常见晶体标准电子衍射花样
合集下载
第十二章 电子衍射3

第三章 电子衍射
概述 电子衍射原理 电子显微镜中的电子衍射 单晶体电子衍射花样标定 复杂电子衍射花样
1
概
述
透射电镜的主要特点是可以进行组织形貌与晶体 结构同位分析。 在成像操作中,是使中间镜的物平面与物镜像平 面重合,在观察屏上得到的是反映样品组织形态 的形貌图像; 在衍射操作中,是使中间镜的物平面与物镜背焦 面重合,在观察屏上得到的则是反映样品晶体结 构的衍射斑点。 电子衍射的原理和X射线衍射相似,是以满足 (或基本满足)Bragg方程作为产生衍射的必要 条件。两种衍射技术得到的衍射花样在几何特征 2 上也的电子衍射花样是一系列不同半径 的同心圆环。
3
单晶体电子衍射花样
单晶体的电子衍射花样由排列的十分整齐 的许多斑点组成。
4
非晶体电子衍射花样
非晶态物质的电子衍射花样只有一个漫 散的中心斑点。
5
电子衍射的特点1 电子衍射的特点1
电子束波长短,其衍射谱可视为倒易点阵的二维 截面,使晶体几何关系的研究变得简单方便。 电子束与晶体相互作用时,其原子散射因子比X 射线的原子散射因子约大一万倍,故在荧光屏上 可以清晰的看见衍射花样,暴光时间短,只需数 秒即可。 电子衍射谱强度Ie与原子序数Z接近线性关系, 轻重原子对电子散射本领的差别小;而X射线衍 射谱强度Ix与Z2有关,因此电子衍射有助于寻找 轻原子的位置。
35
偏离矢量
偏离矢量S 即倒易杆中心与爱瓦尔德球面交 截点的距离。 ∆θ为正时,S矢量为正,反之为负。 精确符合Bragg条件时,∆θ=0,S=0
36
影响倒易点与爱瓦尔德球面 相截的因素
晶体形状的影响 晶体不完整性的影响 入射束发散度的影响 波长变化的影响
37
电子衍射花样形成原理
概述 电子衍射原理 电子显微镜中的电子衍射 单晶体电子衍射花样标定 复杂电子衍射花样
1
概
述
透射电镜的主要特点是可以进行组织形貌与晶体 结构同位分析。 在成像操作中,是使中间镜的物平面与物镜像平 面重合,在观察屏上得到的是反映样品组织形态 的形貌图像; 在衍射操作中,是使中间镜的物平面与物镜背焦 面重合,在观察屏上得到的则是反映样品晶体结 构的衍射斑点。 电子衍射的原理和X射线衍射相似,是以满足 (或基本满足)Bragg方程作为产生衍射的必要 条件。两种衍射技术得到的衍射花样在几何特征 2 上也的电子衍射花样是一系列不同半径 的同心圆环。
3
单晶体电子衍射花样
单晶体的电子衍射花样由排列的十分整齐 的许多斑点组成。
4
非晶体电子衍射花样
非晶态物质的电子衍射花样只有一个漫 散的中心斑点。
5
电子衍射的特点1 电子衍射的特点1
电子束波长短,其衍射谱可视为倒易点阵的二维 截面,使晶体几何关系的研究变得简单方便。 电子束与晶体相互作用时,其原子散射因子比X 射线的原子散射因子约大一万倍,故在荧光屏上 可以清晰的看见衍射花样,暴光时间短,只需数 秒即可。 电子衍射谱强度Ie与原子序数Z接近线性关系, 轻重原子对电子散射本领的差别小;而X射线衍 射谱强度Ix与Z2有关,因此电子衍射有助于寻找 轻原子的位置。
35
偏离矢量
偏离矢量S 即倒易杆中心与爱瓦尔德球面交 截点的距离。 ∆θ为正时,S矢量为正,反之为负。 精确符合Bragg条件时,∆θ=0,S=0
36
影响倒易点与爱瓦尔德球面 相截的因素
晶体形状的影响 晶体不完整性的影响 入射束发散度的影响 波长变化的影响
37
电子衍射花样形成原理
单晶体电子衍射花样标定

指数计算值和测量值误差为1.06°,标定正确。如果这里的检验误差过大,表明标定错误,
应该从确定四边形开始,重新标定花样。
15
6. 求晶带轴指数 通过A和C(或B)点的指数求出晶带轴指数;按下列顺序写出A、
C指数
1) 膜面向上
011011
2) 逆时针:g1-g2
211211
0 2 -2 即: [uvw] = [ 01 1 ] ,
19
电子衍射要点
1 反射球切倒易杆 2 花样标定
结构振幅(强度)加权、 偏离矢量 晶体厚度
基本步骤
1]特征四边形 2]d值测量计算 3]卡片-族指数 4]斑点A指数 5]B点指数 C点指数 7]校核 8]求晶带轴 9]标写
已知条件
1 Lλ = Rd 2 PDF 卡片 2 晶面夹角公式:7个晶系 3 材料和工艺: 可能相
(h2k2l2)
(h1k1l1)
在倒空间的一个平面上/组成 一个倒易平面
倒易平面的法线就是晶带轴
电子束入射方向//晶带轴 B=[UVW]
17
211 200
011 000
B = [011 ]
211 200
011 000
B = [011 ]
18
7.其它倒易点指数
000
倒易平面
1) 对称 2)矢量相加
14
5 对标定指数进行检验 C点的指数是由A点和B点指数得来的,如果标定正确,C点的指数同A(或B 点)的指数也应该符合晶面夹角公式。把C点和A点指数带入晶面夹角公式:
cos2
0 2 1111
3
02 12 12 22 12 12 3
2 54.74 °
夹角测量值:
2 = (R1∧R3)=55.8°
第4章 电子衍射PPT课件

2
f {1 exp[i(h k l)]}
当 h+k +l = 偶数时, F = 2f , I 4 f 2
当 h+k+l = 奇数时, F = 0, I = 0
体心晶胞当 h+k +l = 偶数时,衍射强度不为零 当h+k+l = 奇数时消光。
(4) 面心晶胞
一个晶胞内有四个同种原子,分别位于000, 1 1 0, 1 0 1 ,0 1 1
第4章 电子衍射
透射电镜的最大特点是既可 以得到电子显微像又可以得到电 子衍射花样。晶体样品的微观组 织特征和微区晶体学性质可以在 同一台仪器中得到反映。
电子束 试样
物镜 物镜后焦面
微区晶体学性质 电子衍射花样
物镜像平面
微观组织
电子衍射实验得出:
多晶体
单晶体
非晶体 菊 池 线
问题的提出
这些点、环、线对携带着晶 体结构信息,对这些点、环、线 对等怎样进行分析,需要对电子 衍射基本知识有所了解。
底心晶胞h, k为全偶、全奇时衍射强度不为零。 h, k为奇偶混合时消光。
(3)体心晶胞
一个晶胞内有两个同种原子,分别位于 000 和 1 1 1
222
½½ ½
000
体心晶胞 F(hkl) 的计算
一个晶胞内有两个同种原子,分别位于 000 和 1 1 1
则
222
F (hkl) f exp[2i(o)] f exp[2i( h k l )]
可以用倒易矢量g来表示。
g
ha
*
kb *
lc
*
a*, b*, c*为倒空间的基矢量,hkl为倒易点 的坐标,即相应的衍射晶面指数。
f {1 exp[i(h k l)]}
当 h+k +l = 偶数时, F = 2f , I 4 f 2
当 h+k+l = 奇数时, F = 0, I = 0
体心晶胞当 h+k +l = 偶数时,衍射强度不为零 当h+k+l = 奇数时消光。
(4) 面心晶胞
一个晶胞内有四个同种原子,分别位于000, 1 1 0, 1 0 1 ,0 1 1
第4章 电子衍射
透射电镜的最大特点是既可 以得到电子显微像又可以得到电 子衍射花样。晶体样品的微观组 织特征和微区晶体学性质可以在 同一台仪器中得到反映。
电子束 试样
物镜 物镜后焦面
微区晶体学性质 电子衍射花样
物镜像平面
微观组织
电子衍射实验得出:
多晶体
单晶体
非晶体 菊 池 线
问题的提出
这些点、环、线对携带着晶 体结构信息,对这些点、环、线 对等怎样进行分析,需要对电子 衍射基本知识有所了解。
底心晶胞h, k为全偶、全奇时衍射强度不为零。 h, k为奇偶混合时消光。
(3)体心晶胞
一个晶胞内有两个同种原子,分别位于 000 和 1 1 1
222
½½ ½
000
体心晶胞 F(hkl) 的计算
一个晶胞内有两个同种原子,分别位于 000 和 1 1 1
则
222
F (hkl) f exp[2i(o)] f exp[2i( h k l )]
可以用倒易矢量g来表示。
g
ha
*
kb *
lc
*
a*, b*, c*为倒空间的基矢量,hkl为倒易点 的坐标,即相应的衍射晶面指数。
电子衍射及衍射花样标定精品文档

4.单晶电子衍射花样标定
5)任取不在同直线上的两个斑点 (如h1k1l1和h2k2l2 ) 确定晶带轴指数[uvw]。
求晶带轴指数:逆时针法则
h2k2l2
排列按逆时针
h1k1l1
[ uvw ] R 1 R 2 h1 k1 l1 h1 k1 l1 h2 k2 l2 h2 k2 l2
17.46mm,20.06mm,28.64mm,33.48mm;对应指数 (111),(200),(220),(311); 对应面间距d分别为 0.2355nm,0.2039nm,0.1442nm,0.1230nm
K=Rd
2.电子显微镜中的电子衍射
选区电子衍射
选区衍射就是在样品上选择一个感兴趣的区域,并限制其大小,得 到该微区电子衍射图的方法。也称微区衍射。两种方法:
4 5.05
8 10.1
8
10
220 310
220 301
验证 g 110 g 211 73 1 3
11 0 1 1 0
晶带轴为 113[ ],或倒易1面 13) 为 (
21 1 2 11
此为体心立方, 数a点 0阵 .3常 88nm
11 3
4.单晶电子衍射花样标定
例2:下图为某物质的电子衍射花样 ,试指标化并求其晶 胞参数和晶带方向。
3)会聚束花样:会聚束与单晶作用产生盘、线状花样;可以 用来确定晶体试样的厚度、强度分布、取向、点群、空间
群以及晶体缺陷等。
1.电子衍射的原理
入射束
厄瓦尔德球
o
试样
1 2q 1
L1d GFra bibliotek倒易点阵
o
G 底板
R
电子衍射花样形成示意图
05第三章 电子衍射(TEM)1101

第二十八页,课件共有53页
电子衍射示意图
θ= λ/2d, θ≈ 10-2弧度 入射束近似平行(hkl) K =1/ λ 远比 d大,
倒易面(与反射球相交处)近似平面
λ= 2dsin θ =dR/L K= λL
d= K/R
R (L)g Kg
Rhkl g hkl
第二十九页,课件共有53页
第四节 多晶电子衍射花样及其标定
体心立方 ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨
N=h2+k2+l2
18
20 22 24 26
{hkl} 411,330 420 332 422 510
体心立方
∨
∨∨∨∨
第二十六页,课件共有53页
(不消光的N值)
第二十七页,课件共有53页
第三节 相机常数公式
(电子衍射“放大”公式)
1. Rhkl Kg hkl
2、消光定律: (考虑不消光的晶面)
满足Fhkl≠0的(hkl)
3、晶带轴定理:
hu+kv+lw=0
第二页,课件共有53页
电子衍射
多晶衍射:一组同心圆环 单晶衍射:周期性规则排列的斑点
第三页,课件共有53页
电子衍射简介1
• 金属和其它晶体物质是由原子,离子或原子集团在三维空间内周期性地有规 则排列的质点对具有适当波长的辐射波(如X射线、电子或中子)的弹性相干散 射,将产生衍射现象,在某些确定的方向上;散射波因位相相同而彼此加强,而 在其它方向上散射波的强度很弱或等于零。电子显微镜的照明系统提供了一束波 长恒定的单色平面波,因而自然地具备着用它对晶体样品进行电子衍射分析的条 件。
• 傅立叶变换: • F(x)=a0+a1x1+a2x2+a3x3+a4x4+a5x5+.…+
电子衍射原理

( )表示平面,*表示倒易, 0表示零 层倒易面。
这个倒易平面的法线即正空间晶带轴 [uvw]的方向,倒易平面上各个倒易点分别 0 代表着正空间的相应晶面。
五、晶带定律与零层倒易截面
r
g
r g 0
g
ha
*
kb *
1c
*
r ua vb wc
∴ hu kv lw 0
标定衍射花样时,根据对待标定相信息的了解程度,相应有不同的方法。 一般,主要有以下几种方法:
指数直接标定法: 已知相机常数和样品晶体结构时衍射花样的标定
尝试-校核法: 相机常数未知、晶体结构已知时衍射花样的标定 相机常数已知、晶体结构未知时衍射花样的标定
标准花样对照法: 相机常数未知、晶体结构未知时衍射花样的标定
四、倒易点阵与爱瓦尔德球图解法 倒易空间单位矢量
倒易空间的三个基本矢量记为a*, b*, c*。为了与倒易空
间相区别,把晶体实际所在的点阵叫做正点阵,它所在的空
间叫正空间,正空间的三个基本矢量为a* a,bVbc,b*c。 cV
a
c*
a
b
V
c*
式中, V是正空间单位晶胞的体积。
011
a=b=c=0.1nm
四、倒易点阵与爱瓦尔德球图解法 倒易点阵的性质
3、ghkl的长度为正点阵中(hkl)晶面间距的倒数。g =1/dhkl 4、对于正交点阵。
a*∥a, b*∥b, c*∥c a*=1/a , b*=1/b, c*=1/c
5、只有在立方点阵中,晶面的法相和同指数的晶向是重合的。
sade
SADE
03 电子衍射花样分析
2) 多晶衍射花样
多晶电子衍射图是一 系列同心圆环,圆环 的半径与衍射面的面 间距有关。
NiFe多晶纳米薄膜的电子衍射源自SADE03 电子衍射花样分析
多晶电子衍射花样分析 测量各个衍射环的半径ri; 计算各ri2 并找出整数比值规律,估计所鉴定 材料的晶体结构或点阵类型; 用公式ridi=Lλ计算di; 估计各衍射环的相对强度,由三强线的d值 查ASTM卡索引找出最符合的几张卡片再核 算d值和相对强度,并参照实际情况确定物 相。
SADE
选区电子衍射原理示意图
SADE
02 选区电子衍射(SAED)基本原理
选区电子衍射分析技术特点 1、晶体样品形貌特征和微区晶体学性质得到同时反映; 2、电子衍射花样直观反映晶体的点阵结构和晶体取向; 3、电子衍射花样: 单晶体—排列整齐的斑点; 多晶体—不同半径的同心圆环;
SADE
SADE
03 电子衍射花样分析
3) 非晶态物质衍射花样
SADE
SADE
THANKS
SADE
准花样就是各种晶体点阵主要晶带的倒易截面,它可以根据晶带定理和相应 晶体点阵的消光规律绘出(二维倒易面的画法)。
由近及远测定各个斑点的R值; 根据衍射基本公式R=λL/d求出相应晶面间距; 查ASTM卡片,找出对应的物相和{hkl}指数; 确定(hkl),求晶带轴指数; 因为电子显微镜的精度有限,很可能出现几张卡片上d值均和测定 的d值相近,此时应根据待测晶体的其它资料,如化学成份等来排 除不可能出现的相。
SAED
TEM 在晶体学中的简单应用
SADE
CONTENTS
SADE
01
02
常见的电子衍射花样
03 电子衍射花样分析
2) 多晶衍射花样
多晶电子衍射图是一 系列同心圆环,圆环 的半径与衍射面的面 间距有关。
NiFe多晶纳米薄膜的电子衍射源自SADE03 电子衍射花样分析
多晶电子衍射花样分析 测量各个衍射环的半径ri; 计算各ri2 并找出整数比值规律,估计所鉴定 材料的晶体结构或点阵类型; 用公式ridi=Lλ计算di; 估计各衍射环的相对强度,由三强线的d值 查ASTM卡索引找出最符合的几张卡片再核 算d值和相对强度,并参照实际情况确定物 相。
SADE
选区电子衍射原理示意图
SADE
02 选区电子衍射(SAED)基本原理
选区电子衍射分析技术特点 1、晶体样品形貌特征和微区晶体学性质得到同时反映; 2、电子衍射花样直观反映晶体的点阵结构和晶体取向; 3、电子衍射花样: 单晶体—排列整齐的斑点; 多晶体—不同半径的同心圆环;
SADE
SADE
03 电子衍射花样分析
3) 非晶态物质衍射花样
SADE
SADE
THANKS
SADE
准花样就是各种晶体点阵主要晶带的倒易截面,它可以根据晶带定理和相应 晶体点阵的消光规律绘出(二维倒易面的画法)。
由近及远测定各个斑点的R值; 根据衍射基本公式R=λL/d求出相应晶面间距; 查ASTM卡片,找出对应的物相和{hkl}指数; 确定(hkl),求晶带轴指数; 因为电子显微镜的精度有限,很可能出现几张卡片上d值均和测定 的d值相近,此时应根据待测晶体的其它资料,如化学成份等来排 除不可能出现的相。
SAED
TEM 在晶体学中的简单应用
SADE
CONTENTS
SADE
01
02
常见的电子衍射花样
电子衍射及衍射花样标定讲解
标定衍射花样时,根据对待标定相信息的了解程度,相应有 不同的方法。一般,主要有以下几种方法:
指数直接标定法:
已知相机常数和样品晶体结构时衍射花样的标定
尝试-校核法:
相机常数未知、晶体结构已知时衍射花样的标定 相机常数已知、晶体结构未知时衍射花样的标定
标准花样对照法:
相机常数未知、晶体结构未知时衍射花样的标定
A
C
B 000
4.单晶电子衍射花样标定
解: 1)从 Rd=lL, 可得 dA=1.99 Å ,dB=1.41 Å, dC=1.15 Å. 2)查对应于 Fe的 PDF卡片, 从卡片上 可知 dA={110}, dB={200}, dC={211}.
选 A=1 1 0, B=002, C= 1 1 2
h12 k12 l12 h22 k22 l22
24
2
与测量值不一致。测量值(RARB)90o
4 )假定B 为 002,与测量值一致。 所以 A= 1 1a0nd B=002
❖ 但是满足上述条件的要求,也未必一定产生衍射,这样,把满足布拉 格条件而不产生衍射的现象称为结构消光。
这是因为衍射束强度
I hkl Fhkl 2
1.电子衍射的原理
入射束 厄瓦尔德球 试样
2q
倒易点阵
底板 电子衍射花样形成示意图
1.电子衍射的原理
Bragg定律:2d sinθ=λ
d = 晶面间距≈10-1nm
λ =电子波长 ≈10-3nm
故sin θ ≈10-2的弧度, θ 相当小、 ∴可认为所有和入射光束相平行的
晶面产生衍射, 这些晶面的交 线互相平行,都平行于某一轴向 (晶向),故属于一个晶带,用 [uvw]表示。 因此当电子束以平行与某一轴向 L [uvw]照射到样品, [uvw]晶带中 包括的晶面满足布拉格方程的即 要产生衍射。
指数直接标定法:
已知相机常数和样品晶体结构时衍射花样的标定
尝试-校核法:
相机常数未知、晶体结构已知时衍射花样的标定 相机常数已知、晶体结构未知时衍射花样的标定
标准花样对照法:
相机常数未知、晶体结构未知时衍射花样的标定
A
C
B 000
4.单晶电子衍射花样标定
解: 1)从 Rd=lL, 可得 dA=1.99 Å ,dB=1.41 Å, dC=1.15 Å. 2)查对应于 Fe的 PDF卡片, 从卡片上 可知 dA={110}, dB={200}, dC={211}.
选 A=1 1 0, B=002, C= 1 1 2
h12 k12 l12 h22 k22 l22
24
2
与测量值不一致。测量值(RARB)90o
4 )假定B 为 002,与测量值一致。 所以 A= 1 1a0nd B=002
❖ 但是满足上述条件的要求,也未必一定产生衍射,这样,把满足布拉 格条件而不产生衍射的现象称为结构消光。
这是因为衍射束强度
I hkl Fhkl 2
1.电子衍射的原理
入射束 厄瓦尔德球 试样
2q
倒易点阵
底板 电子衍射花样形成示意图
1.电子衍射的原理
Bragg定律:2d sinθ=λ
d = 晶面间距≈10-1nm
λ =电子波长 ≈10-3nm
故sin θ ≈10-2的弧度, θ 相当小、 ∴可认为所有和入射光束相平行的
晶面产生衍射, 这些晶面的交 线互相平行,都平行于某一轴向 (晶向),故属于一个晶带,用 [uvw]表示。 因此当电子束以平行与某一轴向 L [uvw]照射到样品, [uvw]晶带中 包括的晶面满足布拉格方程的即 要产生衍射。
电子衍射及衍射花样标定
q
d
q L
q
G’ r
O
G’’
立方晶体[001]晶带
晶体中,与某一晶向[uvw]平行的 所有晶面(hkl)属于同一晶带, 称为[uvw]晶带,该晶向[uvw]称 为此晶带的晶带轴. 如 [001] 晶 带 中 包 括 ( 100 ) , (010)、(110)、(210)等 晶面。
[001]
晶带定律:若晶面(hkl)属于晶 带轴[uvw], 则有 hu+kv+lw=0 这就是晶带定理。
相机常数未知、晶体结构已知时衍射花样的标定
以立方晶系为例来讨论电子衍射花样的标定 电子衍射基本公式
同一物相,同一衍射花样而言, 为常数,有 R12:R22 :R32:…Rn2=N1:N2:N3:…Nn
立方晶系点阵消光规律 R12:R22 :R32:…Rn2=N1:N2:N3:…Nn
衍射 线序 号n 1 2 3 4 简单立方 体心立方
H、K、L全奇或全偶
4.单晶电子衍射花样标定
例:下图为某物质的电子衍射花样 ,试指标化并求其晶 胞参数和晶带方向。 RA=7.1mm, RB=10.0mm, RC=12.3mm, (RARB)90o, (rArC)55o.
A
C
B 000
4.单晶电子衍射花样标定
解2:
2 2 2 1)由 RA : RB : RC N1 : N2 : N3 2 : 4 : 6
晶面间距
立方晶系的晶面间距公式为:
d
四方晶系的晶面间距公式为:
a h2 k 2 l 2
1 h2 k 2 l 2 2 2 a c
d
六方晶系的晶面间距公式为:
d
a 4 2 a (h hk k 2 ) ( ) 2 l 2 3 c