BP神经网络应用

合集下载

LabVIEW中BP神经网络的实现及应用

LabVIEW中BP神经网络的实现及应用

LabVIEW中BP神经网络的实现及应用
0 引言LabVIEW 是美国NI 公司开发的高效图形化虚拟仪器开发平台,它的图形化编程具有直观、简便、快速、易于开发和维护等优点,在虚拟仪器设计和测控系统开发等相关领域得到了日益广泛的应用,它无需任何文本程序代码,而是把复杂、繁琐的语言编程简化成图形,用线条把各种图形连接起来。

BP 神经网络属于前馈神经网络,它广泛应用函数逼近、模式识别、分类和数
据压缩等领域,若将神经网络与虚拟仪器有机结合,则可以为提高虚拟仪器测控系统的性能提供重要的依据。

1 BP 神经网络学习算法BP 模型是一种应用最广泛的多层前向拓扑结构,以三层BP 神经网络作为理论依据进行编程,它由输入层、隐层和输出层构成。

设输入层神经元个数为I,隐层神经元个数为J,输出层神经元个数为K,学习样本有N 个(x,Y,)向量,表示为:输入向量
X{x1,x2,…,xI},输出向量l,{Y1,Y2,…,Yx),理想输出向量为
T{tl,t2,…,tK}。

(1)输入层节点i,其输出等于xi(i=1,2,…,I,将控制变量值传输到隐含层,则隐层第j 个神经元的输入:
其中:Wji 是隐层第J 个神经元到输入层第i 个神经元的连接权值。

(2)隐层第J 个神经元的输出:
(3)神经网络输出层,第k 个神经元的输入为:
其中:Vkj 是输出层第k 个神经元到隐层第j 个神经元的连接权值。

(4)神经网络输出层,第志个神经元的输出为:
(5)设定网络误差函数E:
(6)输出层到隐层的连接权值调整量△Vkj:
(7)隐层到输入层的连接权值调整量wji:。

BP神经网络的应用

BP神经网络的应用

基于MATLAB的BP神经网络应用人工神经网络(Artificial Neural Networks,NN)是由大量的、简单的处理单元(称为神经元)广泛地互相连接而形成的复杂网络系统,它反映了人脑功能的许多基本特征,是一个高度复杂的非线性动力学系统。

神经网络具有大规模并行、分布式存储和处理、自组织、自适应和自学习能力,特别适合处理需要同时考虑许多因素和条件的、不精确和模糊的信息处理问题。

神经网络的发展与神经科学、数理科学、认知科学、计算机科学、人工智能、信息科学、控制论、机器人学、微电子学、心理学、微电子学、心理学、光计算、分子生物学等有关,是一门新兴的边缘交叉学科。

神经网络具有非线性自适应的信息处理能力,克服了传统人工智能方法对于直觉的缺陷,因而在神经专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用。

神经网络与其他传统方法相组合,将推动人工智能和信息处理技术不断发展。

近年来,神经网络在模拟人类认知的道路上更加深入发展,并与模糊系统、遗传算法、进化机制等组合,形成计算智能,成为人工智能的一个重要方向。

MATLAB是一种科学与工程计算的高级语言,广泛地运用于包括信号与图像处理,控制系统设计,系统仿真等诸多领域。

为了解决神经网络问题中的研究工作量和编程计算工作量问题,目前工程领域中较为流行的软件MATLAB,提供了现成的神经网络工具箱(Neural Network Toolbox,简称NNbox),为解决这个矛盾提供了便利条件。

神经网络工具箱提供了很多经典的学习算法,使用它能够快速实现对实际问题的建模求解。

在解决实际问题中,应用MATLAB 语言构造典型神经网络的激活传递函数,编写各种网络设计与训练的子程序,网络的设计者可以根据需要调用工具箱中有关神经网络的设计训练程序,使自己能够从烦琐的编程中解脱出来,减轻工程人员的负担,从而提高工作效率。

一、人工神经网络的研究背景和意义人工神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。

BP神经网络及其应用

BP神经网络及其应用

BP神经网络及其应用摘要:人工神经网络是最近发展起来的十分热门的交叉学科,有着非常广泛的应用前景。

文着重研究了bp神经网络结构、算法原理、介绍了bp网络改进算法,最后将改进的bp算法应用与变压器故障诊断。

关键词: bp神经网络;应用;故障诊断1、神经元模型人工神经网络(artificial neural networks,ann)是对人脑神经系统的近似模拟。

神经网络由许多人工神经元互连组成,能接受并处理信息,网络的信息处理由神经元之间的连接权值来实现。

1943年,mcdulloh和pitts根据生物神经元的结构和功能,建立了人工神经元模型如图1,一个基本的神经元i,它有n个输入,每个输入都通过一个适当的权值w与神经元相连。

是神经元的输入, 是神经元i的阀值; ,分别是神经元i对的权值;是神经元的输出;圆形代表内部求和函数,它将输入求和得到神经元的静输入。

f( )是神经元的激励函数,它决定神经元受到输入时的输出。

激励函数f( )有多种形式,如sigmoid函数、阶跃函数和线性函数等。

2、bp神经网络基本思想将bp网络理论学习算法转化为实际的学习过程,其原理如下:如图4-2所示,令i = { a1,..., an}为输入层故障诊断向量,o={ c1,...,cj}为输出层故障诊断向量,h={b1,,...,bp}为隐含层神经元数,v=vn×p与w=wp×q,为各层之间连接权值,k=(1,2,..., m)为给定的样本数。

先给li层单元与lh层单元之间、lh层单元与lo层单元之间的连接权以及lh层单元阀值θi、lo层单元阀值γi赋[-ε,+ε]区间的随机值份(ε≦1)。

对每个模式对(a k,tk)(k=1,2,...,m)的学习步骤如下:(1)将输入模式ak送到li层,li层单元的激活值ah通过连接权矩阵v送到lh层,产生lh层新的净输入netbi,进而产生lh层单元的输出值bi式中h=1,2,...,n;i=1,2,...,q。

BP神经网络原理及其MATLAB应用

BP神经网络原理及其MATLAB应用

BP神经网络原理及其MATLAB应用BP神经网络(Back Propagation Neural Network)是一种基于梯度下降算法的人工神经网络模型,具有较广泛的应用。

它具有模拟人类神经系统的记忆能力和学习能力,可以用来解决函数逼近、分类和模式识别等问题。

本文将介绍BP神经网络的原理及其在MATLAB中的应用。

BP神经网络的原理基于神经元间的权值和偏置进行计算。

一个标准的BP神经网络通常包含三层:输入层、隐藏层和输出层。

输入层负责接收输入信息,其节点数与输入维度相同;隐藏层用于提取输入信息的特征,其节点数可以根据具体问题进行设定;输出层负责输出最终的结果,其节点数根据问题的要求决定。

BP神经网络的训练过程可以分为前向传播和反向传播两个阶段。

前向传播过程中,输入信息逐层传递至输出层,通过对神经元的激活函数进行计算,得到神经网络的输出值。

反向传播过程中,通过最小化损失函数的梯度下降算法,不断调整神经元间的权值和偏置,以减小网络输出与实际输出之间的误差,达到训练网络的目的。

在MATLAB中,可以使用Neural Network Toolbox工具箱来实现BP神经网络。

以下是BP神经网络在MATLAB中的应用示例:首先,需导入BP神经网络所需的样本数据。

可以使用MATLAB中的load函数读取数据文件,并将其分为训练集和测试集:```data = load('dataset.mat');inputs = data(:, 1:end-1);targets = data(:, end);[trainInd, valInd, testInd] = dividerand(size(inputs, 1), 0.6, 0.2, 0.2);trainInputs = inputs(trainInd, :);trainTargets = targets(trainInd, :);valInputs = inputs(valInd, :);valTargets = targets(valInd, :);testInputs = inputs(testInd, :);testTargets = targets(testInd, :);```接下来,可以使用MATLAB的feedforwardnet函数构建BP神经网络模型,并进行网络训练和测试:```hiddenLayerSize = 10;net = feedforwardnet(hiddenLayerSize);net = train(net, trainInputs', trainTargets');outputs = net(testInputs');```最后,可以使用MATLAB提供的performance函数计算网络的性能指标,如均方误差、相关系数等:```performance = perform(net, testTargets', outputs);```通过逐步调整网络模型的参数和拓扑结构,如隐藏层节点数、学习率等,可以进一步优化BP神经网络的性能。

bp神经网络的应用综述

bp神经网络的应用综述

bp神经网络的应用综述近年来,人工神经网络(ANN)作为一种神经网络形式在不断发展,因其计算能力强,对现实世界较好地识别和适应能力,已得到越来越广泛的应用,其中,BP神经网络是最典型的人工神经网络之一。

BP神经网络是指以马尔可夫随机过程为基础的反向传播算法,具有自组织学习、泛化、模糊推理的特点,具有非常广泛的应用场景。

它可以用来解决实际问题。

首先,BP神经网络可以用来解决分类问题。

它可以根据给定的输入向量和输出向量,训练模型以分类相关的输入特征。

这种模型可以用来解决工业控制问题、专家系统任务等。

例如,BP神经网络可以用来识别照片中的面孔,帮助改进自动门的判断等。

此外,BP神经网络还可以用于计算机视觉,即以计算机图像识别的形式进行图像处理。

通常,计算机视觉技术需要两个步骤,即识别和分析。

在识别步骤中,BP神经网络可以被用来识别图片中的特征,例如物体的形状、大小、颜色等;在分析步骤中,BP神经网络可以用来分析和判断图片中的特征是否满足要求。

此外,BP神经网络还可以用于机器人技术。

它可以用来识别机器人环境中的物体,从而帮助机器人做出正确的动作。

例如,利用BP神经网络,机器人可以识别障碍物并做出正确的行动。

最后,BP神经网络还可以用于未来的驾驶辅助系统中。

这种系统可以利用各种传感器和摄像机,搜集周围环境的信息,经过BP神经网络分析,判断当前环境的安全程度,及时采取措施,以达到更好的安全驾驶作用。

综上所述,BP神经网络具有自组织学习、泛化、模糊推理的特点,拥有非常广泛的应用场景,可以用于分类问题、计算机视觉、机器人技术和驾驶辅助系统等。

然而,BP神经网络也存在一些问题,例如训练时间长,需要大量的训练数据,容易受到噪声攻击等。

因此,研究人员正在积极改进BP神经网络,使其能够更好地解决各种问题。

BP神经网络模型应用实例

BP神经网络模型应用实例

BP神经网络模型第1节基本原理简介近年来全球性的神经网络研究热潮的再度兴起,不仅仅是因为神经科学本身取得了巨大的进展.更主要的原因在于发展新型计算机和人工智能新途径的迫切需要.迄今为止在需要人工智能解决的许多问题中,人脑远比计算机聪明的多,要开创具有智能的新一代计算机,就必须了解人脑,研究人脑神经网络系统信息处理的机制.另一方面,基于神经科学研究成果基础上发展出来的人工神经网络模型,反映了人脑功能的若干基本特性,开拓了神经网络用于计算机的新途径.它对传统的计算机结构和人工智能是一个有力的挑战,引起了各方面专家的极大关注.目前,已发展了几十种神经网络,例如Hopficld模型,Feldmann等的连接型网络模型,Hinton等的玻尔茨曼机模型,以及Rumelhart等的多层感知机模型和Kohonen的自组织网络模型等等。

在这众多神经网络模型中,应用最广泛的是多层感知机神经网络。

多层感知机神经网络的研究始于50年代,但一直进展不大。

直到1985年,Rumelhart等人提出了误差反向传递学习算法(即BP算),实现了Minsky的多层网络设想,如图34-1所示。

BP 算法不仅有输入层节点、输出层节点,还可有1个或多个隐含层节点。

对于输入信号,要先向前传播到隐含层节点,经作用函数后,再把隐节点的输出信号传播到输出节点,最后给出输出结果。

节点的作用的激励函数通常选取S 型函数,如Qx e x f /11)(-+=式中Q 为调整激励函数形式的Sigmoid 参数。

该算法的学习过程由正向传播和反向传播组成。

在正向传播过程中,输入信息从输入层经隐含层逐层处理,并传向输出层。

每一层神经元的状态只影响下一层神经输入层 中间层 输出层 图34-1 BP 神经网络模型元的状态。

如果输出层得不到期望的输出,则转入反向传播,将误差信号沿原来的连接通道返回,通过修改各层神经元的权值,使得误差信号最小。

社含有n 个节点的任意网络,各节点之特性为Sigmoid 型。

bp神经网络在pid控制器参数整定中的应用

bp神经网络在pid控制器参数整定中的应用
BP神经网络在控制器参数整定中的应用越来越广泛。

BP神经网
络是一种人工神经网络,可以模拟人类神经系统的信息处理功能,用
于复杂系统建模和控制,在PID控制器参数整定中得到了广泛的应用。

一般来说,PID控制器由三部分组成:比例、积分和微分。

根据常
规PID控制调节策略,需要经过多次实验调整参数,以获得最佳控制
效果。

然而,传统的参数调整方法难以满足快速改变的系统和复杂的
控制系统的变化需求,因此,BP神经网络的出现为PID控制参数整定
提供了一种新的思路和手段。

BP神经网络可以用于自动调整PID参数,具有更高的效率和更好
的精度。

通过将系统模型形式化为BP神经网络,可实现基于模型的
PID调节策略,使得调节参数直接从系统模型获得,从而极大地减少参
数的调节时间。

此外,BP神经网络还可以用于故障诊断,如特征提取、特征识别和故障诊断。

可以说,BP神经网络的出现,大大提高了控制
器参数的整定效率和精度。

因此,BP神经网络已成为PID控制器参数整定的重要工具。

它不
仅可以大大提高控制参数调整效率,而且还可以更准确地预测控制系
统的行为。

同时,BP神经网络也可以用于诊断和保护,以确保系统更
加稳定和可靠。

因此,BP神经网络在PID控制器参数整定中应用广泛。

BP神经网络原理与应用实习论文

学年论文(本科)学院数学与信息科学学院专业信息与计算科学专业年级10级4班姓名徐玉琳于正平马孝慧李运凤郭双双任培培论文题目BP神经网络原理与应用指导教师冯志敏成绩2013年 9月 24日BP神经网络的原理与应用1.BP神经网络的原理1.1 BP神经网络的结构BP神经网络模型是一个三层网络,它的拓扑结构可被划分为:输入层(InputLayer )、输出层(Outp ut Layer ) ,隐含层(Hide Layer ).其中,输入层与输出层具有更重要的意义,因此也可以为两层网络结构(把隐含层划入输入层,或者把隐含层去掉)每层都有许多简单的能够执行并行运算的神经元组成,这些神经元与生物系统中的那些神经元非常类似,但其并行性并没有生物神经元的并行性高.BP神经网络的特点:1)网络由多层构成,层与层之间全连接,同一层之间的神经元无连接.2)BP网络的传递函数必须可微.因此,感知器的传递函数-——二值函数在这里没有用武之地.BP网络一般使用Sigmoid函数或线性函数作为传递函数.3)采用误差反向传播算法(Back-Propagation Algorithm)进行学习.在BP 网络中,数据从输入层隐含层逐层向后传播,训练网络权值时,则沿着减少误差的方向,从输出层经过中间各层逐层向前修正网络的连接权值.随着学习的不断进行,最终的误差越来越来小.BP神经网络的学习过程BP神经网络的学习算法实际上就是对误差函数求极小值的算法,它采用的算法是最速下降法,使它对多个样本进行反复的学习训练并通过误差的反向传播来修改连接权系数,它是沿着输出误差函数的负梯度方向对其进行改变的,并且到最后使误差函数收敛于该函数的最小点.1.3 BP网络的学习算法BP网络的学习属于有监督学习,需要一组已知目标输出的学习样本集.训练时先使用随机值作为权值,修改权值有不同的规则.标准的BP神经网络沿着误差性能函数梯度的反向修改权值,原理与LMS算法比较类似,属于最速下降法.拟牛顿算法牛顿法是一种基于二阶泰勒级数的快速优化算法.其基本方法是1(1)()()()x k x k A k g k -+=-式中 ()A k ----误差性能函数在当前权值和阀值下的Hessian 矩阵(二阶导数),即2()()()x x k A k F x ==∇牛顿法通常比较梯度法的收敛速度快,但对于前向型神经网络计算Hessian 矩阵是很复杂的,付出的代价也很大.有一类基于牛顿法的算法不需要二阶导数,此类方法称为拟牛顿法(或正切法),在算法中的Hessian 矩阵用其近似值进行修正,修正值被看成梯度的函数. 1)BFGS 算法在公开发表的研究成果中,你牛顿法应用最为成功得有Boryden,Fletcher,Goldfard 和Shanno 修正算法,合称为BFG 算法. 该算法虽然收敛所需的步长通常较少,但在每次迭代过程所需要的计算量和存储空间比变梯度算法都要大,对近似Hessian 矩阵必须进行存储,其大小为n n ⨯,这里n 网络的链接权和阀值的数量.所以对于规模很大的网络用RPROP 算法或任何一种梯度算法可能好些;而对于规模较小的网络则用BFGS 算法可能更有效. 2)OSS 算法 由于BFGS 算法在每次迭代时比变梯度算法需要更多的存储空间和计算量,所以对于正切近似法减少其存储量和计算量是必要的.OSS 算法试图解决变梯度法和拟牛顿(正切)法之间的矛盾,该算法不必存储全部Hessian 矩阵,它假设每一次迭代时与前一次迭代的Hessian 矩阵具有一致性,这样做的一个有点是,在新的搜索方向进行计算时不必计算矩阵的逆.该算法每次迭代所需要的存储量和计算量介于梯度算法和完全拟牛顿算法之间. 最速下降BP 法最速下降BP 算法的BP 神经网络,设k 为迭代次数,则每一层权值和阀值的修正按下式进行(1)()()x k x k g k α+=-式中()x k —第k 次迭代各层之间的连接权向量或阀值向量;()g k =()()E k x k ∂∂—第k 次迭代的神经网络输出误差对各权值或阀值的梯度向量.负号表示梯度的反方向,即梯度的最速下降方向;α—学习效率,在训练时是一常数.在MATLAB 神经网络工具箱中,,可以通过改变训练参数进行设置;()E K —第k 次迭代的网络输出的总误差性能函数,在MATLAB 神经网络工具箱中BP 网络误差性能函数默认值为均方误差MSE,以二层BP 网络为例,只有一个输入样本时,有2()()E K E e k ⎡⎤=⎣⎦21S≈22221()S i i i t a k =⎡⎤-⎣⎦∑ 222212,1()()()()s ii j i i j a k f w k a k b k =⎧⎫⎪⎪⎡⎤=-⎨⎬⎣⎦⎪⎪⎩⎭∑21221112,,11()(()())()s s i j i j i i i j j f w k f iw k p ib k b k ==⎧⎫⎡⎤⎛⎫⎪⎪=++⎢⎥ ⎪⎨⎬⎢⎥⎝⎭⎪⎪⎣⎦⎩⎭∑∑若有n 个输入样本2()()E K E e k ⎡⎤=⎣⎦21nS ≈22221()S ii i ta k =⎡⎤-⎣⎦∑根据公式和各层的传输函数,可以求出第k 次迭代总误差曲面的梯度()g k =()()E k x k ∂∂,分别代入式子便可以逐次修正其权值和阀值,并是总的误差向减小的方向变化,直到达到所需要的误差性能为止. 1.4 BP 算法的改进BP 算法理论具有依据可靠、推导过程严谨、精度较高、通用性较好等优点,但标准BP 算法存在以下缺点:收敛速度缓慢;容易陷入局部极小值;难以确定隐层数和隐层节点个数.在实际应用中,BP 算法很难胜任,因此出现了很多改进算.利用动量法改进BP 算法标准BP 算法实质上是一种简单的最速下降静态寻优方法,在修正W(K)时,只按照第K 步的负梯度方向进行修正,而没有考虑到以前积累的经验,即以前时刻的梯度方向,从而常常使学习过程发生振荡,收敛缓慢.动量法权值调整算法的具体做法是:将上一次权值调整量的一部分迭加到按本次误差计算所得的权值调整量上,作为本次的实际权值调整量,即:其中:α为动量系数,通常0<α<0.9;η—学习率,范围在0.001~10之间.这种方法所加的动量因子实际上相当于阻尼项,它减小了学习过程中的振荡趋势,从而改善了收敛性.动量法降低了网络对于误差曲面局部细节的敏感性,有效的抑制了网络陷入局部极小.自适应调整学习速率标准BP算法收敛速度缓慢的一个重要原因是学习率选择不当,学习率选得太小,收敛太慢;学习率选得太大,则有可能修正过头,导致振荡甚至发散.可采用图所示的自适应方法调整学习率.调整的基本指导思想是:在学习收敛的情况下,增大η,以缩短学习时间;当η偏大致使不能收敛时,要及时减小η,直到收敛为止.动量-自适应学习速率调整算法采用动量法时,BP算法可以找到更优的解;采用自适应学习速率法时,BP算法可以缩短训练时间.将以上两种方法结合起来,就得到动量-自适应学习速率调整算法.1. L-M学习规则L-M(Levenberg-Marquardt)算法比前述几种使用梯度下降法的BP算法要快得多,但对于复杂问题,这种方法需要相当大的存储空间L-M(Levenberg-Marquardt)优化方法的权值调整率选为:其中:e —误差向量;J —网络误差对权值导数的雅可比(Jacobian )矩阵;μ—标量,当μ很大时上式接近于梯度法,当μ很小时上式变成了Gauss-Newton 法,在这种方法中,μ也是自适应调整的. 1.5 BP 神经网络的设计 网络的层数输入层节点数取决于输入向量的维数.应用神经网络解决实际问题时,首先应从问题中提炼出一个抽象模型,形成输入空间和输出空间.因此,数据的表达方式会影响输入向量的维数大小.例如,如果输入的是64*64的图像,则输入的向量应为图像中所有的像素形成的4096维向量.如果待解决的问题是二元函数拟合,则输入向量应为二维向量.理论上已证明:具有偏差和至少一个S 型隐含层加上一个线性输出层的网络,能够逼近任何有理数.增加层数可以更进一步的降低误差,提高精度,但同时也使网络复杂化,从而增加了网络权值的训练时间.而误差精度的提高实际上也可以通过增加神经元数目来获得,其训练效果也比增加层数更容易观察和调整.所以一般情况下,应优先考虑增加隐含层中的神经元数. 隐含层的神经元数网络训练精度的提高,可以通过采用一个隐含层,而增加神经元数了的方法来获得.这在结构实现上,要比增加隐含层数要简单得多.那么究竟选取多少隐含层节点才合适?这在理论上并没有一个明确的规定.在具体设计时,比较实际的做法是通过对不同神经元数进行训练对比,然后适当地加上一点余量.1)0niMi C k =>∑,k 为样本数,M 为隐含层神经元个数,n 为输入层神经元个数.如i>M,规定C i M =0.2)和n 分别是输出层和输入层的神经元数,a 是[0.10]之间的常量.3)M=2log n ,n 为输入层神经元个数.初始权值的选取由于系统是非线性的,初始值对于学习是否达到局部最小、是否能够收敛及训练时间的长短关系很大.如果初始值太大,使得加权后的输入和n落在了S型激活函数的饱和区,从而导致其导数f (n)非常小,从而使得调节过程几乎停顿下来.所以一般总是希望经过初始加权后的每个神经元的输出值都接近于零,这样可以保证每个神经元的权值都能够在它们的S型激活函数变化最大之处进行调节.所以,一般取初始权值在(-1,1)之间的随机数.学习速率学习速率决定每一次循环训练中所产生的权值变化量.大的学习速率可能导致系统的不稳定;但小的学习速率导致较长的训练时间,可能收敛很慢,不过能保证网络的误差值不跳出误差表面的低谷而最终趋于最小误差值.所以在一般情况下,倾向于选取较小的学习速率以保证系统的稳定性.学习速率的选取范围在0.01-0.8之间.1.6BP神经网络局限性需要参数多且参数选择没有有效的方法对于一些复杂问题 ,BP 算法可能要进行几小时甚至更长的时间训练,这主要是由于学习速率太小所造成的.标准BP 网络学习过程缓慢,易出现平台,这与学习参数率l r的选取有很大关系.当l r较时,权值修改量大,学习速率也快,但可能产生振荡;当l r较小时,虽然学习比较平稳,但速度十分缓慢.容易陷入局部最优BP网络易陷入局部最小, 使 BP网络不能以高精度逼近实际系统.目前对于这一问题的解决有加入动量项以及其它一些方法.BP 算法本质上是以误差平方和为目标函数 , 用梯度法求其最小值的算法.于是除非误差平方和函数是正定的, 否则必然产生局部极小点, 当局部极小点产生时 , BP算法所求的就不是解.1.6.3 样本依赖性这主要表现在网络出现的麻痹现象上.在网络的训练过程中,如其权值调的过大,可能使得所有的或大部分神经元的加权值偏大,这使得激活函数的输入工作在S型转移函数的饱和区,从而导致其导函数非常小,使得对网络权值的调节过程几乎停顿下来.通常为避免这种现象的发生,一是选取较小的初始权值,二是采用较小的学习速率,但又要增加时间训练.初始权敏感对于一些复杂的问题,BP算法可能要进行几个小时甚至更长时间的训练.这主要是由于学习速率太小造成的.可采用变化的学习速率或自适应的学习速率来加以改进.2.BP神经网络应用2.1 手算实现二值逻辑—异或这个例子中,采用手算实现基于BP网络的异或逻辑.训练时采用批量训练的方法,训练算法使用带动量因子的最速下降法.在MATLAB中新建脚本文件main_xor.m,输入代码如下:%脚本%批量训练方式.BP网络实现异或逻辑%%清理clear allclcrand('seed',2)eb = 0.01; %误差容限eta = 0.6; %学习率mc = 0.8; %动量因子maxiter = 1000; %最大迭代次数%% 初始化网络nSampNum = 4;nSampDim = 2;nHidden = 3;nOut = 1;w = 2*(rand(nHidden,nSampDim)-1/2);b = 2*(rand(nHidden,1)-1/2);wex = [w,b];W = 2*(rand(nOut,nHidden)-1/2);B = 2*(rand(nOut,1)-1/2);WEX = [W,B];%%数据SampIn=[0,0,1,1;...0,1,0,1;…1,1,1,1];expected = [0,1,1,0];%%训练iteration = 0;errRec = [];outRec =[];for i = 1:maxiter% 工作信号正向传播hp = wex*SampIn;tau = logsig(hp);tauex = [tau',1*ones(nSampNum,1)]';HM = WEX*tauex;out = logsig(HM);outRec = [outRec,out'];err = expected - out;sse = sumsqr(err);errRec = [errRec,sse];fprintf('第%d 次迭代,误差:%f \n',i,sse);% 判断是否收敛iteration = iteration + 1;if sse <= ebbreak;end% 误差信号反向传播% DELTA 和delta 为局部梯度DELTA = err.*dlogsig(HM,out);delta = W' * DELTA.*dlogsig(hp,tau);dWEX = DELTA*tauex';dwex = delta*SampIn';% 更新权值if i == 1WEX = WEX + eta*dWEX;wex = wex + eta*dwex;elseWEX = WEX + (1-mc)*eta*dWEX + mc*dWEXold;wex = wex + (1-mc)*eta*dwex+mc*dwexold;enddWEXold = dWEX;dwexold = dwex;W = WEX(:,1:nHidden);end%%显示figure(1)grid[nRow,nCol]=size(errRec);semilogy(1:nCol,errRec,'LineWidth',1.5);title('误差曲线');xlabel('迭代次数');x=-0.2:.05:1.2;[xx,yy] = meshgrid(x);for i=1:length(xx)for j=1:length(yy)xi=[xx(i,j),yy(i,j),1];hp = wex*xi';tau = logsig(hp);tauex = [tau',1]';HM = WEX*tauex;out = logsig(HM);z (i,j) =out;endendfigure(2)mesh(x,x,z);figure(3)plot([0,1],[0,1],'*','LineWidth',2);hold onplot([0,1],[1,0],'O','LineWidth',2);[c,h]=contour(x,x,z,0.5,'b');clabel(c,h);legend('0','1','分类面');title('分类面')2.2 误差下降曲线如下图所示:Finger 1010*******400500600700800900100010-210-110误差曲线迭代次数网格上的点在BP 网络映射下的输出如下图:Finger 2异或本质上是一个分类问题,,分类面如图:Finger 3分类面-0.200.20.40.60.81 1.2本文介绍了神经网络的研究背景和现状,分析了目前神经网络研究中存在的问题.然后描述了BP神经网络算法的实现以及BP神经网络的工作原理,给出了BP网络的局限性.本文虽然总结分析了BP神经网络算法的实现,给出了实例分析,但是还有很多的不足.所总结的BP神经网络和目前研究的现状都还不够全面,经过程序调试的图形有可能都还存在很多细节上的问题,而图形曲线所实现效果都还不够好,以及结果分析不够全面、正确、缺乏科学性等,这些都还是需加强提高的.近几年的不断发展,神经网络更是取得了非常广泛的应用,和令人瞩目的发展.在很多方面都发挥了其独特的作用,特别是在人工智能、自动控制、计算机科学、信息处理、机器人、模式识别等众多方面的应用实例,给人们带来了很多应用上到思考,和解决方法的研究.但是神经网络的研究最近几年还没有达到非常热门的阶段,这还需有很多热爱神经网络和研究神经网络人员的不断研究和创新,在科技高度发达的现在,我们有理由期待,也有理由相信.我想在不久的将来神经网络会应用到更多更广的方面,人们的生活会更加便捷.学年论文成绩评定表。

BP网络的原理与应用

BP网络的原理与应用1. 简介BP神经网络,即反向传播神经网络(Back Propagation Neural Network),是一种常见的人工神经网络模型,广泛应用于模式识别、分类、预测等领域。

它通过训练数据进行反向传播的方式来调整神经网络的权重和偏置,从而实现对输入数据的学习和预测。

2. 原理BP神经网络由输入层、隐藏层和输出层构成,每层由多个神经元组成。

其中,输入层接收外界输入的数据,隐藏层进行信号的处理和转换,最终输出层给出模型的预测结果。

BP网络的训练过程主要由两个阶段组成:前向传播和反向传播。

2.1 前向传播在前向传播阶段,输入数据经过一次性的计算和传递,从输入层逐层向前,最终记录到输出层的神经元中。

具体步骤如下: 1. 将输入数据传递给输入层神经元,每个神经元计算输入数据与其对应权重和偏置的乘积之和。

2. 将计算结果经过激活函数(如Sigmoid函数)进行处理,得到隐藏层神经元的输出。

3. 重复以上步骤,将隐藏层的输出作为下一层的输入,直到传递到输出层。

2.2 反向传播在反向传播阶段,根据训练数据与实际输出之间的差距,计算输出误差,并根据误差大小调整权重和偏置,以达到提高网络性能的目的。

具体步骤如下: 1. 计算输出层的误差,即实际输出与训练数据的差值。

2. 通过链式法则逐层计算隐藏层的误差,以及权重和偏置的调整值。

3. 更新每个神经元的权重和偏置,通过选择合适的优化算法(如梯度下降法)进行调整。

4. 重复以上步骤,通过多次迭代,不断减小预测误差和损失函数,提高网络的精确度和泛化能力。

3. 应用BP神经网络广泛应用于许多领域,如图像识别、语音识别、文本分类、金融预测等。

下面列举一些常见的应用场景:•图像识别:通过训练大量图像数据,可以实现对不同物体、人脸等的自动识别和分类。

•语音识别:通过训练大量语音数据,可以实现对语音信号的识别和转换,用于语音助手、智能家居等。

•文本分类:通过训练大量文本数据,可以实现对文本内容的分类和情感分析,用于垃圾邮件过滤、情感识别等。

BP神经网络的简要介绍及应用

BP神经网络的简要介绍及应用BP神经网络(Backpropagation Neural Network,简称BP网络)是一种基于误差反向传播算法进行训练的多层前馈神经网络模型。

它由输入层、隐藏层和输出层组成,每层都由多个神经元(节点)组成,并且每个神经元都与下一层的神经元相连。

BP网络的训练过程可以分为两个阶段:前向传播和反向传播。

前向传播时,输入数据从输入层向隐藏层和输出层依次传递,每个神经元计算其输入信号的加权和,再通过一个激活函数得到输出值。

反向传播时,根据输出结果与期望结果的误差,通过链式法则将误差逐层反向传播至隐藏层和输入层,并通过调整权值和偏置来减小误差,以提高网络的性能。

BP网络的应用非常广泛,以下是一些典型的应用领域:1.模式识别:BP网络可以用于手写字符识别、人脸识别、语音识别等模式识别任务。

通过训练网络,将输入样本与正确的输出进行匹配,从而实现对未知样本的识别。

2.数据挖掘:BP网络可以用于分类、聚类和回归分析等数据挖掘任务。

例如,可以用于对大量的文本数据进行情感分类、对客户数据进行聚类分析等。

3.金融领域:BP网络可以用于预测股票价格、外汇汇率等金融市场的变动趋势。

通过训练网络,提取出对市场变动有影响的因素,从而预测未来的市场走势。

4.医学诊断:BP网络可以用于医学图像分析、疾病预测和诊断等医学领域的任务。

例如,可以通过训练网络,从医学图像中提取特征,帮助医生进行疾病的诊断。

5.机器人控制:BP网络可以用于机器人的自主导航、路径规划等控制任务。

通过训练网络,机器人可以通过感知环境的数据,进行决策和规划,从而实现特定任务的执行。

总之,BP神经网络是一种强大的人工神经网络模型,具有较强的非线性建模能力和适应能力。

它在模式识别、数据挖掘、金融预测、医学诊断和机器人控制等领域有广泛的应用,为解决复杂问题提供了一种有效的方法。

然而,BP网络也存在一些问题,如容易陷入局部最优解、训练时间较长等,因此在实际应用中需要结合具体问题选择适当的神经网络模型和训练算法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西南大学电子信息工程学院2014级研究生文献阅读报告报告题目:基于MATLAB的BP神经网络应用研究生姓名:代祥光学号 012014333000272 研究生类别: 1. 博士生 2. 学术型硕士生 3. 专业型硕士生评语:成绩任课教师评阅时间基于MATLAB的BP神经网络应用摘要:本文首先说明课题研究的目的和意义,评述课题的国内外研究现状,引出目前存在的问题。

然后分析了神经网络算法的基本原理,给出经典神经网络算法的具体实现方法,总结神经网络算法的特点,并给出神经网络算法的基本流程。

采用Matlab软件编程实现BP神经网络算法。

将神经网络算法应用于函数逼近和样本含量估计问题中,并分析相关参数对算法运行结果的影响。

最后对BP神经网络算法进行了展望。

关键词:神经网络;BP神经网络;函数逼近BP Neural Network And Application based on MATLABAbstract: First, the research purpose and significance of neural network is expound in this article. Commentary studies current situation at the problem home and abroad. Leads to the existing problems, and then have analysed algorithmic basal principle of neural networks, give algorithmic concre of classics neural networks out the realization method.Summing up the characteristics of neural network algorithm. Neural network algorithm is given the basic processes. The arithmetic of BP neural network is realized in Matlab software. The algorithm applies of BP neural networks to the function approximation problem and compute theswatch content.And analysis of relevant parameters on the results of algorithm.Finally, The BP neural network algorithm is Outlook.Key word:neural network ; BP neural network; function approximation1绪论人工神经网络(Artificial Neural Networks,NN)是由大量的、简单的处理单元(称为神经元)广泛地互相连接而形成的复杂网络系统,它反映了人脑功能的许多基本特征,是一个高度复杂的非线性动力学系统[1]。

神经网络具有大规模并行、分布式存储和处理、自组织、自适应和自学习能力,特别适合处理需要同时考虑许多因素和条件的、不精确和模糊的信息处理问题。

神经网络的发展与神经科学、数理科学、认知科学、计算机科学、人工智能、信息科学、控制论、机器人学、微电子学、心理学、微电子学、心理学、光计算、分子生物学等有关,是一门新兴的边缘交叉学科。

神经网络具有非线性自适应的信息处理能力,克服了传统人工智能方法对于直觉的缺陷,因而在神经专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用[2]。

神经网络与其他传统方法相组合,将推动人工智能和信息处理技术不断发展。

近年来,神经网络在模拟人类认知的道路上更加深入发展,并与模糊系统、遗传算法、进化机制等组合,形成计算智能,成为人工智能的一个重要方向。

MATLAB是一种科学与工程计算的高级语言,广泛地运用于包括信号与图像处理,控制系统设计,系统仿真等诸多领域。

为了解决神经网络问题中的研究工作量和编程计算工作量问题,目前工程领域中较为流行的软件MA TLAB,提供了现成的神经网络工具箱(Neural Network Toolbox,简称NNbox)[3],为解决这个矛盾提供了便利条件。

神经网络工具箱提供了很多经典的学习算法,使用它能够快速实现对实际问题的建模求解。

在解决实际问题中,应用MA TLAB 语言构造典型神经网络的激活传递函数,编写各种网络设计与训练的子程序,网络的设计者可以根据需要调用工具箱中有关神经网络的设计训练程序,使自己能够从烦琐的编程中解脱出来,减轻工程人员的负担,从而提高工作效率。

1.1人工神经网络的研究背景和意义人工神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应[5]。

人工神经网络就是模拟人思维的一种方式,是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。

虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。

近年来通过对人工神经网络的研究,可以看出神经网络的研究目的和意义有以下三点:(1)通过揭示物理平面与认知平面之间的映射,了解它们相互联系和相互作用的机理,从而揭示思维的本质,探索智能的本源。

(2)争取构造出尽可能与人脑具有相似功能的计算机,即神经网络计算机。

(3)研究仿照脑神经系统的人工神经网络,将在模式识别、组合优化和决策判断等方面取得传统计算机所难以达到的效果。

人工神经网络特有的非线性适应性信息处理能力,克服了传统人工智能方法对于直觉,如模式、语音识别、非结构化信息处理方面的缺陷,使之在神经专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用。

人工神经网络与其它传统方法相结合,将推动人工智能和信息处理技术不断发展。

近年来,人工神经网络正向模拟人类认知的道路上更加深入发展,与模糊系统、遗传算法、进化机制等结合,形成计算智能,成为人工智能的一个重要方向,将在实际应用中得到发展。

将信息几何应用于人工神经网络的研究,为人工神经网络的理论研究开辟了新的途径。

神经计算机的研究发展很快,已有产品进入市场。

光电结合的神经计算机为人工神经网络的发展提供了良好条件。

1.2神经网络的发展与研究现状1.2.1神经网络的发展神经网络起源于20世纪40年代,至今发展已半个多世纪,大致分为三个阶段【7】。

1)20世纪50年代-20世纪60年代:第一次研究高潮自1943年M-P模型开始,至20世纪60年代为止,这一段时间可以称为神经网络系统理论发展的初期阶段。

这个时期的主要特点是多种网络的模型的产生与学习算法的确定。

2)20世纪60年代-20世纪70年代:低潮时期到了20世纪60年代,人们发现感知器存在一些缺陷,例如,它不能解决异或问题,因而研究工作趋向低潮。

不过仍有不少学者继续对神经网络进行研究。

Grossberg提出了自适应共振理论;Kohenen提出了自组织映射;Fukushima提出了神经认知网络理论;Anderson提出了BSB模型;Webos提出了BP理论等。

这些都是在20世纪70年代和20世纪80年代初进行的工作。

3)20世纪80年代-90年代:第二次研究高潮进入20世纪80年代,神经网络研究进入高潮。

这个时期最具有标志性的人物是美国加州工学院的物理学家John Hopfield。

他于1982年和1984年在美国科学院院刊上发表了两篇文章,提出了模拟人脑的神经网络模型,即最著名的Hopfield模型。

Hopfield网络是一个互连的非线性动力学网络,它解决问题的方法是一种反复运算的动态过程,这是符号逻辑处理方式做不具备的性质。

20世纪80年代后期到90年代初,神经网络系统理论形成了发展的热点,多种模型、算法和应用被提出,研究经费重新变得充足,使得研究者们完成了很多有意义的工作。

1.2.2神经网络的现状进入20世纪90年代以来,神经网络由于应用面还不够宽,结果不够精确,存在可信度问题,从而进入了认识与应用研究期。

1)开发现有模型的应用,并在应用中根据实际运行情况对模型、算法加以改造,以提高网络的训练速度和运行的准确度。

2)充分发挥两种技术各自的优势是一个有效方法。

3)希望在理论上寻找新的突破,建立新的专用/通用模型和算法。

4)进一步对生物神经系统进行研究,不断地丰富对人脑的认识。

1.3神经网络的研究内容和目前存在的问题1.3.1神经网络的研究内容神经网络的研究内容相当广泛,反映了多科学交叉技术领域的特点。

目前,主要的研究工作集中在以下四方面[6]:(1)生物原型研究:从生理学、心理学、解剖学、脑科学、病理学生物科学方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。

(2)建立理论模型:根据生物圆形的研究,建立神经元、神经网络的理论模型,其中包括概念模型、知识模型、物理化学模型、数学模型等。

(3)网络模型与算法研究:在理论模型研究的基础上构成具体的神经网络模型,以实现计算机模拟或准备制作硬件,包括网络学习算法的研究。

这方面的工作也称为技术模型研究。

(4)神经网络应用系统:在网络模型与算法研究的基础上,利用神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功能、构成专家系统、制成机器人等。

1.3.2神经网络研究目前存在的问题人工神经网络的发展具有强大的生命力。

当前存在的问题是智能水平还不高,许多应用方面的要求还不能得到很好的满足;网络分析与综合的一些理论性问题还未得到很好的解决。

例如,由于训练中稳定性的要求学习率很小,所以梯度下降法使得训练很忙动量法因为学习率的提高通常比单纯的梯度下降法要快,但在实际应用中还是很慢[7]。

针对千变万化的应用对象,各类复杂的求解问题,编制一些特定的程序、软件求解,耗费了大量的人力和物力。

而这些软件往往只针对某一方面的问题有效,并且在人机接口、用户友好性等诸多方面存在一定的缺陷。

在微机飞速发展的今天,很多都已不能满足发展的需要。

1.4神经网络的应用神经网络理论的应用取得了令人瞩目的发展,特别是在人工智能、自动控制、计算机科学、信息处理、机器人、模式识别、CAD/CAM等方面都有重大的应用实例。

下面列出一些主要应用领域[4]:(1)模式识别和图像处理。

印刷体和手写字符识别、语音识别、签字识别、指纹识别、人体病理分析、目标检测与识别、图像压缩和图像复制等。

(2)控制和优化。

化工过程控制、机器人运动控制、家电控制、半导体生产中掺杂控制、石油精炼优化控制和超大规模集成电路布线设计等。

相关文档
最新文档