安徽省滁州市2017-2018学年高一上学期期末考试数学试题(word版含答案)

合集下载

安徽省滁州市六校2017-2018学年高一上学期第一次联考数学试题 Word版含答案

安徽省滁州市六校2017-2018学年高一上学期第一次联考数学试题 Word版含答案

滁州市六校联考2017-2018学年度第一学期高一数学满分:150分,时间:120分钟一.选择题(每题5分,共50分,每题只有一个符合题意的选项) 1.全集{1,2,3,4,5,6,7,8}U =,集合{1,3,5}S =,{3,6}T =,则U U C SC T 等于( )A.∅B.{2,4,7,8}C. {1,3,5,6}D. {2,4,6,8} 2.如果A=}1|{->x x ,那么 ( )A .A ⊆0B .A ∈}0{C .A ∈ΦD .A ⊆}0{3.已知2,0()2,00,0x x f x x x ⎧>⎪==⎨⎪<⎩,则)]}2([{-f f f 的值为 ( )A. 0B. 2C. 4D. 84.已知()5412-+=-x x x f ,则()x f 的表达式是 ( ) A .x x 62+ B .782++x x C .322-+x x D .1062-+x x 5.函数2()-f x ( )A. 1[,1]3-B. 1(,1)3-C. 11(,)33-D. 1(,)3-∞-6. 若函数2(21)1=+-+y x a x 在区间(-∞,2]上是减函数,则实数a 的取值范围是( ) A .[-23,+∞) B .(-∞,-23] C .[23,+∞) D .(-∞,23]7. 下列给出函数()f x 与()g x 的各组中,是同一个关于x 的函数的是 ( )A .2()1,()1x f x x g x x=-=- B .()21,()21f x x g x x =-=+ C.2(),()f x x g x ==D .0()1,()f x g x x ==8.下列图象中表示函数图象的是 ( )(A ) (B) (C ) (D)9.()f x 是定义在()0,+∞上的增函数,则不等式()()82f x f x >-⎡⎤⎣⎦的解集是 ( )A. (0 ,)+∞B. 162,7⎛⎫⎪⎝⎭C. (2 ,)+∞D. ()0 , 2 10. 已知4)(3-+=bx ax x f ,若6)2(=f ,则=-)2(f ( ))(A 14- )(B 14 )(C 6- )(D 10二. 填空题(每题5分,共25分)11.若{}{}0,1,2,3,|3,A B x x a a A ===∈,则AB = .12.13.函数y=6x 4x 2+- 当]4,1[x ∈时,函数的值域为__________________ 13.已知集合M={(x ,y )|x +y =2},N={(x ,y )|x -y =4},那么集合M ∩N = . 14.已知函数()f x 满足22()3()f x f x x x +-=+,则()f x = .15.已知集合{}2210,A x ax x x R =++=∈的子集只有两个,则a 的值为 .滁州市六校联考2014-2015学年度第一学期高一数学(答题卷)二、填空题(每小题4分,共计20分)11. 12 13. ________________答 题 ※※※※※※※※※※※※※※※※※※※※※座号: 考号:14. _______________ 15. .三、解答题:解答题应写出文字说明.证明过程或演算步骤.(合计80分) 16.(10分)设A={x ∈Z| }66≤≤-x ,{}{}1,2,3,3,4,5,6B C ==,求:(1)()A B C ⋃⋂; (2)()A A C B C ⋂⋃17.(10分)设}012{2=++=ax x x A ,}023{2=++=b x x x B ,}2{=B A(1)求b a ,的值及B A ,;(2)设全集B A U =,求()()U U A B 痧18. (12分)已知[]2,1,4329)(-∈+⨯-=x x f x x (1)设[]2,1,3-∈=x t x ,求t 的最大值与最小值;(4分) (2)求)(x f 的最大值与最小值;(6分)19.(12分)已知函数)(x f 是定义在R 上的奇函数,当x x x f x 2)(,02-=≥,(1)画出 )(x f 图象;(2)求出)(x f 的解析式.20.(12分)已知函数()[]21,3,51x f x x x -=∈+, (1)用定义法证明函数()f x 的单调性; (2)求函数()f x 的最小值和最大值。

安徽省滁州市2017-2018学年高二上学期期末考试数学(文)试题 (word版含答案)

安徽省滁州市2017-2018学年高二上学期期末考试数学(文)试题 (word版含答案)

滁州市2017-2018学年第一学期高二期末考试数 学 试 卷(文科)(试题卷)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一 项是符合题目要求的.1. 若函数()cos =+f x x x ,则()f x 的导数()'=f x ( )2.高二(2)班男生36人,女生18 人,现用分层抽样方法从中抽出n 人,若抽出的男生人数为12,则n 等于( )A . 16B . 18C .20D .223. 双曲线221124x y -=的焦点到渐近线的距离为( )A . 2 D . 3 4. 下列函数是偶函数的是( )A .cos y x x =+B .sin 2y x x =+C .2+cos y x x =D .2sin 2y x x =+5. 若正方形ABCD 的边长为1,则在正方形ABCD 内任取一点,该点到点A 的距离小于1的概率为( ) A .4π B .6π C. 1π D .2π6.“函数()()()21=+-+f x x a x a 是偶函数”是“1=-a ”的( ) A .充分不必要条件 B .必要不充分条件 C. 充分必要条件 D .既不充分也不必要条件7. 曲线()()1=+xf x x e 在点()()00,f 处的切线方程为( )A . 1=+y xB .21=+y x C.112=+y x D .113=+y x 8. 执行如图所示的程序框图,则输出的结果为( ) A . 2 B .3 C. 4 D .59. 设命题:p x R ∃∈,220x x -+=;命题q :若1m >,则方程22121x y m m+=-表示焦点在x 轴上的椭圆.那么,下列命题为真命题的是( )A .()p q ∨⌝B . ()()p q ⌝∨⌝ C. p q ∧ D .()p q ∧⌝ 10.若P 为抛物线2:4=C y x 上一点,F 是抛物线的焦点,点A 的坐标()30,,则当PA 最小时,直线PF 的方程为( )A .230--=x yB .210--=x y C.3=x D .1=x 11.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,且()3cos 3cos cos b A a a B -=+,则sin A =( )A .B .13 D 12.已知函数()f x 是定义在R 上的偶函数,当0>x 时,()()'>xf x f x ,若()20=f ,则不等式()0>f x x的解集为( ) A . {}2002-<<<<或x x x B .{}22<->或x x x C. {}202-<<>或x x x D .{}202<-<<或x x x第Ⅱ卷(非选择题 共 90分)二、填空题:本大题共4小题,每小题5分,共20分.13. 已知向量()1,3a =-,()3,b t =,若a b ⊥,则2a b += .14. 已知一个算法的程序框图如图所示,当输入的1x =-与1x = 时,则输出的两个y 值的和 为 .15. 在长方体1111ABCD A BC D -中,1==AB BC , 12=AA ,点E ,F 分别为CD ,1DD 的中点,点G 在棱1AA 上,若//CG 平面AEF ,则四棱锥-G ABCD 的外接球的体积为 .16.已知双曲线2222:-x y C a b(0,0>>a b )的左顶点为M ,右焦点为F ,过左顶点且斜率为1的直线l 与双曲线C 的右支交于点N ,若∆MNF 的面积为232b ,则双曲线C 的离心率为 .三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17. 甲乙两人同时生产内径为25.41mm 的一种零件,为了对两人的生产质量进行评比,从他们生产的零件中各抽出 5 件(单位:m m ) , 甲:25.44,25.43, 25.41,25.39,25.38 乙:25.41,25.42, 25.41,25.39,25.42.从生产的零件内径的尺寸看、谁生产的零件质量较高.18. 已知抛物线2:2=C y x ,过点()1,0P 的直线l 与抛物线相交于A ,B 两点,若=AB ,求直线l 的方程.19. 某高校进行社会实践,对[]2555,岁的人群随机抽取 1000 人进行了一次是否开通“微博”的调查,开通“微博”的为“时尚族”,否则称为“非时尚族”.通过调查得到到各年龄段人数的频率分布直方图如图所示,其中在(]3035,岁,[)3540,岁年龄段人数中,“时尚族”人数分别占本组人数的80%、60%.(1)求[)3035,岁与[)3540,岁年龄段“时尚族”的人数; (2)从[)3045,岁和[)4550,岁年龄段的“时尚族”中,采用分层抽样法抽取6人参加网络时尚达人大赛,其中两人作为领队.求领队的两人年龄都在[)3045,岁内的概率。

2017-2018学年安徽省滁州市高二(上)期末数学试卷(文科)(解析版)

2017-2018学年安徽省滁州市高二(上)期末数学试卷(文科)(解析版)

2017-2018学年安徽省滁州市高二(上)期末数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若函数f(x)=x+cos x,则f(x)的导数f'(x)=()A.1﹣cos x B.1+cos x C.1﹣sin x D.1+sin x2.(5分)高二(2)班男生36人,女生18人,现用分层抽样方法从中抽出n人,若抽出的男生人数为12,则n等于()A.16B.18C.20D.223.(5分)双曲线的焦点到渐近线的距离为()A.B.3C.2D.4.(5分)下列函数是偶函数的是()A.y=x+cos x B.y=x+sin2x C.y=x2+cos x D.y=x2+sin2x 5.(5分)若正方形ABCD的边长为1,则在正方形ABCD内任取一点,该点到点A的距离小于1的概率为()A.B.C.D.6.(5分)“函数f(x)=(x+2a)(x﹣a+1)是偶函数”是“a=﹣1”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)曲线f(x)=(x+1)e x在点(0,f(0))处的切线方程为()A.y=x+1B.y=2x+1C.y=x+1D.y=x+1 8.(5分)执行如图所示的程序框图,则输出的结果为()A.2B.3C.4D.59.(5分)设命题p:∃x∈R,x2﹣x+2=0;命题q:若m>1,则方程+=1表示焦点在x轴上的椭圆.那么,下列命题为真命题的是()A.p∨(¬q)B.(¬p)∨(¬q)C.p∧q D.p∧(¬q)10.(5分)若P为抛物线C:y2=4x上一点,F是抛物线的焦点,点A的坐标(3,0),则当|P A|最小时,直线PF的方程为()A.x﹣2y﹣3=0B.x﹣2y﹣1=0C.x=3D.x=111.(5分)在△ABC中,角A,B,C的对边分别为a,b,c,且b(3﹣cos A)=3a cos C+a cos B,则sin A=()A.B.C.D.12.(5分)已知函数f(x)是定义在R上的偶函数,当x>0时,xf'(x)>f(x),若f(2)=0,则不等式>0的解集为()A.{x|﹣2<x<0或0<x<2}B.{x|x<﹣2或x>2}C.{x|﹣2<x<0或x>2}D.{x|x<﹣2或0<x<2}二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)已知向量=(﹣1,3),=(3,t),若⊥,则|2+|=.14.(5分)已知一个算法的程序框图如图所示,当输入的x=﹣1与x=1时,则输出的两个y值的和为.15.(5分)在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,点E,F分别为CD,DD1的中点,点G在棱AA1上,若CG∥平面AEF,则四棱锥G﹣ABCD的外接球的体积为.16.(5分)已知双曲线C:﹣(a>0,b>0)的左顶点为M,右焦点为F,过左顶点且斜率为1的直线l与双曲线C的右支交于点N,若△MNF的面积为b2,则双曲线C的离心率为.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.(10分)甲乙两人同时生产内径为25.41 mm的一种零件,为了对两人的生产质量进行评比,从他们生产的零件中各抽出5件(单位:mm),甲:25.44,25.43,25.41,25.39,25.38乙:25.41,25.42,25.41,25.39,25.42.从生产的零件内径的尺寸看、谁生产的零件质量较高.18.(12分)已知抛物线C:y2=2x,过点P(1,0)的直线l与抛物线相交于A,B两点,若|AB|=2,求直线l的方程.19.(12分)某高校进行社会实践,对[25,55]岁的人群随机抽取1000人进行了一次是否开通“微博”的调查,开通“微博”的为“时尚族”,否则称为“非时尚族”.通过调查得到到各年龄段人数的频率分布直方图如图所示,其中在(30,35]岁,[35,40)岁年龄段人数中,“时尚族”人数分别占本组人数的80%、60%.(1)求[30,35)岁与[35,40)岁年龄段“时尚族”的人数;(2)从[30,45)岁和[45,50)岁年龄段的“时尚族”中,采用分层抽样法抽取6人参加网络时尚达人大赛,其中两人作为领队.求领队的两人年龄都在[30,45)岁内的概率.20.(12分)已知S n为等差数列{a n}的前n项和,已知S2=2,S3=﹣6.(1)求数列{a n}的通项公式和前项和S n;(2)是否存在n,使S n,S n+2+2n,S n+3成等差数列,若存在,求出n,若不存在,说明理由.21.(12分)已知椭圆C:+=1(a>b>0)的离心率e=,且过点(,).(1)求椭圆C的方程;(2)设过点P(1,1)的直线与椭圆C交于A,B两点,当P是AB中点时,求直线AB 方程.22.(12分)已知函数f(x)=x2﹣2x+alnx(a∈R).(1)当a=﹣4时,求函数f(x)的单调区间;(2)若函数f(x)有两个极值点x1,x2(x1<x2),不等式f(x1)≥mx2恒成立,求实数m的取值范围.2017-2018学年安徽省滁州市高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:f′(x)=1﹣sin x,故选:C.2.【解答】解:性别比为2:1,现用分层抽样方法从中抽出n人,若抽出的男生人数为12,则n==18,故选:B.3.【解答】解:双曲线的焦点坐标为(4,0)或(﹣4,0),渐近线方程为y=±x,则焦点到渐近线的距离d==2,故选:C.4.【解答】解:根据题意,依次分析选项:对于A,f(x)=x+cos x,f(﹣x)=(﹣x)+cos(﹣x)=﹣x+cos x,f(﹣x)≠f(x),f(x)不是偶函数,不符合题意;对于B,f(x)=x+sin2x,f(﹣x)=(﹣x)+sin(﹣2x)=﹣(x+sin2x)=﹣f(x),f(x)为奇函数,不符合题意;对于C,f(x)=x2+cos x,f(﹣x)=(﹣x)2+cos(﹣x)=x2+cos x=f(x),则f(x)是偶函数,符合题意;对于D,f(x)=x2+sin2x,f(﹣x)=(﹣x)2+sin(﹣2x)=x2﹣sin2x,f(﹣x)≠f(x),f(x)不是偶函数,不符合题意;故选:C.5.【解答】解:如图:满足动点P到定点A的距离|P A|<1的平面区域如图中阴影所示:则正方形的面积S正方形=1,阴影部分的面积S=,故动点P到定点A的距离|P A|<1的概率P=,故选:A.6.【解答】解:∵“函数f(x)=(x+2a)(x﹣a+1)是偶函数”,f(x)=(x+2a)(x﹣a+1)=x2+(a+1)x﹣2a2+2a,∴a+1=0,解得a=﹣1,即“函数f(x)=(x+2a)(x﹣a+1)是偶函数”⇒“a=﹣1”;当a=﹣1时,f(x)=(x+2a)(x﹣a+1)=(x﹣2)(x+2)=x2﹣4是偶函数,即“a=﹣1”⇒“函数f(x)=(x+2a)(x﹣a+1)是偶函数”,∴“函数f(x)=(x+2a)(x﹣a+1)是偶函数”是“a=﹣1”的充分必要条件.故选:C.7.【解答】解:∵f(x)=e x(x+1),∴f′(x)=e x(x+1)+e x=e x(x+2),∴f′(0)=e0•(0+2)=2,又f(0)=1,∴曲线曲线y=f(x)在点(0,f(0))处的切线方程为:y﹣1=2(x﹣0),即2x﹣y+1=0;故选:B.8.【解答】解:第一次进行循环,S=20,i=2,不满足退出循环的条件;第二次进行循环,S=10,i=3,不满足退出循环的条件;第三次进行循环,S=,i=4,不满足退出循环的条件;第四次进行循环,S=,i=5,满足退出循环的条件;故输出的i值为5,故选:D.9.【解答】解:由x2﹣x+2=0,∵△=12﹣8=﹣7<0,即此方程无解,即命题p:∃x∈R,x2﹣x+2=0;为假命题,即¬p为真命题,当m>1时,2m﹣1>m>0,即方程+=1表示焦点在x轴上的椭圆.即命题q为真命题,¬q为假命题,即(¬p)∨(¬q)为真命题,故选:B.10.【解答】解:设P(x,y),抛物线C:y2=4x,F是抛物线的焦点(1,0),点A的坐标(3,0),|P A|===,当x=1时,|P A|最小,此时P(1,±2),所以直线PF的方程为:x=1.故选:D.11.【解答】解:∵b(3﹣cos A)=3a cos C+a cos B,∴由正弦定理可得:3sin B=3sin A cos C+sin A cos B+sin B cos A,可得:3sin B=3sin A cos C+sin C,∴由正弦定理可得:3b=3a cos C+c,∴3b=3a•+c,可得:3b2+3c2﹣3a2=2bc,∴cos A==,∴sin A=.故选:A.12.【解答】解:∵f(x)是定义在R上的偶函数,当x>0时,>0,∴为增函数,f(x)为偶函数,为奇函数,∴在(﹣∞,0)上为增函数,∵f(﹣2)=f(2)=0,若x>0,=0,所以x>2;若x<0,=0,在(﹣∞,0)上为增函数,可得﹣2<x<0,综上得,不等式>0的解集是(﹣2,0)∪(2,+∞)故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.【解答】解:∵向量=(﹣1,3),=(3,t),⊥,∴=﹣3+3t=0,解得t=1,∴=(3,1),2=(1,7),|2+|==5.故答案为:.14.【解答】解:由程序框图知:算法的功能是求y=的值,输入的x=﹣1时,y=,输入的x=1时,y=1,则输出的两个y值的和为.故答案为:.15.【解答】解:如图,取AB中点H,连接CH,HG,则CH∥AE,CH∥平面AEF,又CG∥平面AEF,∴平面CGH∥平面AEF,可得EF∥GH,则G为AA1的中点,∴AG=1,则四棱锥G﹣ABCD的外接球的直径为以AB,AD,AH为棱的长方体的对角线,长为,半径为,则四棱锥G﹣ABCD的外接球的体积为.故答案为:.16.【解答】解:双曲线C:﹣(a>0,b>0)的左顶点为M(﹣a,0),右焦点为F (c,0),过左顶点且斜率为1的直线l:y=x+a,直线l与双曲线C的右支交于点N,,可得:(b2﹣a2)y2﹣2ab2y=0,解得N的纵坐标为:﹣.又因为△MNF的面积为b2,所以:﹣=,﹣4ac=3a2﹣3(c2﹣a2)所以3e2﹣2e﹣8=0,e>1解得e=2,故答案为:2.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.【解答】解:甲的平均数.乙的平均数.甲的方差,乙的方差.∵甲、乙平均数相同,乙的方差较小,∴乙生产的零件比甲的质量高.18.【解答】解:设直线l的方程为:my=x﹣1,整为:x=my+1,代入方程y2=2x整理为:y2﹣2my﹣2=0,故有y1+y2=2m,y1y2=﹣2,.故有.整理为m4+3m2﹣4=0,解得m=±1.故直线l的方程为:x+y﹣1=0或x﹣y﹣1=0.19.【解答】解:(1)[30,35)岁年龄段“时尚族”的人数为1000×0.06×5×80%=240.[35,40)岁年龄段“时尚族”的人数为1000×0.04×5×60%=120.(2)由(1)知[30,35)岁中抽4人,记为a、b、c、d,[35,40)岁中抽2人,记为x、y,则领队两人是:ab、ac、ad、ax、ay、bc、bd、bx、by、cd、cx、cy、dx、dy、xy共l5种可能,其中两人都在[30,35)岁内的有6种,所以领队的两人年龄都在[30,45)岁内的概率为P=.20.【解答】解:(1)设等差数列{a n}的公差为d,∵S2=2,S3=﹣6.∴2a1+d=2,3a1+3d=﹣6,联立解得a1=4,d=﹣6.∴a n=4﹣6(n﹣1)=10﹣6n.S n==7n﹣3n2.(2)假设存在n,使S n,S n+2+2n,S n+3成等差数列,则2(S n+2+2n)=S n+S n+3,∴2[7(n+2)﹣3(n+2)2+2n]=7n﹣3n2+7(n+3)﹣3(n+3)2,化为:n=5.因此存在n=5,使S n,S n+2+2n,S n+3成等差数列.21.【解答】解:(1)设椭圆的焦距为2c,则∴∴椭圆C的方程为:.(2)设A(x1,y1),B(x2,y2).则,,∴又x1+x2=y1+y2=2,∴.∴直线AB方程为.3x+4y﹣7=0.22.【解答】解:(1)a=﹣4时,f(x)=x2﹣2x﹣4lnx,定义域为(0,+∞),.∴0<x<2时:f'(x)<0,x>2时,f'(x)>0,∴f(x)的单调增区间为[2,+∞),单调减区间为[0,2](2)函数f(x)在(0,+∞)上有两个极值点,.由f'(x)=0.得2x2﹣2x+a=0,当△=4﹣8a>0,时,x1+x2=1,,,则x1>0,∴a>0.由,可得,,,令,则,因为.,,又2lnx<0.所以h'(x)<0,即时,h(x)单调递减,所以,即,故实数m的取值范围是.。

安徽省滁州市2017-2018学年高一上学期期末考试数学试题Word版含解析

安徽省滁州市2017-2018学年高一上学期期末考试数学试题Word版含解析

滁州市2017-2018学年第一学期高一期末考试数学试卷第I 卷(选择题共60分)一、选择题:本大题共 12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一 项是符合题目要求的•1. 设集合.;.:丨二丨:丨;:,则占:「一 ( )A. :B.C. 、D.【答案】D【解析】并集由两个集合公共元素构成,故A u B = {1.2.3.4}.42. 已知角 的始边是 轴的正半轴,终边经过点:-<-:,且、I ,则I .、E ()4 3 43A. B. ——C. 一 D.3 434【答案】A3Sinn 4【解析】依题意可知,故'■■■■ = =.5coaa 35.若幕函数[文=叮的图象过点 ,则满足 的实数 的取值范围是()A.B. C. D.【答案】BA. 3B. 2C.D. I 十 ':•【答案】D1 I14若」卅打二1=()—;:-/<-<■?...;.-二,故I 口〕巧|【解析】原式4.已知向量匕一―二■' 一、 A. .. B. 9 C. 13 D.【答案】C【解析】由于两个向量垂直,故斗1 L【解析】依题意有〒x- 1 > l,x > 2f(x- i)=(x- iy> 1“6.函数il\iS..-!:■■.:「丰|弋I 的最大值是( )4 2 1 A. B.C. 1D.333【答案】B122 【解析】..,故最大值为-.3337.下列函数是奇函数,且在上是增函数的是( )十 1X —1….A. -------------B.------ C. [:=八:D. ■- - : IXX【答案】B【解析】选项为偶函数,选项为非奇非偶函数.选项 > ='在为减函数,在为x增函数.」.•选项:.=•:在:* - ■- ■上为增函数,符合题意.X【点睛】本题主要考查函数的奇偶性和单调性 .判断函数的奇偶性,首先判断函数的定义域是否关于原点对称, 选项定义域显然不关于原点对称,故为非奇非偶函数简后看等于还是..函数的单调性中< = •::"是对钩函数,在不是递增函数.x8.若•.,是第二象限角,则【答案】C.21 — . f 珂忑一&与帀•:. - .JJ ■■.:■: u ,故-n i| 2'.' |、 -...12 .." J I【点睛】本题主要考查同角三角函数的基本关系式,考查二倍角公式和两角差的正弦公式 先根据角的正弦值和所在的象限,求得角的余弦值,然后利用二倍角公式求得 的正弦值和余弦值,最后利用两角差的正弦公式展开所求式子,代入已知数值即可求得最后结果10. 在平行四边形中,是TC 中点,是三三中点,若\i.然后计算,化A.B.161616D.16【解析】由于角为第二象限角,故-',所以-I 门..."一厂48162a H)=34V °【答案】CD.【解析】,故函数的零点在区间in.\'-: : 则()A.B.C.D. I" i'42442224【答案】A 【解析】连接,由于0为;山中点,故.222) 4 2ii.曲线厂?二:w ,曲线;二;:心,下列说法正确的是 ()JEA.将 上所有点横坐标扩大到原来的2倍,纵坐标不变,再将所得曲线向左平移•个单位,得41兀到 B. 将 上所有点横坐标缩小到原来的 ,纵坐标不变,再将所得曲线向左平移个单2 4位,得到C.将 上所有点横坐标扩大到原来的2倍,纵坐标不变,再将所得曲线向左平移•个单位,得2一 1 一、JI到 D. 将 上所有点横坐标缩小到原来的 「,纵坐标不变,再将所得曲线向左平移 ;个单位,得到 【答案】B即h] /兀,故首先横坐标缩小到原来 得到 ,再向左平移 个单位得到 .故选.12.若不等式-■<..:: I ■▼对任意的巴:心+ 恒成立,则的取值范围是 ()【答案】D 【解析】当时,原不等式化为,不恒成立,排除,故选.HC. I-. - ■- 'D.-I GO第n卷(非选择题共90分)【答案】01 J【点睛】本题主要考查三角函数降次公式・考查AsirKsx + Q )- ACOStUJX +(D )的单调区间的求法•由 于题目给定明数是二次的形式,故首先利用降次公式将原函数化为次数为一次的形式•然后求出函数所 有的单调递减区间•再结合题目所给定的区间,列不等式组,可求得U )的取值范围+二、填空题:本大题共 4小题,每小题5分,满分20分,将答案填在答题纸上…卄cosfi m13.右,^ 9|.:口「『—- 【答案】3【解析】分子分母同时除以/ tancx 、:、得 ---tana + 12tana 1=、,解得心:二故」:◎:=.=l-tan _a 3【答案】10g^(l I x),x > 0l-x,x<0ii ' : 1八,二十故原式=.15.若函数J 二I 「::•在|…:|是单调函数,则实数的取值范围是【答案】(y 弓【解析】由于函数为二次函数,对称轴为 ' ,只需对称轴不在区间3 2a 31-,解得V 、:《上..2 2 2【点睛】本题主要考查二次函数单调区间的知识.对于二次函数来说,它的单调区间主要由开口方向和对称轴来决定.当开口向上时,左减右增,当开口向下是,左增右减 .本题中由于题 目只需要区间上的单调函数,不需要递增还是递减,故只需对称轴不在给定区间内即可16.已知函数.=oos 2(rox-5 在区间 内单调递减,则 的最大值为【解析】f(x) COS 2tOX ——,,、,,,,3T3/,根据单调性有2k?i < 2ox — < 2戲+兀,-------------- 327CkTC ~l ---解得--------- < x<2兀k?c +T ,故©OT7T,kjt + -67Um 62兀k^ +3 2?r,解得 H (O > 6k+ 13,, 当 k = 0 时 oo= I o><-k+I ,当时,2三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知集合 ::i ::(1) 求i m(2) 若■- z ,求实数的取值范围.【答案】(1)I ; 「UP ; (2)[【解析】【试题分析】(1)首先求得-.:■<:,由此求得.二门三.―二的值.(2)— 由于.1…丨匸| 「,故:.,解得发乙【试题解析】 解::•: I 、..;;丨;:■- ■:(1) 2 门丨; 「 •. : U 丨-:: (2)T 二-J :.宀•-H ,••• =心 r r : J已知向量 I'. ■ I- 1 I ' 1 - < I 1 ■•-,二,• .18. (1) 若与共线,求的值;(2) 记I 卜,求「I ,啲最大值和最小值,及相应的的值.兀兀【答案】(1)〔 = (2)当1 =时,ii”取得最大值2;当飞-:时,取得最小值-1 .【解析】【试题分析】(1)利用两个向量共线,则有 v ;m ,解方程求得 的值.(2)利用向量坐标运算化简 ,进而求得「I"的最大值和最小值,及相应的 的值.【试题解析】解:(1):与共线,二「冷-「心门7T4 —■ / Kv(2) Z ;.卜I -"-I!..】-i --< sin x + -2 I 6.J7T,二 ,J C 7CJL当^一 -即时, 取得最大值2;当,即 时,取得最小值-1 .6 23663x I 119.已知函数i 「':的图象过点 -.x -I- a(1)若H = w ,求实数的值;(2)当::二|「.I |时,求函数的取值范围. 【答案】(1)• - (2)-【解析】【试题分析】(1)将点 •代入函数,由此求得的值,进而得出的表达式•解方程ii 、;;,可求得实数 的值•( 2)将:;I 分离常数,得到,它在I 「.1|上为减函数,x -2在区间端点取得最小值和最大值.由此求得函数的值域• 【试题解析】 解: ( 1)『:!,「• 一 ,1 + a弓/ + 1- ', X 2-2显然 在 与.上都是减函数, 「T ,「. 在上是减函数,7 7 :-••三• 「-7- 120.函数'■.:.; : ■. ': >■.- ■' 的部分图象如图所示.(1) 求•-•二4的值; (2)求图中的值及函数 的递增区间.JC ?7C【答案】(1)「= ”( 2) •: = !.【解析】【试题分析】(1)根据图像最大值求得.,根据;:]可求得,在根据图f 兀 \兀像上一个点I 石厂习,可求得舉的值• (2)利用此。

2017-2018学年安徽省滁州市高二(上)期末数学试卷(理科)(解析版)

2017-2018学年安徽省滁州市高二(上)期末数学试卷(理科)(解析版)

2017-2018学年安徽省滁州市高二(上)期末数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)高二(2)班男生36人,女生18人,现用分层抽样方法从中抽出n人,若抽出的男生人数为12,则n等于()A.16B.18C.20D.222.(5分)命题“∀x∈R,x>lnx”的否定为()A.∀x∈R,x≤lnx B.∀x∈R,x<lnxC.∃x0∈R,x0≤lnx0D.∃x0∈R,x0>lnx03.(5分)双曲线的焦点到渐近线的距离为()A.B.3C.2D.4.(5分)下列函数是偶函数的是()A.y=x+cos x B.y=x+sin2x C.y=x2+cos x D.y=x2+sin2x 5.(5分)若正方形ABCD的边长为1,则在正方形ABCD内任取一点,该点到点A的距离小于1的概率为()A.B.C.D.6.(5分)“函数f(x)=ax2﹣(3a﹣1)x+1在区间[1,+∞)上是增函数”是“0≤a≤1”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.(5分)执行如图所示的程序框图,则输出的结果为()A.2B.3C.4D.58.(5分)设命题p:∃x∈R,x2﹣x+2=0;命题q:若m>1,则方程+=1表示焦点在x轴上的椭圆.那么,下列命题为真命题的是()A.p∨(¬q)B.(¬p)∨(¬q)C.p∧q D.p∧(¬q)9.(5分)将曲线y=cos(2x+)向左平移个单位后,得曲线y=f(x),则函数f(x)的单调增区间为()A.B.C.D.10.(5分)已知长方体ABCD﹣A1B1C1D1,AD=AA1=2,AB=3,E是线段AB上一点,且AE=AB,F是BC中点,则D1C与平面D1EF所成的角的正弦值为()A.B.C.D.11.(5分)在△ABC中,角A,B,C的对边分别为a,b,c,且b(3﹣cos A)=3a cos C+a cos B,则sin A=()A.B.C.D.12.(5分)已知双曲线C:﹣=1(a>0,b>0)的左顶点为M,右焦点为F,过左顶点且斜率为l的直线l与双曲线C的右支交于点N,若△MNF的面积为b2,双曲线C 的离心率为()A.3B.2C.D.二、填空题:本大题共6小题,每小题5分,共30分.13.(5分)已知向量=(﹣1,3),=(3,t),若⊥,则|2+|=.14.(5分)已知一个算法的程序框图如图所示,当输入的x=﹣1与x=1时,则输出的两个y值的和为.15.(5分)如图,直四棱柱ABCD﹣A 1B1C1D1的底面是边长为1的正方形,侧棱长,则异面直线A1B1与BD1的夹角大小等于.16.(5分)直线y=kx+1与圆(x﹣2)2+y2=1有交点,则实数k的取值范围是.17.(5分)在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,点E,F分别为CD,DD1的中点,点G在棱AA1上,若CG∥平面AEF,则四棱锥G﹣ABCD的外接球的体积为.18.(5分)已知椭圆+=1的右焦点为F,点M是椭圆上第一象限内的点,MF的延长线依次交y轴,椭圆于点P,N,若=,则直线MN的斜率为.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 19.(10分)甲乙两人同时生产内径为25.41 mm的一种零件,为了对两人的生产质量进行评比,从他们生产的零件中各抽出5件(单位:mm),甲:25.44,25.43,25.41,25.39,25.38乙:25.41,25.42,25.41,25.39,25.42.从生产的零件内径的尺寸看、谁生产的零件质量较高.20.(12分)已知直线y=x﹣2p与抛物线y2=2px(p>0)相交于A,B两点,O是坐标原点.(1)求证:OA⊥OB;(2)若F是抛物线的焦点,求△ABF的面积.21.(12分)某高校进行社会实践,对[25,55]岁的人群随机抽取1000人进行了一次是否开通“微博”的调查,开通“微博”的为“时尚族”,否则称为“非时尚族”.通过调查得到到各年龄段人数的频率分布直方图如图所示,其中在(30,35]岁,[35,40)岁年龄段人数中,“时尚族”人数分别占本组人数的80%、60%.(1)求[30,35)岁与[35,40)岁年龄段“时尚族”的人数;(2)从[30,45)岁和[45,50)岁年龄段的“时尚族”中,采用分层抽样法抽取6人参加网络时尚达人大赛,其中两人作为领队.求领队的两人年龄都在[30,45)岁内的概率.22.(12分)已知S n为等差数列{a n}的前n项和,已知S2=2,S3=﹣6.(1)求数列{a n}的通项公式和前项和S n;(2)是否存在n,使S n,S n+2+2n,S n+3成等差数列,若存在,求出n,若不存在,说明理由.23.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,PB=PD=,AB=1,AP=2,Q是CD中点.(1)求点C到平面BPQ的距离;(2)求二面角A﹣PQ﹣B的余弦值.24.(12分)设椭圆M:+=1(a>b>0)经过点P(,),F1,F2是椭圆M 的左、右焦点,且△PF1F2的面积为.(1)求椭圆M的方程;(2)设O为坐标原点,过椭圆M内的一点(0,t)作斜率为k的直线l与椭圆M交于A,B两点,直线OA,OB的斜率分别为k1,k2,若对任意实数k,存在实m,使得k1+k2=mk,求实数m的取值范围.2017-2018学年安徽省滁州市高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:性别比为2:1,现用分层抽样方法从中抽出n人,若抽出的男生人数为12,则n==18,故选:B.2.【解答】解:由全称命题的否定为特称命题,可得命题“∀x∈R,x>lnx”的否定为”∃x0∈R,x0≤lnx0故选:C.3.【解答】解:双曲线的焦点坐标为(4,0)或(﹣4,0),渐近线方程为y=±x,则焦点到渐近线的距离d==2,故选:C.4.【解答】解:根据题意,依次分析选项:对于A,f(x)=x+cos x,f(﹣x)=(﹣x)+cos(﹣x)=﹣x+cos x,f(﹣x)≠f(x),f(x)不是偶函数,不符合题意;对于B,f(x)=x+sin2x,f(﹣x)=(﹣x)+sin(﹣2x)=﹣(x+sin2x)=﹣f(x),f(x)为奇函数,不符合题意;对于C,f(x)=x2+cos x,f(﹣x)=(﹣x)2+cos(﹣x)=x2+cos x=f(x),则f(x)是偶函数,符合题意;对于D,f(x)=x2+sin2x,f(﹣x)=(﹣x)2+sin(﹣2x)=x2﹣sin2x,f(﹣x)≠f(x),f(x)不是偶函数,不符合题意;故选:C.5.【解答】解:如图:满足动点P到定点A的距离|P A|<1的平面区域如图中阴影所示:则正方形的面积S正方形=1,阴影部分的面积S=,故动点P到定点A的距离|P A|<1的概率P=,故选:A.6.【解答】解:∵函数f(x)=ax2﹣(3a﹣1)x+a2在[1,+∞)上是增函数,∴a=0时,f(x)=x,是增函数,a≠0时,f(x)是二次函数,∵函数f(x)在区间[1,+∞)上单调递增,∴,解得:0<a≤1,综上:a的范围是0≤a≤1,故“函数f(x)=ax2﹣(3a﹣1)x+1在区间[1,+∞)上是增函数”是“0≤a≤1”的充分必要条件,故选:C.7.【解答】解:第一次进行循环,S=20,i=2,不满足退出循环的条件;第二次进行循环,S=10,i=3,不满足退出循环的条件;第三次进行循环,S=,i=4,不满足退出循环的条件;第四次进行循环,S=,i=5,满足退出循环的条件;故输出的i值为5,故选:D.8.【解答】解:由x2﹣x+2=0,∵△=12﹣8=﹣7<0,即此方程无解,即命题p:∃x∈R,x2﹣x+2=0;为假命题,即¬p为真命题,当m>1时,2m﹣1>m>0,即方程+=1表示焦点在x轴上的椭圆.即命题q为真命题,¬q为假命题,即(¬p)∨(¬q)为真命题,故选:B.9.【解答】解:将曲线y=cos(2x+)向左平移个单位后,得曲线y=f(x)=cos(2x++)=cos(2x+)的图象,令2kπ﹣π≤2x+≤2kπ,求得kπ﹣≤x≤kπ﹣,故函数的增区间为[kπ﹣,kπ﹣],k∈Z.再根据函数的周期为π,故函数的周期为[kπ+,kπ+],k∈Z,故选:C.10.【解答】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,∵长方体ABCD﹣A1B1C1D1,AD=AA1=2,AB=3E是线段AB上一点,且AE=AB,F是BC中点,∴D1(0,0,2),C(0,3,0),E(2,1,0),F(1,3,0),=(0,3,﹣2),=(2,1,﹣2),=(1,3,﹣2),设平面D1EF的法向量=(x,y,z),则,取y=1,得=(2,1,),设D1C与平面D1EF所成的角为θ,则D1C与平面D1EF所成的角的正弦值sinθ===.故选:A.11.【解答】解:∵b(3﹣cos A)=3a cos C+a cos B,∴由正弦定理可得:3sin B=3sin A cos C+sin A cos B+sin B cos A,可得:3sin B=3sin A cos C+sin C,∴由正弦定理可得:3b=3a cos C+c,∴3b=3a•+c,可得:3b2+3c2﹣3a2=2bc,∴cos A==,∴sin A=.故选:A.12.【解答】解:双曲线C:﹣=1(a>0,b>0)的左顶点为M(﹣a,0),右焦点为F(c,0),过左顶点且斜率为1的直线l:y=x+a,直线l与双曲线C的右支交于点N,,可得:(b2﹣a2)y2﹣2ab2y=0,解得N的纵坐标为:﹣.又因为△MNF的面积为b2,所以:﹣×2c×=b2,﹣4ac=3a2﹣3(c2﹣a2)所以3e2﹣2e﹣8=0,e>1解得e=2,故选:B.二、填空题:本大题共6小题,每小题5分,共30分.13.【解答】解:∵向量=(﹣1,3),=(3,t),⊥,∴=﹣3+3t=0,解得t=1,∴=(3,1),2=(1,7),|2+|==5.故答案为:.14.【解答】解:由程序框图知:算法的功能是求y=的值,输入的x=﹣1时,y=,输入的x=1时,y=1,则输出的两个y值的和为.故答案为:.15.【解答】解:连接BC1,∵A1B1∥C1D1,∴∠BD1C1为异面直线A1B1与BD1所成的角,∵直四棱柱ABCD﹣A1B1C1D1的底面是边长为1的正方形,∴C1D1⊥平面BCC1B1,∴C1D1⊥BC1,在Rt△BC1D1中,BC1=,tan∠BD1C1==,∠BD1C1=.故答案是16.【解答】解:圆(x﹣2)2+y2=1的圆心坐标为(2,0),半径为1.由圆心到直线y=kx+1的距离d=≤1,解得﹣≤k≤0.∴实数k的取值范围是[﹣,0].故答案为:[﹣,0].17.【解答】解:如图,取AB中点H,连接CH,HG,则CH∥AE,CH∥平面AEF,又CG∥平面AEF,∴平面CGH∥平面AEF,可得EF∥GH,则G为AA1的中点,∴AG=1,则四棱锥G﹣ABCD的外接球的直径为以AB,AD,AH为棱的长方体的对角线,长为,半径为,则四棱锥G﹣ABCD的外接球的体积为.故答案为:.18.【解答】解:椭圆+=1的右焦点为F,F(1,0),设直线的斜率为k,直线方程为:y=k(x﹣1),代入椭圆+=1,可得:(3+4k2)x2﹣8k2x+4k2﹣12=0,可得x A+x B=,椭圆+=1的右焦点为F,点M是椭圆上第一象限内的点,MF的延长线依次交y 轴,椭圆于点P,N,若=,∴=1,可得k=.故答案为:.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 19.【解答】解:甲的平均数.乙的平均数.甲的方差,乙的方差.∵甲、乙平均数相同,乙的方差较小,∴乙生产的零件比甲的质量高.20.【解答】(1)证明:由得x2﹣4px+4p2=2px.∴x2﹣6px+4p2=0.设A(x1•y1).B(x2,y2),则y1=x1﹣2p,y2=x2﹣2p,且,∴.∴,∴OA⊥OB.(2)解:由(l)知△AOB的面积等于,=.(用求解同样给分)直线y=x﹣2p与x轴交点为M(2p,0),抛物线焦点F为,∴,∴△AFB的面积为21.【解答】解:(1)[30,35)岁年龄段“时尚族”的人数为1000×0.06×5×80%=240.[35,40)岁年龄段“时尚族”的人数为1000×0.04×5×60%=120.(2)由(1)知[30,35)岁中抽4人,记为a、b、c、d,[35,40)岁中抽2人,记为x、y,则领队两人是:ab、ac、ad、ax、ay、bc、bd、bx、by、cd、cx、cy、dx、dy、xy共l5种可能,其中两人都在[30,35)岁内的有6种,所以领队的两人年龄都在[30,45)岁内的概率为P=.22.【解答】解:(1)设等差数列{a n}的公差为d,∵S2=2,S3=﹣6.∴2a1+d=2,3a1+3d=﹣6,联立解得a1=4,d=﹣6.∴a n=4﹣6(n﹣1)=10﹣6n.S n==7n﹣3n2.(2)假设存在n,使S n,S n+2+2n,S n+3成等差数列,则2(S n+2+2n)=S n+S n+3,∴2[7(n+2)﹣3(n+2)2+2n]=7n﹣3n2+7(n+3)﹣3(n+3)2,化为:n=5.因此存在n=5,使S n,S n+2+2n,S n+3成等差数列.23.【解答】解:∵正方形边长AB=1,,AP=2.∴PB2=P A2+AB2.PD2=P A2+AD2.∴.P A⊥AB,P A⊥AD,∴P A⊥平面ABCD.∴分别以AB、AD、AP为x轴,y轴、z轴,建立如图所示的空间直角坐标系,则A(0,0,0),B(1,0,0),D(0,1,0),P(0,0,2),,C(1,1,0)∴,,,.(1)设平面BPQ的一个法向量=(x1•y1•z1),则.令z1=1,得=(2,1,1),∴PC与平面BPQ所成角的正弦值.∴点C到平面BPQ的距离为.(2)设平面APQ的一个法向量=(x2•y2•z2),则,,令x2=2,得=(2,﹣1,0),∴,∴二面角A﹣PQ﹣B的余弦值为.24.【解答】解:(1)设M的焦点F1(﹣c,0),F2(c,0),∵,△PF1F2面积为,∴,∴c=1,由,得∴椭圆M的方程为.(2)设直线l的方程为y=kx+t,由•得(3+4k2)x2+8ktx+4t2﹣12=0,设A(x1•y2),B(x2•y2),则..由k1+k2=mk对任意k成立,得,∴,又(0,t)在椭圆内部,∴0≤t2<3,∴m≥2,即m∈[2,+∞).。

最新版安徽省滁州市高一上学期期末考试数学试题Word版含答案

最新版安徽省滁州市高一上学期期末考试数学试题Word版含答案

滁州市2017-2018学年第一学期高一期末考试数学试卷第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}1,2,4,1,2,3A B ==,则A B = ( )A .{}3,4B .{}1,2C .{}2,3,4D .{}123,4,, 2. 已知角α的始边是x 轴的正半轴,终边经过点()3,4-,且4sin 5α=,则tan α=( ) A .43-B .34-C .43D .343. 计算:114333122x x x -⎛⎫+= ⎪⎝⎭( )A . 3B . 2C .2x +D .12x +4. 已知向量()()3,2,2,a b x ==,若a b ⊥ ,则23a b -= ( )A ..9 C. 13 D .5. 若幂函数()af x x =的图象过点()4,2,则满足()11f x ->的实数x 的取值范围是( )A .()0,1B .()2,+∞ C.()1,1- D .(),2-∞ 6.函数()()1sin cos 32f x x x ππ⎛⎫=++- ⎪⎝⎭的最大值是 ( ) A .43 B .23 C. 1 D .137.下列函数是奇函数,且在()0,+∞上是增函数的是 ( )A .21x y x +=B .21x y x-= C. 22x x y -=+ D .lg 1y x =+8. 若3sin 4α=,α是第二象限角,则sin 24πα⎛⎫-= ⎪⎝⎭( )A .16.16- C. 16 D .116-9.函数33xy x =+的零点为0x ,则 ( )A .031,4x ⎛⎫∈--⎪⎝⎭ B .031,42x ⎛⎫∈-- ⎪⎝⎭ C. 011,24x ⎛⎫∈-- ⎪⎝⎭ D .01,04x ⎛⎫∈- ⎪⎝⎭10. 在平行四边形ABCD 中,E 是CD 中点,F 是BE 中点,若AF mAB nAD =+,则( )A .31,42m n == B .13,44m n == C. 11,22m n == D .13,24m n ==11.曲线1:sin C y x =,曲线2:cos2C y x =,下列说法正确的是 ( ) A .将1C 上所有点横坐标扩大到原来的2倍,纵坐标不变,再将所得曲线向左平移4π个单位,得到2C B .将1C 上所有点横坐标缩小到原来的12,纵坐标不变,再将所得曲线向左平移4π个单位,得到2C C. 将1C 上所有点横坐标扩大到原来的2倍,纵坐标不变,再将所得曲线向左平移2π个单位,得到2C D .将1C 上所有点横坐标缩小到原来的12,纵坐标不变,再将所得曲线向左平移2π个单位,得到2C 12.若不等式()2log 14x a x +≥对任意的()0,x ∈+∞恒成立,则a 的取值范围是 ( ) A .(],0-∞ B .1,4⎛⎤-∞ ⎥⎝⎦ C.[)0,+∞ D .1,4⎡⎫+∞⎪⎢⎣⎭第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,满分20分,将答案填在答题纸上.13.若cos 2sin cos ααα=+,则tan 2α=.14.()()4log 1,01,0x x f x x x ⎧+≥=⎨-<⎩,则()()11f f -+=.15.若函数()2231y x a x =+-+在[]1,3是单调函数,则实数a 的取值范围是. 16.已知函数()()2cos 06f x x πωω⎛⎫=-> ⎪⎝⎭在区间2,63ππ⎡⎤⎢⎥⎣⎦内单调递减,则ω的最大值为.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知集合{}{}{}|2318,|215,|1A x x B x x C x x a x a =≤-≤=-<=≤≥+或. (1)求,A B A B ;(2)若()R C C A ⊆,求实数a 的取值范围.18.已知向量()([]cos ,sin ,,0,a x x b x π==∈.(1)若a 与b共线,求x 的值;(2)记()f x a b =,求()f x 的最大值和最小值,及相应的x 的值.19.已知函数()31x f x x a+=+的图象过点()1,4-. (1)若()210f x =,求实数x 的值;(2)当[]5,1x ∈-时,求函数()f x 的取值范围. 20.函数()()cos 20,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示. (1)求,,A ωϕ的值;(2)求图中,a b 的值及函数()f x 的递增区间.21.已知,αβ都是锐角,()14sin ,sin 235ααβ=-=. (1)求cos β的值; (2)求()sin αβ-的值.22. 已知函数()3131x x f x +=-.(1)求证:()f x 是奇函数; (2)判断()f x 的单调性,并证明;(3)已知关于t 的不等式()()222310f t t f t -++--<恒成立,求实数t 的取值范围.试卷答案一、选择题1-5: DADCB 6-10:BBCCA 11、12:BD二、填空题13. 13-14.52 15.31,,22⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭16.1 三、解答题17.解:{}{}|13,|3A x x B x x =≤≤=<, (1){}{}|13,|3A B x x A B x x =≤<=≤ ;(2)∵{}|,1C x x a x a =≤≥+或,∴{}|1R C C x a x a =<<+, ∵()R C C A ⊆,∴113a a ≥⎧⎨+≤⎩,∴[]1,2a ∈.18.解:(1)∵a 与bsin 0x x -=,∴tan x =[]0,x π∈,∴3x π=;(2)()cos 2sin 6f x a b x x x π⎛⎫==+=+ ⎪⎝⎭ ,∵[]0,x π∈,∴7,666x πππ⎡⎤+∈⎢⎥⎣⎦,∴1sin 126x π⎛⎫-≤+≤ ⎪⎝⎭,∴()12f x -≤≤, 当62x ππ+=即3x π=时,()f x 取得最大值2;当766x ππ+=,即x π=时,()f x 取得最小值-1.19.解:(1)()1141f a==-+,∴2a =-, ()222223110,3110202x f x x x x +==+=--,∴22721,3x x ==,∴x =(2)()()3273173222x x f x x x x -++===+---, 显然()f x 在[)2,+∞与(),2-∞上都是减函数, ∵[](]5,1,2-⊆-∞,∴()f x 在[]5,1-上是减函数, ∵()()77532,13471f f -=+==+=---,∴()[]4,2f x ∈-. 20.解:(1)由图知2452,23123A T πππω⎛⎫===+ ⎪⎝⎭,∴1ω=,∴()()2cos 2f x x ϕ=+, 又52,0312f f ππ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭, ∴5cos 1,cos 036ππϕϕ2⎛⎫⎛⎫-+=-+= ⎪ ⎪⎝⎭⎝⎭,且2πϕ<,∴3πϕ=-;(2)由(1)知()2cos 23f x x π⎛⎫=-⎪⎝⎭,由512a T ππ-==, ∴()7,02cos 1123a b f ππ⎛⎫=-==-= ⎪⎝⎭, 由()2223k x k k Z ππππ-≤-≤∈得()36k x k k Z ππππ-≤≤+∈,∴()f x 的单调增区间为(),36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. 21.解:因为,αβ都是锐角()14sin ,sin 235ααβ=-=,所以cos 3α==,且()30,2,cos 24225πππααβαβ<<-<-<-=,所以227sin 22sin cos 2cos sin 99αααααα===-=, (1)()()()cos cos 22cos 2cos 2sin 2sin 2βααβααβααβ=--=-+-=⎡⎤⎣⎦;(2)()()()()3sin sin 2sin 2cos cos 2sin 15αβαβααβααβα-=--=---=⎡⎤⎣⎦. 22.(1)证明:由310x -≠,得0x ≠,∵()()31133113x xxxf x f x --++-===---, ∴()f x 是奇函数;(2)解:()f x 的单调减区间为(),0-∞与()0,+∞没有增区间, 设120x x <<,则()()()()()()()21121221121212121212233313133313331313131313131x x x x x x x x x x x x x x x x xx f x f x --+++----++-=-==------ .∵120x x <<,∴21331x x>>, ∴2112330,31,310x x x x->-->,∴()()120f x f x ->,∴()()12f x f x >, ∴()f x 在()0,+∞上是减函数, 同理,()f x 在(),0-∞上也是减函数;(3)()f x 是奇函数,∴()()2211f t f t --=-+,∴()()222310f t t f t -++--<化为()()22231f t t f t -+<+,又()()22223120,10,t t t t f x -+=-+>+>在()0,+∞上是减函数,∴22231t t t -+>+,∴1t <,即(),1t ∈-∞.。

2017-2018学年安徽省滁州市高三(上)期末数学试卷(理科)(解析版)

2017-2018学年安徽省滁州市高三(上)期末数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x>1},B={x|3x>2},则A∩B=()A.(0,1)B.(1,2)C.(1,+∞)D.(0,+∞)2.(5分)在正方形内任取一点,则该点在此正方形的内切圆外的概率为()A.B.C.D.3.(5分)复数z=,i是虚数单位,则下列结论正确的是()A.|z|=B.z的共轭复数为+iC.z的实数与虚部之和为1D.z在平面内的对应点位于第一象限4.(5分)若a=log3,b=log23,c=()3,则a,b,c的大小关系为()A.c>b>a B.b>c>a C.b>a>c D.c>a>b5.(5分)若执行如图所示的程序图,则输出S的值为()A.B.C.D.6.(5分)已知等差数列{a n}的前n项和为S n,若a6=3,S8=12,则{a n}的公差为()A.﹣1B.1C.2D.37.(5分)已知m,n是空间中两条不同的直线,α,β是两个不同的平面,则下列说法正确的是()A.若m⊂α,n⊂β,α∥β,则m∥nB.若m⊂α,α∥β,则m∥βC.若n⊥β,α⊥β,则n∥αD.若m⊂α,n⊂β,α∩β=l,且m⊥l,n⊥l,则α⊥β8.(5分)榫卯是中国古代建筑、家具及其他器械的主要结构方式,是在两个构建上采用凹凸部位相结合的一种连接方式,突出部分叫做“榫头”.若某“榫头”的三视图如图所示,则一个该“榫头”的体积为()A.10B.12C.14D.169.(5分)已知实数x,y满足,若z=x+my的最大值为10,则m=()A.1B.2C.3D.410.(5分)已知函数f(x)=sin(2x+φ)(|φ|<)的最小正周期为T,将曲线y=f(x)向左平移个单位之后,得到曲线y=sin(2x+),则函数f(x)的一个单调递增区间为()A.(﹣,)B.(﹣,)C.(,)D.(,)11.(5分)过双曲线﹣=1的右支上一点P,分别向圆C1:(x+5)2+y2=4和圆C2:(x﹣5)2+y2=r2(r>0)作切线,切点分别为M,N,若|PM|2﹣|PN|2的最小值为58,则r=()A.1B.C.D.212.(5分)已知函数f(x)=在[﹣2,2]上的最大值为5,则实数a 的取值范围是()A.[﹣2ln2,+∞)B.[0,ln2]C.(﹣∞,0]D.[﹣ln2,+∞)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)已知向量=(﹣k,k+2),=(2,﹣3),若∥(+2),则实数k=.14.(5分)(x+2y)(x﹣y)6的展开式中,x4y3的系数为(用数字作答).15.(5分)若在各项都为正数的等比数列{a n}中,a1=2,a9=a33,则a2018=.16.(5分)已知抛物线C:y2=2px(p>0)的焦点为F,准线l:x=﹣,点M在抛物线C上,点A在准线l上,若MA⊥l,直线AF的倾斜角为,则|MF|=.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)在△ABC,角A,B,C所对的边分别为a,b,c,且b cos A﹣c cos B=(c﹣a)cos B.(1)求角B的值;(2)若△ABC的面积为3,b=,求a+c的值.18.(12分)随着雾霾的日益严重,中国部分省份已经实施了“煤改气”的计划来改善空气质量指数.2017年支撑我国天然气市场消费增长的主要资源是国产常规气和进口天然气,资源每年的增量不足以支撑天然气市场连续300亿立方米的年增量.进口LNG和进口管道气受到接收站、管道能力和进口气价资源的制约.未来,国产常规气产能释放的红利将会逐步减弱,产量增量将维持在80亿方以内.为了测定某市是否符合实施煤改气计划的标准,某监测站点于2016年8月某日起连续200天监测空气质量指数(AQI),数据统计如下:(1)根据上图完成下列表格(2)若按照分层抽样的方法,从空气质量指数在101~150以及151~200的等级中抽取14天进行调研,再从这14天中任取4天进行空气颗粒物分析,记这4天中空气质量指数在101~150的天数为X,求X的分布列;(3)以频率估计概率,根据上述情况,若在一年365天中随机抽取5天,记空气质量指数在150以上(含150)的天数为Y,求Y的期望.19.(12分)已知三棱锥D﹣ABC中,BE垂直平分AD,垂足为E,△ABC是面积为的等边三角形,∠DAB=60°,CD=,CF⊥平面ABD,垂足为F,O为线段AB的中点.(1)证明:AB⊥平面DOC;(2)求CF与平面BCD所成的角的正弦值.20.(12分)已知椭圆C:+=1(a>b>0)的左右焦点分别为F1,F2,若椭圆上一点P满足|PF1|+|PF2|=4,且椭圆C过点(﹣1,﹣),过点R(4,0)的直线l与椭圆C 交于两点E、F.(1)求椭圆C的方程;(2)过点E作x轴的垂线,交椭圆C于N,求证:N,F2,F三点共线.21.(12分)已知函数f(x)=x2﹣x﹣lnx.(1)求函数f(x)的极值;(2)若x1,x2是方程ax+f(x)=x2﹣x(a>0)的两个不同的实数根,求证:lnx1+lnx2+2lna <0.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分[选修4-4:坐标系与参数方程]22.(12分)在平面直角坐标系xOy中,曲线C1的参数方程为(θ为参数),以坐标原点O为极点,x轴的正半轴为极轴且取相同的单位长度建立极坐标系,曲线C2的极坐标方程为ρcos(θ+)=.(1)求曲线C1的普通方程和曲线C2的普通方程;(2)若曲线C1,C2相交于A,B两点,求线段AB的长度.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣1|+2018.(1)解关于x的不等式f(x)>|x|+2018;(2)若f(|a﹣4|+3)>f((a﹣4)2+1),求实数a的取值范围.2017-2018学年安徽省滁州市高三(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:∵集合A={x|x>1},B={x|3x>2}={x|x>log32},∴A∩B={x|x>1}.故选:C.2.【解答】解:设圆的半径为r,则正方形的边长为2r;∴圆的面积为πr2,正方形的面积为4r2;以面积为测度,可得点P落在⊙O外的概率为P=1﹣=.故选:A.3.【解答】解:复数z===+i,∴|z|==,A错误;z的共轭复数为﹣i,B错误;z的实数与虚部之和为+=2,C错误;z在平面内的对应点是(,),位于第一象限,D正确.故选:D.4.【解答】解:∵a=log3<log31=0,b=log23>log22=1,0<c=()3<()0=1,∴a,b,c的大小关系为b>c>a.故选:B.5.【解答】解:模拟程序的运行,该程序的功能是利用循环结构计算并输出变量S=log32•log43•log54•log65•log76•log87的值,可得:S=log32•log43•log54•log65•log76•log87====.故选:A.6.【解答】解:∵等差数列{a n}中,a6=3,S8=12,∴,解方程可得,a1=﹣2,d=1,故选:B.7.【解答】解:由m,n是空间中两条不同的直线,α,β是两个不同的平面,知:在A中,若m⊂α,n⊂β,α∥β,则m与n相交、平行或异面,故A错误;在B中,若m⊂α,α∥β,则由面面平行的性质定理得m∥β,故B正确;在C中,若n⊥β,α⊥β,则n∥α或n⊂α,故C错误;在D中,若m⊂α,n⊂β,α∩β=l,且m⊥l,n⊥l,则α与β不一定垂直,故D错误.故选:B.8.【解答】解:如图所示,该几何体为一个3×2×3的长方体,去掉四个角(棱长为1的正方体)余下的几何体.∴该“榫头”体积=3×2×3﹣4×13=14.故选:C.9.【解答】解:由实数x,y满足,作出可行域如图,联立,解得A(2,4),化目标函数z=x+my为y=﹣x+,由图可知,当直线y=﹣x+过A时,直线在y轴上的截距最大,z有最大值为:10,即2+4m=10.解得m=2.故选:B.10.【解答】解:函数f(x)=sin(2x+φ)(|φ|<)的最小正周期为T==π,将曲线y=f(x)向左平移=个单位之后,得到曲线y=sin(2x++φ)的图象,又因为得到曲线y=sin(2x+)的图象,∴φ=﹣,f(x)=sin(2x﹣).令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,故函数的增区间为[kπ﹣,kπ+],k∈Z.结合所给的选项,故选:A.11.【解答】解:圆C1:(x+5)2+y2=4的圆心为(﹣5,0),半径为r1=2;圆C2:(x﹣5)2+y2=1的圆心为(5,0),半径为r,设双曲线﹣=1的左右焦点为F1(﹣5,0),F2(5,0),连接PF1,PF2,F1M,F2N,可得|PM|2﹣|PN|2=(|PF1|2﹣r12)﹣(|PF2|2﹣r2)=(|PF1|2﹣4)﹣(|PF2|2﹣r2)=|PF1|2﹣|PF2|2﹣4+r2=(|PF1|﹣|PF2|)(|PF1|+|PF2|)﹣4+r2=2a(|PF1|+|PF2|﹣4+r2=6(|PF1|+|PF2|)﹣4+r2≥6•2c﹣4+r2≥60﹣4+r2=58,当且仅当P为右顶点时,取得等号,即r2=2,则r=故选:B.12.【解答】解:当x∈[0,2]时,f(x)=2x3﹣3x2+1,f′(x)=6x2﹣6x=6x(x﹣1),∴f′(x)在(0,1)为负,在(1,2)为正,∴f(x)在[0,1]递减,在[1,2]递增,又f(0)=1,f(2)=5,故f(x)在[0,2]上最大值为5;当x∈[﹣2,0)时,f(x)=e ax+1,f′(x)=ae ax,若a>0,则f′(x)>0,f(x)递增,此时,f(x)<f(0)=2,符合题意;若a=0,f(x)=2,符合题意;若a<0,则f′(x)<0,f(x)递减,此时,f(x)≤f(﹣2)=e﹣2a+1,由题意,e﹣2a+1≤5,解得a≥﹣ln2.综上可知,a的取值范围为[﹣ln2,+∞).故选:D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.【解答】解:∵=(﹣k,k+2),=(2,﹣3),∴+2=(4﹣k,k﹣4),又∥(+2),∴﹣k(k﹣4)﹣(k+2)(4﹣k)=0,解得:k=4.故答案为:4.14.【解答】解:∵(x+2y)(x﹣y)6=(x+2y)•(x6﹣6x5•y+15x4•y2﹣20x3•y3+15x2•y4﹣6x •y5+y6),∴x4y3的系数为﹣20+2×15=10,故答案为:10.15.【解答】解:设,∵,∴,∴q6(q2﹣4)=0,∵在各项都为正数的等比数列{a n}中q>0,∴q=2,∴=22018.故答案为:22018.16.【解答】解:抛物线C:y2=2px(p>0)的焦点为F,准线l:x=﹣,抛物线C:y2=5x,点M在抛物线C上,点A在准线l上,若MA⊥l,且直线AF的倾斜角为,直线AF 的斜率k AF=﹣,准线与x轴的交点为N,则AN=tan =,A(﹣,),|AF|==5.故答案为:5.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.【解答】解:(1)∵b cos A﹣c cos B=(c﹣a)cos B.∴由正弦定理,得:sin B cos A﹣sin C cos B=(sin C﹣sin A)cos B.∴sin A cos B+cos A sin B=2sin C cos B.∴sin(A+B)=2sin C cos B.又A+B+C=π,∴sin(A+B)=sin C.又∵0<C<π,∴cos B=.又B∈(0,π),∴B=.(2)据(1)求解知B=,∴b2=a2+c2﹣2ac cos B=a2+c2﹣ac.①又S=ac sin B=3,∴ac=12,②又∵b=,∴据①②解,得a+c=7.18.【解答】解:(1)所求表格数据如下:(2)依题意,从空气质量指数在101~150以及151~200的天数分别是10,4,故X的可能取值为0,1,2,3,4,P(X=0)==,P(X=2)=,P(X=3)==,P(X=4)==.故X的分布列为:(3)依题意,任取1天空气质量指数在150以上的概率为.由二项分布知识可知,Y~B(5,),故B(Y)=5×=.19.【解答】证明:(1)∵BE垂直平分AD,垂足为E,∴AB=DB.∵∠DAB=60°,∴△ABD是等边三角形.又△ABC是等边三角形.∴O是AB中点,DO⊥AB,CO⊥AB.∵DO∩CO=O,DO,CO⊂平面DOC,∴AB⊥平面DOC.解:(2)由(1)知OC=OD,平面DOC⊥平面ABD.∵平面DOC与平面ABD的交线为OD.∵CF⊥平面ABD.∴F∈CD.又等边△ABC面积为,∴OC=,又CD=,∴F是OD中点.如图建立空间直角坐标系O﹣xyz,B(1,0,0),C(0,,0),D(0,,),F(0,,),∴=(0,﹣,),=(﹣1,,0),=(﹣1,,),设平面BDC的法向量为=(x,y,z),则,取y=,则x=3,z=1.即平面BCD的一个法向量为=(3,,1).∴CF与平面BCD所成角的正弦值为==.20.【解答】解:(1)依题意,|PF1|+|PF2|=4=2a,故a=2.将(﹣1,﹣)代入C:+=1中,解得b2=3,故椭圆C:+=1.证明(2)由题知直线l的斜率必存在,设l的方程为y=k(x﹣4).点E(x1,y1),F(x2,y2),则N(x1,﹣y1),联立可得(4k2+3)x2﹣32k2x+64k2﹣12=0.可得x1+x2=,x1x2=由题可得直线FN方程为y﹣y2=(x﹣x2),又∵y1=k(x1﹣4),y2=k(x2﹣4)代入∴直线FN方程为y+k(x1﹣4)=(x﹣x1),令y=0,整理得x====1,即直线FN过点(1,0).又∵椭圆C的左焦点坐标为F2(1,0),∴N,F2,F三点共线21.【解答】解:(1)依题意,f′(x)=2x﹣1﹣==.故当x∈(0,1)时,f′(x)<0,当x∈(1,+∞)时,f′(x)>0.故当x=1时,函数f(x)有极小值f(1)=0,无极大值;证明:(2)∵x1,x2是方程ax+f(x)=x2﹣x(a>0)的两个不同的实数根.∴,两式相减得,解得a=.要证:lnx1+lnx2+2lna<0,即证:x1x2<,即证:x1x2<,即证<=,不妨设x1<x2,令>1.只需证ln2t.设,则;令h(t)=2lnt﹣t+,则h′(t)=<0,∴h(t)在(1,+∞)上单调递减,∴h(t)<h(1)=0,即g′(t)<0,∴g(t)在(1,+∞)上为减函数,则g(t)<g(1)=0.即ln2t<在(1,+∞)上恒成立,∴原不等式成立,即lnx1+lnx2+2lna<0.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分[选修4-4:坐标系与参数方程]22.【解答】解:(1)∵曲线C1的参数方程为(θ为参数),∴平方得曲线C1的普通方程为x2+y2=1,∵C2的极坐标方程为ρcos(θ+)=,∴ρ(cosθ+sinθ)=1,∴x+y=1,故曲线C2的普通方程为x﹣y﹣1=0;(2)据,得或,所以线段AB的长度为=.[选修4-5:不等式选讲]23.【解答】解:(1)f(x)>|x|+2018可化为|x﹣1|>|x|,∴(x﹣1)2>x2,∴x<,∴不等式的解集为{x|x<}.(2)∵f(x)=|x﹣1|+2017在[1,+∞)上单调递増,又|a﹣4|+3>1,(a﹣4)2+1≥1,∴只需要|a﹣4|+3>(a﹣4)2+1,化简为(|a﹣4|+1)(|a﹣4|﹣2)<0,∴|a﹣4|<2,解得2<a<6,即实数a的取值范围是(2,6).。

安徽省滁州市2017-2018学年高一上学期期末考试数学试题 Word版含解析

滁州市2017-2018学年第一学期高一期末考试数学试卷第Ⅰ卷(选择题共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,则()A. B. C. D.【答案】D2. 已知角的始边是轴的正半轴,终边经过点,且,则()A. B. C. D.【答案】A【解析】依题意可知,故.3. 计算:()A. 3B. 2C.D.【答案】D【解析】原式.5. 若幂函数的图象过点,则满足的实数的取值范围是()A. B. C. D.【答案】B【解析】依题意有,,.6. 函数的最大值是()A. B. C. 1 D.【答案】B【解析】,故最大值为.7. 下列函数是奇函数,且在上是增函数的是()A. B. C. D.【答案】B【解析】选项为偶函数,选项为非奇非偶函数.选项在为减函数,在为增函数.选项在上为增函数,符合题意.【点睛】本题主要考查函数的奇偶性和单调性.判断函数的奇偶性,首先判断函数的定义域是否关于原点对称,选项定义域显然不关于原点对称,故为非奇非偶函数.然后计算,化简后看等于还是.函数的单调性中是对钩函数,在不是递增函数.8.9. 函数的零点为,则()A. B. C. D.【答案】C【解析】,,故函数的零点在区间.11. 曲线,曲线,下列说法正确的是()A. 将上所有点横坐标扩大到原来的2倍,纵坐标不变,再将所得曲线向左平移个单位,得到B. 将上所有点横坐标缩小到原来的,纵坐标不变,再将所得曲线向左平移个单位,得到C. 将上所有点横坐标扩大到原来的2倍,纵坐标不变,再将所得曲线向左平移个单位,得到D. 将上所有点横坐标缩小到原来的,纵坐标不变,再将所得曲线向左平移个单位,得到【答案】B【解析】由于,故首先横坐标缩小到原来得到,再向左平移个单位得到.故选.12. 若不等式对任意的恒成立,则的取值范围是()A. B. C. D.【答案】D【解析】当时,原不等式化为,不恒成立,排除,故选.第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分,满分20分,将答案填在答题纸上.13.14. ,则__________.【答案】【解析】,,故原式.15. 若函数在是单调函数,则实数的取值范围是__________.【答案】【解析】由于函数为二次函数,对称轴为,只需对称轴不在区间上即可,即或,解得.【点睛】本题主要考查二次函数单调区间的知识.对于二次函数来说,它的单调区间主要由开口方向和对称轴来决定.当开口向上时,左减右增,当开口向下是,左增右减.本题中由于题目只需要区间上的单调函数,不需要递增还是递减,故只需对称轴不在给定区间内即可.16.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知集合.(1)求;(2)若,求实数的取值范围.【答案】(1);(2)【解析】【试题分析】(1)首先求得,由此求得的值.(2),由于,故,解得.【试题解析】解:,(1);(2)∵,∴,∵,∴,∴.18.19. 已知函数的图象过点.(1)若,求实数的值;(2)当时,求函数的取值范围.【答案】(1)(2)【解析】【试题分析】(1)将点代入函数,由此求得的值,进而得出的表达式.解方程,可求得实数的值.(2)将分离常数,得到,它在上为减函数,在区间端点取得最小值和最大值.由此求得函数的值域.【试题解析】解:(1),∴,,∴,∴;(2),显然在与上都是减函数,∵,∴在上是减函数,∵,∴.20. 函数的部分图象如图所示.(1)求的值;(2)求图中的值及函数的递增区间.【答案】(1)(2)【解析】【试题分析】(1)根据图像最大值求得,根据可求得,在根据图像上一个点,可求得的值.(2)利用求出,利用周期为可求得的值.将代入余弦函数的单调递增区间,求得的范围即函数的递增区间.【试题解析】解:(1)由图知,∴,∴,又,∴,且,∴;(2)由(1)知,由,∴,由得,∴的单调增区间为.21.22. 已知函数.(1)求证:是奇函数;(2)判断的单调性,并证明;(3)已知关于的不等式恒成立,求实数的取值范围.【答案】(1)见解析(2)见解析(2)【解析】【试题分析】(1)定义域为关于原点对称,判断故函数为奇函数.(2)函数在定义域的两个区间上都是减函数.利用定义法,计算,由此判断出函数的单调性.(3)根据函数的单调性和奇偶性,将原不等式转化为即,解不等式得.【点睛】本题主要考查函数奇偶性的判断,考查利用定义法求函数单调性,考查利用函数的奇偶性和单调性求参数的取值范围.判断函数的奇偶性首先要求出函数的定义域,看定义域是否关于原点对称,然后再判断与的关系,进而判断函数的奇偶性.定义法判断函数的单调性,需计算的值来判断.【试题解析】(1)证明:由,得,∵,∴是奇函数;(2)解:的单调减区间为与没有增区间,设,则.∵,∴,∴,∴,∴,∴在上是减函数,同理,在上也是减函数;(3)是奇函数,∴,∴化为,又在上是减函数,∴,∴,即.。

2023届安徽省滁州市部分高中高一数学第一学期期末监测试题含解析

∴直线l的方程为:y﹣2=﹣ (x+1),化为:x+3y﹣5=0
综上可得:直线l的方程为:x+3y﹣5=0或x=﹣1
故答案为x+3y﹣5=0或x=﹣1
12、12
【解析】根据偶函数定义,结合 时的函数解析式,代值计算即可.
【详解】因为 是定义在 上的偶函数,故可得 ,
又当 时, ,故可得 ,
综上所述: .
故选C
D对任意 ,都有
二、填空题:本大题共6小题,每小题5分,共30分。
11、x+3y-5=0或x=-1
【解析】当直线l为x=﹣1时,满足条件,因此直线l方程可以为x=﹣1
当直线l的斜率存在时,设直线l的方程为:y﹣2=k(x+1),化为:kx﹣y+k+2=0,
则 ,化为:3k﹣1=±(3k+3),解得k=﹣
解:函数 在区间 上单调递增
证明如下: , ,且 ,

因为 , , ,所以 ,即
又因为 ,所以 ,即
所以 ,即
所以 在区间 上单调递增
19、(1) ;(2) 或 .
【解析】(1)求出集合 ,再根据集合间的基本运算即可求解;
(2)求出 ,再根据集合间的基本运算即可求解.
【详解】解:(1)由 ,
解得: ,
5、B
【解析】按三角函数的定义,有 .
6、A
【解析】根据三角函数的定义计算可得;
【详解】解:因为角 终边过点 ,所以 ;
故选:A
7、D
【解析】由图像知A="1," , ,
得 ,则图像向右
移 个单位后得到的图像解析式为 ,故选D
8、C
【解析】利用集合的交、并、补运算进行判断.

【全国市级联考】安徽省滁州市2017-2018学年高二上学期期末考试数学(理)试题(解析版)

滁州市2017-2018学年第一学期高二期末考试数学试卷(理科)(试题卷)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 高二(2)班男生36人,女生18 人,现用分层抽样方法从中抽出人,若抽出的男生人数为12,则等于()A. 16B. 18C. 20D. 22【答案】B【解析】因为高二(2)班男生人,女生人,现用分层抽样方法从中抽出人,所以,故选B.2. 命题“,”的否定为()A. ,B. ,C. ,D. ,【答案】C【解析】因为全称命题的否定是特称命题,所以命题“”的否定为“”,故选C. 3. 双曲线的焦点到渐近线的距离为()A. B. C. 2 D. 3【答案】C【解析】由双曲线方程,可得,所以渐近线方程为,焦点坐标为,由点到直线距离公式可得焦点到渐近线的距离为,故选C.4. 下列函数是偶函数的是()A. B. C. D.【答案】C【解析】,即不是奇函数,又不是偶函数,不合题意,,是奇函数,不合题意,,,是偶函数,合题意,,即不是奇函数,又不是偶函数,不合题意,故选C.5. 若正方形的边长为1,则在正方形内任取一点,该点到点的距离小于1的概率为()A. B. C. D.【答案】A【解析】在正方形内任取一点,该点到点的距离小于的点,在以点为圆心以为半径的四分之一圆内,面积为,所以在正方形内任取一点,该点到点的距离小于的点的概率为,故选A.【方法点睛】本题題主要考查“面积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本裏件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时, 忽视验证事件是否等可能性导致错误.6. “函数在区间上是增函数”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】C【解析】时,“函数在区间上不是增函数”,时,在上是增函数,时,令,得,“在区间上是增函数” 的充分必要条件“”,故选C.7. 执行如图所示的程序框图,因输出的结果为()A. 2B. 3C. 4D. 5【答案】D【解析】执行程序框图,,输出,故选D. 【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.8. 设命题,;命题:若,则方程表示焦点在轴上的椭圆.那么,下列命题为真命题的是()A. B. C. D.【答案】B【解析】不存在使为假,为真,又时,方程表示焦点在轴上的椭圆,为真,为假,为真,故选B.9. 将曲线向左平移个单位后,得曲线,则函数的单调增区间为()A. B.C. D.【答案】C【解析】曲线向左平移个单位后,得到,由,得,等价于,函数的单调增区间为,故选C.【方法点睛】本题主要考查三角函数的单调性、三角函数的图像变换及最值,属于中档题.的函数的单调区间的求法:(1) 代换法:①若,把看作是一个整体,由求得函数的减区间,求得增区间;②若,则利用诱导公式先将的符号化为正,再利用①的方法,或根据复合函数的单调性规律进行求解;(2) 图象法:画出三角函数图象,利用图象求函数的单调区间.10. 已知长方体,,, 是线段上一点,且,是中点,则与平面所成的角的正弦值为()A. B. C. D.【答案】A11. 在中,角,,的对边分别为,,,且,则()A. B. C. D.【答案】A【解析】因为,所以由正弦定理得,即,由正弦定理可得化为,故选A.12. 已知双曲线(,)的左顶点为,右焦点为,过左顶点且斜率为l的直线与双曲线的右支交于点,若的面积为,双曲线的离心率为()A. 3B. 2C.D.【答案】B【解析】由,得,则的面积为,,故选B.【方法点睛】本题主要考查双曲线的定义及离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.本题中,根据的面积为,建立关于焦半径和焦距的关系.从而找出之间的关系,求出离心率.第Ⅱ卷(非选择题共 90分)二、填空题:本大题共4小题,每小题5分,共20分.13. 已知向量,,若,则__________.【答案】【解析】,故答案为.14. 已知一个算法的程序框图如图所示,当输入的与时,则输出的两个值的和为______.【答案】【解析】时,,时,,,输出的两个值的和为,故答案为.15. 在长方体中,,,点,分别为,的中点,点在棱上,若平面,则四棱锥的外接球的体积为__________.【答案】【解析】当是中点时,连接交于点,则是的中点,又因为别为的中点,所以,从而根据线面平行的判定定理可得平面,所以四棱锥的外接球就是以为棱的正方体的外接球,设外接球的半径为,则外接球直径等于正方体对角线长,所以,故答案为.16. 已知椭圆的右焦点为,点是椭圆上第一象限内的点,的延长线依次交轴,椭圆于点,,若,则直线的斜率为__________.【答案】【解析】,设方程为,由,得,设,因为,则,,,故答案为.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17. 甲乙两人同时生产内径为的一种零件,为了对两人的生产质量进行评比,从他们生产的零件中各抽出 5 件(单位:) ,甲:25.44,25.43, 25.41,25.39,25.38乙:25.41,25.42, 25.41,25.39,25.42.从生产的零件内径的尺寸看、谁生产的零件质量较高.【答案】乙生产的零件比甲的质量高【解析】试题分析:分别利用平均值公式算出甲乙两人生产的零件的平均值,再利用方差公式算出甲乙两人生产的零件的方差,发现甲、乙平均数相同,乙的方差较小,∴乙生产的零件比甲的质量高.试题解析:甲的平均数.乙的平均数.甲的方差,乙的方差.∵甲、乙平均数相同,乙的方差较小,∴乙生产的零件比甲的质量高.18. 已知直线与抛物线相交于,两点,是坐标原点.(1)求证:;(2)若是抛物线的焦点,求的面积.【答案】(1)见解析(2)...............试题解析:(1)证明:由,得,∴,设,则,且,∴,∴,∴;(2)解:由(1)知的面积等于,(用求解同样给分)直线与轴交点为,抛物线焦点为,∴,∴的面积为.19. 某高校进行社会实践,对岁的人群随机抽取 1000 人进行了一次是否开通“微博”的调查,开通“微博”的为“时尚族”,否则称为“非时尚族”.通过调查得到到各年龄段人数的频率分布直方图如图所示,其中在岁,岁年龄段人数中,“时尚族”人数分别占本组人数的、.(1)求岁与岁年龄段“时尚族”的人数;(2)从岁和岁年龄段的“时尚族”中,采用分层抽样法抽取6人参加网络时尚达人大赛,其中两人作为领队.求领队的两人年龄都在岁内的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

滁州市2017-2018学年第一学期高一期末考试数学试卷第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}1,2,4,1,2,3A B ==,则A B = ( )A .{}3,4B .{}1,2C .{}2,3,4D .{}123,4,,2. 已知角α的始边是x 轴的正半轴,终边经过点()3,4-,且4si n 5α=,则t a n α=( ) A .43-B .34-C .43D .343. 计算:114333122x x x -⎛⎫+= ⎪⎝⎭( )A . 3B . 2C .2x +D .12x +4. 已知向量()()3,2,2,a b x ==,若a b ⊥ ,则23a b -= ( )A ..9 C. 13 D .5. 若幂函数()af x x =的图象过点()4,2,则满足()11f x ->的实数x 的取值范围是( )A .()0,1B .()2,+∞ C. ()1,1- D .(),2-∞ 6.函数()()1sin cos 32f x x x ππ⎛⎫=++- ⎪⎝⎭的最大值是 ( ) A .43 B .23 C. 1 D .137.下列函数是奇函数,且在()0,+∞上是增函数的是 ( )A .21x y x +=B .21x y x-= C. 22x x y -=+ D .lg 1y x =+8. 若3sin 4α=,α是第二象限角,则sin 24πα⎛⎫-= ⎪⎝⎭( )A .16.16- C. 16 D .116-9.函数33x y x =+的零点为0x ,则 ( ) A .031,4x ⎛⎫∈--⎪⎝⎭ B .031,42x ⎛⎫∈-- ⎪⎝⎭ C. 011,24x ⎛⎫∈-- ⎪⎝⎭ D .01,04x ⎛⎫∈- ⎪⎝⎭10. 在平行四边形ABCD 中,E 是CD 中点,F 是BE 中点,若AF mAB nAD =+,则( )A .31,42m n == B .13,44m n == C. 11,22m n == D .13,24m n ==11.曲线1:sin C y x =,曲线2:cos2C y x =,下列说法正确的是 ( ) A .将1C 上所有点横坐标扩大到原来的2倍,纵坐标不变,再将所得曲线向左平移4π个单位,得到2C B .将1C 上所有点横坐标缩小到原来的12,纵坐标不变,再将所得曲线向左平移4π个单位,得到2C C. 将1C 上所有点横坐标扩大到原来的2倍,纵坐标不变,再将所得曲线向左平移2π个单位,得到2C D .将1C 上所有点横坐标缩小到原来的12,纵坐标不变,再将所得曲线向左平移2π个单位,得到2C 12.若不等式()2log 14x a x +≥对任意的()0,x ∈+∞恒成立,则a 的取值范围是 ( ) A .(],0-∞ B .1,4⎛⎤-∞ ⎥⎝⎦ C. [)0,+∞ D .1,4⎡⎫+∞⎪⎢⎣⎭第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,满分20分,将答案填在答题纸上.13.若cos 2sin cos ααα=+,则tan 2α= .14. ()()4log 1,01,0x x f x x x ⎧+≥=⎨-<⎩,则()()11f f -+= .15.若函数()2231y x a x =+-+在[]1,3是单调函数,则实数a 的取值范围是 .16.已知函数()()2cos 06f x x πωω⎛⎫=-> ⎪⎝⎭在区间2,63ππ⎡⎤⎢⎥⎣⎦内单调递减,则ω的最大值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知集合{}{}{}|2318,|215,|1A x x B x x C x x a x a =≤-≤=-<=≤≥+或. (1)求,A B A B ;(2)若()R C C A ⊆,求实数a 的取值范围.18.已知向量()([]cos ,sin ,,0,a x x b x π==∈.(1)若a 与b共线,求x 的值;(2)记()f x a b =,求()f x 的最大值和最小值,及相应的x 的值.19.已知函数()31x f x x a+=+的图象过点()1,4-. (1)若()210f x =,求实数x 的值;(2)当[]5,1x ∈-时,求函数()f x 的取值范围. 20.函数()()cos 20,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示. (1)求,,A ωϕ的值;(2)求图中,a b 的值及函数()f x 的递增区间.21.已知,αβ都是锐角,()14sin ,sin 235ααβ=-=. (1)求cos β的值;(2)求()sin αβ-的值.22. 已知函数()3131x x f x +=-.(1)求证:()f x 是奇函数; (2)判断()f x 的单调性,并证明;(3)已知关于t 的不等式()()222310f t t f t -++--<恒成立,求实数t 的取值范围.试卷答案一、选择题1-5: DADCB 6-10:BBCCA 11、12:BD二、填空题13. 13-14. 52 15. 31,,22⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭16.1 三、解答题17.解:{}{}|13,|3A x x B x x =≤≤=<, (1){}{}|13,|3A B x x A B x x =≤<=≤ ;(2)∵{}|,1C x x a x a =≤≥+或,∴{}|1R C C x a x a =<<+, ∵()R C C A ⊆,∴113a a ≥⎧⎨+≤⎩,∴[]1,2a ∈.18.解:(1)∵a 与bsin 0x x -=,∴tan x =[]0,x π∈,∴3x π=;(2)()cos 2sin 6f x a b x x x π⎛⎫===+ ⎪⎝⎭ ,∵[]0,x π∈,∴7,666x πππ⎡⎤+∈⎢⎥⎣⎦,∴1sin 126x π⎛⎫-≤+≤ ⎪⎝⎭,∴()12f x -≤≤, 当62x ππ+=即3x π=时,()f x 取得最大值2;当766x ππ+=,即x π=时,()f x 取得最小值-1.19.解:(1)()1141f a==-+,∴2a =-, ()222223110,3110202x f x x x x +==+=--,∴22721,3x x ==,∴x = (2)()()3273173222x x f x x x x -++===+---, 显然()f x 在[)2,+∞与(),2-∞上都是减函数, ∵[](]5,1,2-⊆-∞,∴()f x 在[]5,1-上是减函数, ∵()()77532,13471f f -=+==+=---,∴()[]4,2f x ∈-. 20.解:(1)由图知2452,23123A T πππω⎛⎫===+ ⎪⎝⎭,∴1ω=,∴()()2cos 2f x x ϕ=+, 又52,0312f f ππ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭, ∴5cos 1,cos 036ππϕϕ2⎛⎫⎛⎫-+=-+= ⎪ ⎪⎝⎭⎝⎭,且2πϕ<,∴3πϕ=-;(2)由(1)知()2cos 23f x x π⎛⎫=-⎪⎝⎭,由512a T ππ-==, ∴()7,02cos 1123a b f ππ⎛⎫=-==-= ⎪⎝⎭, 由()2223k x k k Z ππππ-≤-≤∈得()36k x k k Z ππππ-≤≤+∈,∴()f x 的单调增区间为(),36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. 21.解:因为,αβ都是锐角()14sin ,sin 235ααβ=-=,所以cos 3α==,且()30,2,cos 24225πππααβαβ<<-<-<-=,所以227sin 22sin cos 2cos sin 99αααααα===-=,(1)()()()21cos cos 22cos 2cos 2sin 2sin 215βααβααβααβ+=--=-+-=⎡⎤⎣⎦;(2)()()()()3sin sin 2sin 2cos cos 2sin 15αβαβααβααβα-=--=---=⎡⎤⎣⎦. 22.(1)证明:由310x-≠,得0x ≠,∵()()31133113x xxxf x f x --++-===---, ∴()f x 是奇函数;(2)解:()f x 的单调减区间为(),0-∞与()0,+∞没有增区间, 设120x x <<,则()()()()()()()21121221121212121212233313133313331313131313131x x x x x x x x x x x x x x x x xx f x f x --+++----++-=-==------ .∵120x x <<,∴21331x x>>, ∴2112330,31,310x x x x->-->,∴()()120f x f x ->,∴()()12f x f x >, ∴()f x 在()0,+∞上是减函数, 同理,()f x 在(),0-∞上也是减函数;(3)()f x 是奇函数,∴()()2211f t f t --=-+,∴()()222310f t t f t -++--<化为()()22231f t t f t -+<+,又()()22223120,10,t t t t f x -+=-+>+>在()0,+∞上是减函数,∴22231t t t -+>+,∴1t <,即(),1t ∈-∞.。

相关文档
最新文档