dispersion, 相对离散度Relative number, 相对数Reliability, 可靠性Reparametrization, 重新设置参数Replication, 重复Report Summaries, 报告摘要Residual sum of square, 剩余平方和residual variance (剩余方差)Resistance, 耐抗性Resistant line, 耐抗线Resistant technique, 耐抗技术R-estimator of location, 位置R估计量R-estimator of scale, 尺度R估计量Retrospective study, 回顾性调查Ridge trace, 岭迹Ridit analysis, Ridit分析Rotation, 旋转Rounding, 舍入Row, 行Row effects, 行效应Row factor, 行因素RXC table, RXC表Sample, 样本Sample regression coefficient,样本回归系数Sample size, 样本量Sample standard deviation, 样本标准差Sampling error, 抽样误差SAS(Statistical analysis system ), SAS统计软件包Scale, 尺度/量表Scatter diagram, 散点图Schematic plot, 示意图/简图Score test, 计分检验Screening, 筛检SEASON, 季节分析Second derivative, 二阶导数Second principal component, 第二主成分SEM (Structural equation modeling), 结构化方程模型Semi-logarithmic graph, 半对数图Semi-logarithmic paper, 半对数格纸Sensitivity curve, 敏感度曲线Sequential analysis, 贯序分析Sequence, 普通序列图Sequential data set, 顺序数据集Sequential design, 贯序设计Sequential method, 贯序法Sequential test, 贯序检验法Serial tests, 系列试验Short-cut method, 简捷法Sigmoid curve, S形曲线Sign function, 正负号函数Sign test, 符号检验Signed rank, 符号秩Significant Level, 显著水平Significance test, 显著性检验Significant figure, 有效数字Simple cluster sampling, 简单整群抽样Simple correlation, 简单相关Simple random sampling, 简单随机抽样Simple regression, 简单回归simple table, 简单表Sine estimator, 正弦估计量Single-valued estimate, 单值估计Singular matrix, 奇异矩阵Skewed distribution, 偏斜分布Skewness, 偏度Slash distribution, 斜线分布Slope, 斜率Smirnov test, 斯米尔诺夫检验Source of variation, 变异来源Spearman rank correlation,斯皮尔曼等级相关Specific factor, 特殊因子Specific factor variance, 特殊因子方差Spectra , 频谱Spherical distribution, 球型正态分布Spread, 展布SPSS(Statistical package for the social science), SPSS统计软件包Spurious correlation, 假性相关Square root transformation, 平方根变换Stabilizing variance, 稳定方差Standard deviation, 标准差Standard error, 标准误Standard error of difference, 差别的标准误Standard error of estimate, 标准估计误差Standard error of rate, 率的标准误Standard normal distribution, 标准正态分布Standardization, 标准化Starting value, 起始值Statistic, 统计量Statistical control, 统计控制Statistical graph, 统计图Statistical inference, 统计推断Statistical table, 统计表Steepest descent, 最速下降法Stem and leaf display, 茎叶图Step factor, 步长因子Stepwise regression, 逐步回归Storage, 存Strata, 层(复数)Stratified sampling, 分层抽样Stratified sampling, 分层抽样Strength, 强度Stringency, 严密性Structural relationship, 结构关系Studentized residual, 学生化残差/t化残差Sub-class numbers, 次级组含量Subdividing, 分割Sufficient statistic, 充分统计量Sum of products, 积和Sum of squares, 离差平方和Sum of squares about regression, 回归平方和Sum of squares between groups, 组间平方和Sum of squares of partial regression,偏回归平方和Sure event, 必然事件Survey, 调查Survival, 生存分析Survival rate, 生存率Suspended root gram, 悬吊根图Symmetry, 对称Systematic error, 系统误差Systematic sampling, 系统抽样Tags, 标签Tail area, 尾部面积Tail length, 尾长Tail weight, 尾重Tangent line, 切线Target distribution, 目标分布Taylor series, 泰勒级数Test(检验)Test of linearity, 线性检验Tendency of dispersion, 离散趋势Testing of hypotheses, 假设检验Theoretical frequency, 理论频数Time series, 时间序列Tolerance interval, 容忍区间Tolerance lower limit, 容忍下限Tolerance upper limit, 容忍上限Torsion, 扰率Total sum of square, 总平方和Total variation, 总变异Transformation, 转换Treatment, 处理Trend, 趋势Trend of percentage, 百分比趋势Trial, 试验Trial and error method, 试错法Tuning constant, 细调常数Two sided test, 双向检验Two-stage least squares, 二阶最小平方Two-stage sampling, 二阶段抽样Two-tailed test, 双侧检验Two-way analysis of variance双因素方差分析Two-way table, 双向表Type I error, 一类错误/α错误Type II error, 二类错误/β错误UMVU, 方差一致最小无偏估计简称Unbiased estimate, 无偏估计Unconstrained nonlinear regression , 无约束非线性回归Unequal subclass number, 不等次级组含量Ungrouped data, 不分组资料Uniform coordinate, 均匀坐标Uniform distribution, 均匀分布Uniformly minimum variance unbiasedestimate, 方差一致最小无偏估计Unit, 单元Unordered categories, 无序分类Unweighted least squares, 未加权最小平方法Upper limit, 上限Upward rank, 升秩Vague concept, 模糊概念Validity, 有效性VARCOMP(Variance component estimation方差元素估计Variability, 变异性Variable, 变量Variance, 方差Variation, 变异Varimax orthogonal rotation, 方差最大正交旋转Volume of distribution, 容积W test, W检验Weibull distribution, 威布尔分布Weight, 权数Weighted Chi-square test,加权卡方检验/Cochran检验Weighted linear regression method, 加权直线回归Weighted mean, 加权平均数Weighted mean square, 加权平均方差Weighted sum of square, 加权平方和Weighting coefficient, 权重系数Weighting method, 加权法W-estimation, W估计量W-estimation of location, 位置W估计量Width, 宽度Wilcoxon paired test, 威斯康星配对法/配对符号秩和检验Wild point, 野点/狂点Wild value, 野值/狂值Winsorized mean, 缩尾均值Withdraw, 失访Youden's index, 尤登指数Z test, Z检验Zero correlation, 零相关Z-transformation, Z变换Z-transformation, Z变换。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

That is, the probabilities assigned to the joint outcomes are nonnegative.
2. Σ Σ f(x, y) = 1.
8
2.3 Cumulative Joint Probability Function A function F(x, y) that gives the probability that the random variable X is less than a given value xi and the random variable Y is jointly less than a given value yi: F(x, y) = P(X≤x and Y≤y) = Σs≤x Σt≤y f(s, t). is known as the joint distribution function or the cumulative joint probability function.
Lecture 5: Multivariate Distributions
1. Introduction In the previous two lectures we considered the probability distribution for a single random variable. We then learned how to use various measures (e.g., mean and variance) to summarize the information in the distribution. We have, however, limited ourselves to looking at a single random variable (e.g., X).
That is, we are often interested in multivariate distributions. In this lecture we extend our analyses to include two random variables (i.e., bivariate or joint distributions). This is a straightforward extension of the previous two chapters but, importantly, with two random variables being considered we have the additional scope of looking at relationships between the two variables. The results developed for bivariate case are easily extended beyond the bivariate situation. We will start with the case where both of the random variables are discrete.
2. F(1,3) = P(X ≤ 1 and Y ≤ 3) = 1.
This must be the case as it covers all possible outcomes for X and Y.
10
2.4 Bivariate and Univariate Distributions Sometimes, when given the bivariate distribution for two random variables X and Y, we would like to move back to the univariate distributions for X and Y. We call these the marginal distributions for X and Y. The marginal distributions for X and Y are, respectively, given by
9
Example 1. Continuing with the coin-toss example above, we could calculate the probability of X being less than or equal to 0 and Y (jointly) being less than or equal to 2. This would simply be sum of the probabilities satisfying both of 3 conditions (i.e., X ≤ 0 and Y ≤ 2). Thus, F(0,2) = P(X ≤ 0 and Y ≤ 2) = 1/8 + 1/4 + 1/8 + 0 = ½.
6
Notice that we indicate the different values X can assume in the left column of the table (e.g., 0,1) and the different values Y can assume in the top row of the table (e.g., 0,1,2,3).
Notice the similarity of the joint distribution function and the cumulative probability distribution for a univariate distribution.
Note also that the calculation simply involves summing all the probabilities associated with outcomes satisfying X≤ x and Y≤ y.
Thus, we have been considering univariate distributions.
Often in economics we are interested in relationships existing between several random variables.
2
2. Discrete Bivariate Distributions 2.1 Joint Probability Function Suppose we have two discrete random variables, X and Y, which each take on a finite set of values.
In this case the table is a matrix and the graph of the distribution would be 3 dimensional.
5
Example Continuing with the above example, consider the outcome (X=0, Y=0). This joint outcome occurs in one of the 8 outcomes in the sample space (i.e., TTT). Thus, P(X=0 and Y=0)=1/8. Similarly, the joint outcome (X=0, Y=1) occurs in 2 of the 8 basic outcomes (i.e., HTT, THT). Thus, P(X=0 and Y=1)=1/4. Proceeding in a similar fashion we can calculate the probability associated with each joint outcome. It is helpful to depict this information in a table (matrix) as shown in Table 5.1.
3
Example Suppose we flip a coin 3 times and record the number of heads. We will define the random variable X to equal the number of heads on the last (third) flip, and the random variable Y to equal the total number of heads in three flips. Then, S ={HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}, and the random variable X takes on the values {0, 1} while the random variable Y takes on the values {0, 1, 2, 3}. There are 8 possible different joint outcomes: (X = 0, Y = 0), (X = 0, Y = 1), (X = 0, Y = 2), (X = 0, Y = 3), (X = 1, Y = 0), (X = 1, Y = 1), (X = 1, Y = 2), (X = 1, Y = 3). If we attach a probability to each of the different joint outcomes, we have a discrete bivariate probability distribution or, more formally, a joint probability function. 4
We assume X takes on the values {x1, x2, x3, … xN} and Y takes on the values {y1, y2, y3,…, yN}.
相关文档
最新文档