2020-2021【名校提分专用】高考数学一轮复习课时分层训练59随机抽样理北师大版
高考数学一轮复习简单随机抽样专题复习题(带答案)

高考数学一轮复习简单随机抽样专题复习题(带答案)简单随机抽样是指从总体N个单位中任意抽取n个单位作为样本,使每个可能的样本被抽中的概率相等的一种抽样方式。
以下是简单随机抽样专题复习题,请考生认真练习。
一、选择题1.对于简单随机抽样,下列说法中正确的有()它要求被抽取样本的总体的个数有限,以便对其中各个个体被抽取的概率进行分析;它是从总体中逐个地进行抽取,以便在抽取实践中进行操作; 它是一种不放回抽样;它是一种等概率抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的概率相等,而且在整个抽样过程中,各个个体被抽取的概率也相等,从而保证了这种方法抽样的公平性.A. B.C. D.[答案] D[解析] 由简单随机抽样定义得D正确.2.下面的抽样方法是简单随机抽样的是()A.在某年的明信片销售活动中,规定每100万张为一个开奖组,通过随机抽样的方式确定号码的后四位为2 709的为三等奖B.某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格C.某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解学校机构改革的意见D.用抽签法从10件产品中选取3件进行质量检验[答案] D[解析] A、B不是简单随机抽样,因为抽取的个体间的间隔是固定的,不具有随意性;C不是简单随机抽样,因为总体的个体之间差别比较大,抽取的个体不一定具有代表性;D是简单随机抽样.二、填空题3.某总体共有60个个体,并且编号为00,01,,59,现需从中抽取一个容量为8的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11、12列的18开始,依次向下读数,到最后一行后向右,直到取足样本为止(大于59及与前面重复的数字跳过),则抽取样本的号码是________.95 33 95 22 00 18 74 72 00 18 38 79 58 69 32 81 76 80 26 92 82 80 84 25 3990 84 60 79 80 24 36 59 87 38 82 07 53 89 35 56 35 23 79 18 05 98 90 07 3546 40 62 98 80 54 97 20 56 95 15 74 80 08 32 16 46 70 50 8067 72 16 42 7920 31 89 03 43 38 46 82 68 72 32 14 82 99 70 80 60 47 18 9763 49 30 21 3071 59 73 05 50 08 22 23 71 77 91 01 93 20 49 82 96 59 26 9466 39 67 98 60[答案] 18,24,54,38,08,22,23,01[解析] 由随机数表法可得.4.下列抽样方法属于简单随机抽样的有________.①从1000个个体中一次性抽取50个个体作为样本;将1000个个体编号,并把编号写在形状、大小相同的签上,然后将号签放在一个足够大的不透明的容器内搅拌均匀,从中逐个抽取50个个体作为样本;从10个乒乓球中抽取3个进行质量检验.首先将乒乓球进行编号0,1,2,,9,再将转盘分成10等份,分别标上整数0,1,2,,9,转动转盘,指针指向的数字是几就取几号个体,直到抽出3个个体为止.[答案][解析] 简单随机抽样是逐个抽取,不能是一次性抽取,所以不属于简单随机抽样;属于简单随机抽样中的抽签法;属于简单随机抽样中的随机数法.故填.三、解答题5.某车间工人加工一种轴共100件,为了了解这种轴的直径,要从中抽取10件在同一条件下测量,如何采用简单随机抽样的方法抽取样本?[分析] 由于本题的调查对象较少,可采用简单随机抽样方法.简单随机抽样有两种方法:抽签法和随机数法,所以有两种思路.[解析] 方法一:抽签法:(1)将100件轴编号为1,2,,100;(2)做好大小、形状相同的号签,分别写上这100个号码;(3)将这些号签放在一个不透明的容器内,搅拌均匀;(4)逐个抽取10个号签;(5)然后测量这10个号签对应的轴的直径.方法二:随机数法:(1)将100件轴编号为00,01,,99;(2)在教材表1-2的随机数表中选定一个起始位置,如从第21行第1个数9开始;(3)规定读数的方向,如向右读;(4)依次选取10个数为93,12,47,79,57,37,89,18,45,50,则与这10个编号相对应的个体即为所要抽取的样本.6.某次音乐颁奖典礼上,欲邀请20名内地、港台艺人参加演出,其中从30名内地艺人中随机挑选10人,从18名香港艺人中随机挑选6人,从10名台湾艺人中随机挑选4人,试用抽签法确定选中的艺人并确定他们的演出顺序.[解析] 第一步:确定演出人员:将30名内地艺人从1到30编号,然后将1到30这30个号码分别写到形状、大小相同的号签上,然后放在一个不透明的容器中摇匀,从中逐个抽出10个号签,相应编号的艺人参加演出,再运用相同的办法分别从18名香港艺人中抽取6人,从10 名台湾艺人中抽取4人.第二步:确定演出顺序:确定了演出人员后,再将1到20这20个号码分别写到形状、大小相同的号签上,用来代表演出的顺序,然后让每名演出者抽取1个号签,抽到的号签上的数字就是这名演员的演出顺序.7.为了了解高一(10)班53名同学的牙齿健康状况,需从中抽取10名做医学检验,现已对53名同学编号00,01,02,,50,51,52.从下面所给的随机数表的第1行第3列的5开始从左向右读下去.则选取的号码依次为多少?随机数表如下:0154 3287 6595 4287 53467953 2586 5741 3369 83244597 7386 5244 3578 6241[解析] 从数5,开始从左向右读下去,两位两位地读,在00~52范围内前面没有出现过的记下,否则跳过,直到取满10人为止.如下表01 54 32 87 65 95 42 87 53 4679 53 25 86 57 41 33 69 83 24与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。
高考数学一轮复习同步检测题:《随机抽样》

高考数学一轮复习同步检测题:《随机抽样》由查字典数学网编辑教员精心提供,2021年高考数学一轮温习同步检测题:«随机抽样»,因此考生及家长请仔细阅读,关注孩子的学习生长。
一、选择题1.为确保食品平安,质检部门反省一箱装有1 000件包装食品的质量,抽查总量的2%.在这个效果中以下说法正确的选项是( )(A)总体是指这箱1 000件包装食品(B)集体是一件包装食品(C)样本是按2%抽取的20件包装食品(D)样本容量为202.效果:①某社区有500个家庭,其中高支出家庭125户,中等支出家庭280户,低支出家庭95户,为了了解社会购置力的某项目的,要从中抽出一个容量为100的样本;②从10名先生中抽出3名参与座谈会.方法:Ⅰ复杂随机抽样法;Ⅱ系统抽样法;Ⅲ分层抽样法. 效果与方法配对正确的选项是( )(A)①Ⅲ,②Ⅰ (B)①Ⅰ,②Ⅱ(C)①Ⅱ,②Ⅲ (D)①Ⅲ,②Ⅱ3.从2 012名先生中选取10名先生参与全国数学联赛,假定采用下面的方法选取:先用复杂随机抽样法从2 012人中剔除2人,剩下的2 010人再按系统抽样的方法抽取,那么每人中选的概率( )(A)不全相等 (B)均不相等(C)都相等,且为 (D)都相等,且为4.应用复杂随机抽样,从n个集体中抽取一个容量为10的样本.假定第二次抽取时,余下的每个集体被抽到的概率为那么n的值为 ( )(A)30 (B)28 (C)20 (D)185.某连队身高契合国庆阅兵规范的战士共有45人,其中18岁~19岁的战士有15人,20岁~22岁的战士有20人,23岁以上的战士有10人,假定该连队有9个参与阅兵的名额,假设按年龄分层选派战士,那么,该连队年龄在23岁以上的战士参与阅兵的人数为( )(A)5 (B)4 (C)3 (D)26.(2021锦州模拟)某高中在校先生2 000人,高一年级与高二年级人数相反并都比高三年级多1人.为了照应阳光体育运动召唤,学校举行了跑步和登山竞赛活动.每人都参与而且只参与了其中一项竞赛,各年级参与竞赛人数状况如下表:高一年级高二年级高三年级跑步 a b c 登山 x y z 其中a∶b∶c=2∶3∶5,全校参与登山的人数占总人数的为了了解先生对本次活动的满意水平,从中抽取一个200人的样本停止调查,那么从高二年级参与跑步的先生中应抽取( )(A)24人 (B)30人 (C)36人 (D)60人7.(2021中山模拟)用系统抽样法从160名先生中抽取容量为20的样本,将160名先生随机地从1~160编号,按编号顺序平均分红20组(1~8号,9~16号,,153~160号),假定第16组抽出的号码为126,那么第1组中用抽签的方法确定的号码是( )(A)5 (B)6 (C)7 (D)88.(2021莆田模拟)将参与夏令营的600名先生编号为:001,002,,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名先生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为( ) (A)26,16,8 (B)25,17,8(C)25,16,9 (D)24,17,99.一工厂消费了某种产品16 800件,它们来自甲、乙、丙三条消费线,为检验这批产品的质量,决议采用分层抽样的方法停止抽样,在甲、乙、丙三条消费线抽取的集体数依次组成一个等差数列,那么乙消费线消费的产品数是( )(A)5 000 (B)5 200 (C)5 400 (D)5 60010.某公路设计院有工程师6人,技术员12人,技工18人,要从这些人中抽取n团体参与市里召开的迷信技术大会.假设采用系统抽样和分层抽样的方法抽取,不用剔除集体,假设参会人数添加1个,那么在采用系统抽样时,需求在总体中先剔除1个集体,那么n等于( )(A)5 (B)6 (C)7 (D)8二、填空题11.某单位200名职工的年龄散布状况如图,现要从中抽取40名职任务样本,用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,,196~200号).假定从第5组抽出的号码为22,那么从第8组抽出的号码应是__________.假定用分层抽样方法,那么在40岁以下年龄段应抽取__________人.12.(2021盐城模拟)某企业三月中旬消费A,B,C三种产品共3 000件,依据分层抽样的结果,企业统计员制造了如下的统计表格:产品类别 A B C 产品数量(件) 1 300 样本容量 130 由于不小心,表格中A,C产品的有关数据已被污染看不清楚了,统计员只记得A产品的样本容量比C产品的样本容量多10,依据以上信息,可得C产品的数量是__________件.13.(2021泰安模拟)将一个总体中的100个集体编号为0,1,2,3,,99,并依次将其分为10个小组,组号为0,1,2,,9.要用系统抽样的方法抽取一个容量为10的样本,假设在第0组(号码为0,1,,9)随机抽取的号码为s,那么依次错位地抽取前面各组的号码,其第k组中抽取的号码个位数为k+s或k+s-10(假设k+s10),假定s=6,那么所抽取的10个号码依次是_________.14.(2021镇江模拟)某地有居民100 000户,其中普通家庭99 000户,高支出家庭1 000户.从普通家庭中以复杂随机抽样方式抽取990户,从高支出家庭中以复杂随机抽样方式抽取100户停止调查,发现共有120户家庭拥有3套以上住房,其中普通家庭50户,高支出家庭70户,依据这些数据并结合所掌握的统计知识,你以为该地拥有3套或3套以上住房的家庭所占比例的合理估量是__________.三、解答题15.(才干应战题)某中学举行了为期3天的新世纪体育运动会,同时停止全校肉体文明擂台赛.为了解这次活动在全校师生中发生的影响,区分在全校500名教职员工、3 000名初中生、4 000名高中生中作问卷调查,假设要在一切答卷中抽出120份用于评价.(1)应如何抽取才干失掉比拟客观的评价结论?(2)要从3 000份初中生的答卷中抽取一个容量为48的样本,假设采用复杂随机抽样,应如何操作?(3)为了从4 000份高中生的答卷中抽取一个容量为64的样本,如何运用系统抽样抽取到所需的样本?答案解析1.【解析】选D.由从总体中抽取样本的意义知D是正确的.2.【解析】选A.①由于社会购置力与家庭支出有关,因此要采用分层抽样法;②从10名先生中抽取3名,样本和总体都比拟少,适宜采用复杂随机抽样法.3.【解析】选C.从N个集体中抽取M个集体,那么每个集体被抽到的概率都等于4.【解析】选B.由题意知n=28.5.【解析】选D.设该连队年龄在23岁以上的战士参与阅兵的人数为x,那么解得x=2.6.【解析】选C.∵登山的占总数的故跑步的占总数的又跑步中高二年级占高二年级跑步的占总人数的设从高二年级参与跑步的先生中应抽取x人,由得x=36.7.【解析】选B.设第1组抽出的号码为x,那么第16组应抽出的号码是815+x=126,解得x=6.8.【解析】选B.依题意及系统抽样的意义可知,将这600名先生按编号依次分红50组,每一组各有12名先生,第k(kN*)组抽中的号码是3+12(k-1).令3+12(k-1)300得因此第Ⅰ营区被抽中的人数是25;令3003+12(k-1)495得因此第Ⅱ营区被抽中的人数是42-25=17.结合各选项知,选B.9.【解析】选D.由于在甲、乙、丙三条消费线抽取的集体数依次组成一个等差数列.那么可设三项区分为a-x,a,a+x.故样本容量为(a-x)+a+(a+x)=3a,因此每个集体被抽到的概率为所以乙消费线消费的产品数为10.【思绪点拨】先依据样本容量是n时,系统抽样的距离及分层抽样中各层人数为整数,得出n的特征,再由当样本容量为n+1时,总体剔除1个集体后,系统抽样的距离为整数验证可得.【解析】选B.总体容量为6+12+18=36.当样本容量是n时,由题意知,系统抽样的距离为分层抽样的比例是抽取的工程师人数为技术员人数为技工人数为所以n应是6的倍数,36的约数,即n=6,12,18.当样本容量为n+1时,从总体中剔除1个集体,系统抽样的距离为由于必需是整数,所以n只能取6.即样本容量n=6.11.【解析】由系统抽样知,在第5组抽取的号码为22而分段距离为5,那么在第6组抽取的号码应为27,在第7组抽取的号码应为32,在第8组抽取的号码应为37.由图知40岁以下的人数为100,那么抽取的比例为为抽取人数.答案:37 2012.【解析】设样本容量为x,那么x=300.A产品和C产品在样本中共有300-130=170(件).设C产品的样本容量为y,那么y+y+10=170,y=80.C产品的数量为=800(件).答案:80013.【解析】由题意知,第1组为10+1+6=17,第2组为20+2+6=28.第3组为30+3+6=39,第4组为40+4+6-10=40,第5组为50+5+6-10=51,第6组为60+6+6-10=62,第7组为70+7+6-10=73,第8组为80+8+6-10=84,第9组为90+9+6-10=95.答案:6,17,28,39,40,51,62,73,84,9514.【思绪点拨】依据分层抽样原理,区分估量普通家庭和高支出家庭拥有3套或3套以上住房的户数,进而得出100 000户居民中拥有3套或3套以上住房的户数,用它除以100 000即可失掉结果.【解析】该地拥有3套或3套以上住房的家庭估量约有:(户).所以所占比例的合理估量约是5 700100 000=5.7%.答案:5.7%15.【解析】(1)由于这次活动对教职员工、初中生和高中消费生的影响不会相反,所以应当采取分层抽样的方法停止抽样.由于样本容量为120,总体个数为500+3 000+4 000=7 500,那么抽样比:所以有所以在教职员工、初中生、高中生中抽取的集体数区分是8,48,64.分层抽样的步骤是:①分层:分为教职员工、初中生、高中生,共三层.②确定每层抽取集体的个数:在教职员工、初中生、高中生中抽取的集体数区分是8,48,64.③各层区分按复杂随机抽样或系统抽样的方法抽取样本.④综合每层抽样,组成样本.这样便完成了整个抽样进程,就能失掉比拟客观的评价结论.(2)由于复杂随机抽样有两种方法:抽签法和随机数法.假设用抽签法,要作3 000个号签,费时费力,因此采用随机数法抽取样本,步骤是:①编号:将3 000份答卷都编上号码:0001,0002,0003,,3000.②在随机数表上随机选取一个起始位置.③规则读数方向:向右延续取数字,以4个数为一组,假设读取的4位数大于3000,那么去掉,假设遇到相反号码那么只取一个,这样不时到取满48个号码为止.(3)由于4 00064=62.5不是整数,那么应先运用复杂随机抽样从4 000名先生中随机剔除32个集体,再将剩余的3 968个集体停止编号:1,2,,3968,然后将全体分为64个局部,其中每个局部中含有62个集体,如第1局部集体的编号为1,2,,62.从中随机抽取一个号码,如假定抽取的是23,那么从第23号末尾,每隔62个抽取一个,这样失掉容量为64的样本:23,85,147,209,271,333,395,457,,3929.【方法技巧】三种常用抽样方法(1)抽签法制签:先将总体中的一切集体编号(号码可以从1到N),并把号码写在外形、大小相反的号签上,号签可以用小球、卡片、纸条等制造,然后将这些号签放在同一个箱子里,停止平均搅拌.抽签:抽签时,每次从中抽出1个号签,延续抽取n次;成样:对应号签就失掉一个容量为n的样本.抽签法简便易行,当总体的集体数不多时,适宜采用这种方法.(2)随机数表法编号:对总体停止编号,保证位数分歧.读数:当随机地选定末尾读数的数后,读数的方向可以向右,也可以向左、向上、向上等.在读数进程中,失掉一串数字号码,在去掉其中不合要求和与前面重复的号码后,其中依次出现的号码可以看成是依次从总体中抽取的各个集体的号码.成样:将对应号码的集体抽出就失掉一个容量为n的样本.(3)系统抽样的步骤①将总体中的集体编号.采用随机的方式将总体中的集体编号;②将整个的编号停止分段.为将整个的编号停止分段,要确定分段的距离k.当是整数时,当不是整数时,经过从总体中剔除一些集体使剩下的集体数N能被n整除,这时③确定起始的集体编号.在第1段用复杂随机抽样确定起始的集体编号l;④抽取样本.依照先确定的规那么(常将l加上距离k)抽取样本:l,l+k,l+2k,,l+(n-1)k.【变式备选】某单位最近组织了一次健身活动,参与活动的职工分为登山组和游泳组,且每个职工至少参与其中一组.在参与活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参与活动总人数的且该组中青年人占50%,中年人占40%,老年人占10%.为了了解各组中不同年龄层次的职工对本次活动的满意水平,现用分层抽样的方法从参与活动的全体职工中抽取一个容量为200的样本.试确定(1)游泳组中青年人、中年人、老年人区分所占的比例.(2)游泳组中青年人、中年人、老年人区分应抽取的人数. 【解析】(1)方法一:设登山组人数为x,游泳组中青年人、中年人、老年人所占比例区分为a,b,c,那么有解得b=50%,c=10%.故a=100%-50%-10%=40%,即游泳组中青年人、中年人、老年人所占比例区分为40%,50%,10%.方法二:设参与活动的总人数为x,游泳组中青年人、中年人、老年人所占比例区分为a,b,c,那么参与登山组的青年人人数加上参与游泳组的青年人人数等于参与活动的青年人人数,即解得a=0.4=40%,同理b=50%,c=10%.即游泳组中青年人、中年人、老年人所占比例区分为40%,50%,10%.(2)游泳组中,抽取的青年人人数为抽取的中年人人数为抽取的老年人人数以上就是高考频道2021年高考数学一轮温习同步检测题:«随机抽样»的全部内容,查字典数学网会在第一时间为大家提供,更多相关信息欢迎大家继续关注!。
2021年高考数学大一轮总复习 第9篇 第1节 随机抽样课时训练 理 新人教A版

人教A版一、选择题1.(xx年高考湖南卷)某学校有男、女学生各500名,为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是( )A.抽签法B.随机数法C.系统抽样法D.分层抽样法解析:由抽样的目的是为调查男女差别,因此应采用分层抽样方法,故选D.答案:D2.(xx中山模拟)为了检查某超市货架上的饮料是否含有塑化剂,要从编号依次为1到50的塑料瓶装饮料中抽取5瓶进行检验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5瓶饮料的编号可能是( ) A.5,10,15,20,25 B.2,4,6,8,10C.1,2,3,4,5 D.7,17,27,37,47解析:利用系统抽样,把编号分为5段,每段10个,每段抽取1个,号码间隔为10.故选D.答案:D3.(xx蚌埠一模)某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为(1);在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为(2),则完成(1)(2)这两项调查宜采用的抽样方法依次是( )A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法解析:(1)由于总体中由互不交叉的层构成,所以采用分层抽样的方法.(2)总体数较少,所以采取简单随机抽样即可,故选B.答案:B4.(xx南昌模拟)(1)某学校为了了解xx年高考数学科的考试成绩,在高考后对1200名学生进行抽样调查,其中文科400名考生,理科600名考生,艺术和体育类考生共200名,从中抽取120名考生作为样本.(2)从10名家长中抽取3名参加座谈会.Ⅰ.简单随机抽样法Ⅱ.系统抽样法Ⅲ.分层抽样法问题与方法配对正确的是( )A.(1)Ⅲ,(2)ⅠB.(1)Ⅰ,(2)ⅡC.(1)Ⅱ,(2)ⅢD.(1)Ⅲ,(2)Ⅱ解析:(1)中各类考生的成绩差别较大,所以应当用分层抽样;(2)中总人数较少,可用简单随机抽样,故选A.答案:A5.(xx年高考陕西卷)某单位有840名职工,现采用系统抽样方法,抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( )A.11 B.12C.13 D.14解析:使用系统抽样方法,从840人中抽取42人,即从20人抽取1人.所以从编号1~480的人中,恰好抽取24人,从编号1~720的人中抽取36人,所以从编号481~720抽取人数为36-24=12.故选B.答案:B6.(xx杭州模拟)某工厂生产甲、乙、丙三种型号的产品,产品数量之比为3∶5∶7,现用分层抽样的方法抽出容量为n的样本,其中甲种产品有18件,则样本容量n=( )A.54 B.90C.45 D.126解析:依题意得33+5+7×n=18,解得n=90,即样本容量为90,故选B.答案:B二、填空题7.(xx年高考江苏卷)某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.解析:因为高二年级学生人数占总数的310,样本容量为50,所以50×310=15.答案:158.网络上流行一种“QQ农场游戏”,这种游戏通过软件模拟种植与收获的过程.为了了解本班学生对此游戏的态度,高三(6)班计划在全班60人中展开调查,根据调查结果,班主任计划采用系统抽样的方法抽取若干名学生进行座谈,为此先对60名学生进行编号为:01,02,03,…,60,已知抽取的学生中最小的两个编号为03,09,则抽取的学生中最大的编号为________.解析:设抽到编号为a n,即a1=3,a2=9,a n=3+6(n-1)=6n-3,令6n-3≤60,即n≤21 2.则当n=10时,a n的最大值为57.故最大编号为57.答案:579.(xx北京市丰台区期末)某高中共有学生900人,其中高一年级240人,高二年级260人,为做某项调查,拟采用分层抽样法抽取容量为45的样本,则在高三年级抽取的人数是________.解析:高三的人数为400,所以在高三抽取的人数为45900×400=20.答案:2010.(xx年高考浙江卷)某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为________.解析:男生人数为560×280560+420=160.答案:160三、解答题三、解答题11.(xx年高考广东卷)从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如表:(2)用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3)在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.解:(1)由题意知苹果的样本总数n=50,在[90,95)的频数是20,∴苹果的重量在[90,95)的频率是2050=0.4.(2)设从重量在[80,85)的苹果中抽取x个,则从重量在[95,100)的苹果中抽取(4-x)个.∵表格中[80,85),[95,100)的频数分别是5,15,∴5∶15=x∶(4-x),解得x=1.即重量在[80,85)的有1个.(3)在(2)中抽出的4个苹果中,重量在[80,85)的有1个,记为a,重量在[95,100)的有3个,记为b1,b2,b3,任取2个,有ab1、ab2、ab3、b1b2、b1b3、b2b3共6种不同方法.即基本事件总数为6,其中重量在[80,85)和[95,100)中各有1个的事件记为A,事件A包含的基本事件为ab1、ab2、ab3,共3个,由古典概型的概率计算公式得P(A)=36=12.12.一个城市有210家百货商店,其中大型商店20家,中型商店40家,小型商店150家,为了掌握各商店的营业情况,要从中抽取一个容量为21的样本,按分层抽样方法抽取样本时,各类百货商店要分别抽取多少家?写出抽样过程.解:∵21∶210=1∶10,∴2010=2,4010=4,15010=15.∴应从大型商店中抽取2家,从中型商店中抽取4家,从小型商店中抽取15家.抽样过程:(1)计算抽样比21210=110;(2)计算各类百货商店抽取的个数:20 10=2,4010=4,15010=15;(3)用简单随机抽样方法依次从大、中、小型商店中抽取2家,4家,15家;(4)将抽取的个体合在一起,就构成所要抽取的一个样本.34379 864B 虋33401 8279 艹 -39737 9B39 鬹39821 9B8D 鮍•_ 34017 84E1 蓡25895 6527 攧!21961 55C9 嗉31700 7BD4 篔。
2020届高考数学理一轮(新课标通用)考点测试:随机抽样

的样本个数较少,宜采用简单随机抽样法.
3.某校高三年级共有学生 900 人,编号为 1, 2, 3,…, 900,现用系统抽样的方法抽取一个容量为
45 的样
本,则抽取的 45 人中,编号落在 [481 , 720] 的人数为 ( )
A. 10 B .11 C . 12 D . 13
答案 C
解析 系统抽样,是抽多少人就把总体分成多少组,于是抽样间隔就是用总体数量除以样本容量:
x 人,则 x=m,∴ x= n .即参加游戏的小孩的人数为
km n.
10.某城区有农民、工人、知识分子家庭共计
2000 户,其中农民 1800 户,工人 100 户,现从中抽取一个容
量为 40 的样本来调查家庭收入情况,以下给出了几种常见的抽样方法:①简单随机抽样;②系统抽样;③分层抽
样.则在整个抽样过程中,可以用到的抽样方法有
________.
答案 ①②③ 解析 由于各家庭有明显的差异,所以首先应用分层抽样的方法分别从农民、工人、知识分子这三类家庭中
抽出 36 户、 2 户、 2 户,又由于农民家庭户数较多,那么在农民家庭这一层宜采用系统抽样方法;而工人、知识
10 名
家长中随机抽取 3 名参加座谈会,记这项调查为②,则完成①,②这两项调查宜采用的抽样方法依次是
()
A.分层抽样法,系统抽样法
B.分层抽样法,简单随机抽样法
C.系统抽样法,分层抽样法
D.简单随机抽样法,分层抽样法
答案 B
解析 在①中,文科考生、理科考生、艺术和体育类考生会存在差异,采用分层抽样法较好;在②中,抽取
()
A.不全相等 B .均不相等
15
1
C.都相等,且为 1009 D .都相等,且为 67
高考数学一轮复习(知识回扣+热点突破+能力提升)随机抽样 理 北师大版

第一节随机抽样【考纲下载】1.理解随机抽样的必要性和重要性.2.会用简单随机抽样方法从总体中抽取样本,了解分层抽样和系统抽样.1.简单随机抽样在抽取的过程中,要保证每个个体被抽到的概率相同,这样的抽样方法叫作简单随机抽样.常用的方法有抽签法和随机数法.2.分层抽样将总体按其属性特征分成若干类型(有时称作层),然后在每个类型中按照所占比例随机抽取一定的样本,这种抽样方法叫作分层抽样.也称类型抽样.3.系统抽样系统抽样是将总体的个体进行编号,按照简单随机抽样抽取第一个样本,然后按相同的间隔抽取其他样本.系统抽样又叫等距抽样或机械抽样.1.三种抽样方法的共同特点是什么?提示:三种抽样方法中,每个个体被抽到的可能性相等.2.三种抽样方法有何联系?提示:系统抽样中,在起始部分抽样时,用简单随机抽样;在分层抽样时,每一层抽样时可采用简单随机抽样或系统抽样.1.在抽样过程中,每次抽取的个体不再放回总体的为不放回抽样,在分层抽样、系统抽样、简单随机抽样三种抽样中,不放回抽样的有( )A.0个 B.1个 C.2个 D.3个解析:选D 三种抽样都是不放回抽样.2.在简单随机抽样中,某一个个体被抽到的可能性是( )A.与第几次抽样有关,第一次抽到的可能性最大B.与第几次抽样有关,第一次抽到的可能性最小C.与第几次抽样无关,每一次抽到的可能性相等D.与第几次抽样无关,与抽取几个样本有关解析:选C 由简单随机抽样的特点可知:在简单随机抽样中,每个个体被抽到的可能性相等,与第几次抽样无关.3.某学校为调查高三年级的240名学生完成课后作业所需时间,采取了两种抽样调查的方式:第一种由学生会的同学随机抽取24名同学进行调查;第二种由教务处对高三年级的学生进行编号,从001到240,抽取学号最后一位为3的同学进行调查,则这两种抽样方法依次为( )A .分层抽样,简单随机抽样B .简单随机抽样,分层抽样C .分层抽样,系统抽样D .简单随机抽样,系统抽样解析:选D 由三种抽样方法的定义可知,第一种方法为简单随机抽样,第二种为系统抽样.4.(2014·新余统考)某学校共有师生2 400人,现用分层抽样的方法,从所有师生中抽取一个容量为160的样本,已知从学生中抽取的人数为150,那么该学校的教师人数是________.解析:由题意可知该学校的教师人数为160-150160×2 400=150. 答案:1505.为保证某个重大事件的顺利进行,将从四个部队中选一个担任安全保卫工作,为了解四个部队的“安保”能力,则抽取人数的方法中最好的是________.解析:依据题设要求及三种抽样方法的定义及特点,应采用分层抽样更好些.答案:分层抽样[例1] 为了支援我国西部教育事业,决定从2013级学生报名的30名志愿者中,选取10人组成志愿小组,请用抽签法和随机数表法设计抽样方案.[自主解答] 抽签法:第一步:将30名志愿者编号,编号为1,2,3, (30)第二步:将30个号码分别写在30张外观完全相同的纸条上,并揉成团,制成号签. 第三步:将30个号签放入一个不透明的盒子中,充分搅匀.第四步:从盒子中逐个抽取10个号签,并记录上面的编号.第五步:所得号码对应的志愿者,就是志愿小组的成员.随机数表法:第一步:将30名志愿者编号,编号为01,02,03, (30)第二步:在随机数表中任选一数开始,按某一确定方向读数.第三步:凡不在01~30中的数或已读过的数,都跳过去不作记录,依次记录下10个得数.第四步:找出号码与记录的数相同的志愿者组成志愿小组.【互动探究】把本例中“30名志愿者”改为“1 800名志愿者”,仍抽取10人,应如何进行抽样?解:因为总体数较大,若选用抽签法制签太麻烦,故应选用随机数表法.第一步:先将1 800名志愿者编号,可以编为0001,0002,0003, (1800)第二步:在随机数表中任选一个数,例如选出第2行第1列的数9.第三步:从选定的数开始向右读,依次可得以0736,0751,0732,1355,1410,1256,0503,1557,1210,1421为样本的10个号码,这样我们就得到一个容量为10的样本.【方法规律】应用简单随机抽样应注意的问题(1)一个抽样试验能否用抽签法,关键看两点:一是抽签是否方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都较小时可用抽签法.(2)在使用随机数表时,如遇到三位数或四位数时,可从选择的随机数表中的某行某列的数字计起,每三个或四个作为一个单位,自左向右选取,有超过总体号码或出现重复号码的数字舍去.1.下列抽取样本的方式是否属于简单随机抽样?(1)从无限多个个体中抽取100个个体作为样本.(2)盒子里共有80个零件,从中选出5个零件进行质量检验.在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里.(3)从20件玩具中一次性抽取3件进行质量检验.(4)某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛.解:(1)不是简单随机抽样.因为被抽取的样本总体的个体数是无限的,而不是有限的.(2)不是简单随机抽样.因为它是放回抽样.(3)不是简单随机抽样.因为这是“一次性”抽取,而不是“逐个”抽取.(4)不是简单随机抽样.因为指定个子最高的5名同学是56名中特指的,不存在随机性,不是等可能抽样.2.第三十届奥林匹克运动会于2012年7月27日在伦敦举行,伦敦某大学为了支持奥运会,从报名的60名大三学生中选10人组成志愿小组,请用抽签法和随机数表法设计抽样方案.解:抽签法:第一步,将60名志愿者编号,编号为1,2,3, (60)第二步,将60个号码分别写在60张外形完全相同的纸条上,并揉成团,制成号签.第三步,将60个号签放入一个不透明的盒子中,充分搅匀.第四步,从盒子中逐个抽取10个号签,并记录上面的编号.第五步,所得号码对应的志愿者,就是志愿小组的成员.随机数表法:第一步,将60名学生编号,编号为00,01,02, (59)第二步,在随机数表中任选一数开始,按某一确定方向依次读取两位数.第三步,凡不在00~59中的两位数或已读过的两位数,都跳过去不作记录,依次记录下得数,直到样本的10个号码全部取出.第四步,找出号码与记录的数相同的学生组成志愿小组.[例2] (1)(2013·陕西高考)某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( )A .11B .12C .13D .14(2)(2012·山东高考)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C ,则抽到的人中,做问卷B 的人数为( )A .7B .9C .10D .15[自主解答] (1)由系统抽样定义可知,所分组距为84042=20,每组抽取一个,因为包含整数个组,所以抽取个体在区间[481,720]的数目为(720-480)÷20=12.(2)由题意知应将960人分成32组,每组30人.设每组选出的人的号码为30k +9(k =0,1,…,31).由451≤30k +9≤750,解得44230≤k ≤74130,又k ∈N ,故k =15,16,…,24. [答案] (1)B (2)C在本例(1)中条件不变,若在编号为[481,720]中抽取8人,则样本容量为________. 解析:因为在编号[481,720]中共有720-480=240人,又在[481,720]中抽取8人,所以抽样比应为240∶8=30∶1,又因为单位职工共有840人,所以应抽取样本容量为84030=28. 答案:28系统抽样的特点(1)适用于元素个数很多且均衡的总体.(2)各个个体被抽到的机会均等.(3)总体分组后,在起始部分抽样时采用的是简单随机抽样.(4)如果总体容量N 能被样本容量n 整除,则抽样间隔为k =N n.提醒:如果总体容量N 不能被样本容量n 整除,可随机地从总体中剔除余数,然后再按系统抽样的方法抽样.1.将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区.三个营区被抽中的人数依次为( )A.25,17,8 B.25,16,9C.26,16,8 D.24,17,9解析:选A ∵总体数为600,样本的容量是50,∴600÷50=12.因此,每隔12个号能抽到一名,由于随机抽得第一个号码为003,按照系统抽样的操作步骤在第Ⅰ营区应抽到25人,第Ⅱ营区应抽到17人,第Ⅲ营区应抽到8人.2.某学校高三年级一班共有60名学生,现采用系统抽样的方法从中抽取6名学生做“早餐与健康”的调查,为此将学生编号为1,2,…,60.选取的这6名学生的编号可能是( ) A.1,2,3,4,5,6 B.6,16,26,36,46,56C.1,2,4,8,16,32 D.3,9,13,27,36,54解析:选B 由系统抽样的分组是等距的,可知选B.1.分层抽样是三种抽样方法中最重要的一种抽样方式,也是高考命题的热点,多以选择题或填空题的形式出现,试题难度不大,多为容易题或中档题.2.高考对分层抽样的考查主要有以下几个命题角度:(1)已知各层总数,确定抽样比;(2)已知各层总数,某一层的样本数,求另一层样本数和总数;(3)已知某层总数及某层的样本数,求各层样本数.[例3] (1)(2013·新课标全国卷Ⅰ)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( )A.简单随机抽样 B.按性别分层抽样C.按学段分层抽样 D.系统抽样(2)(2013·湖南高考)某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=( )A.9 B.10C.12 D.13[自主解答] (1)因为男女生视力情况差异不大,而学段的视力情况有较大差异,所以应按学段分层抽样.(2)根据抽样比例可得360=n120+80+60,解得n=13.[答案] (1)C (2)D与分层抽样有关问题的常见类型及解题策略(1)确定抽样比.可依据各层总数与样本数之比,确定抽样比.(2)求某一层的样本数或总体个数.可依据题意求出抽样比,再由某层总体个数(或样本数)确定该层的样本(或总体)数.(3)求各层的样本数.可依据题意,求出各层的抽样比,再求出各层样本数.1.(2013·湖南高考)某学校有男、女学生各500名.为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是( )A .抽签法B .随机数法C .系统抽样法D .分层抽样法解析:选D 从全体学生中抽取100名应用分层抽样法,按男、女学生所占的比例抽取.2.(2014·抚州模拟)某学校三个兴趣小组的学生人数分布如下表(每名同学只参加一个小组)(单位:人). 篮球组 书画组 乐器组高一 45 30 a高二 15 10 20兴趣小组的学生中抽取30人,结果篮球组被抽出12人,则a 的值为________.解析:由题意知1245+15=30120+a,解得a =30. 答案:30——————————[课堂归纳——通法领悟]————————— 类别 共同点 各自特点 相互联系 适用范围简单随机抽样 抽样过程中每个个体被抽取的机会相等 从总体中逐个抽取 总体中的个体数较少系统抽样 将总体均分成几部分,按事先确定的规则在各部分抽取 在起始部分抽样时采用简单随机抽样总体中的个体数较多 分层抽样 将总体分成几层进行抽取 各层抽样时采用简单随机抽样或系统抽样总体由差异明显的几部分组成易误警示(十七)忽视抽样规则致误[典例] (2013·江西高考)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )[解题指导] 可依据题设中的条件,依次选出符合条件的个体编号即可.[解析] 由题意知前5个个体的编号为08,02,14,07,01.[答案] D[名师点评] 1.如果第5次选取02时,若不考虑重复编号只计一次而计入第5次,则易选C.2.抽签法和随机数法的区别相同点:(1)都是简单随机抽样,并且要求被抽取样本的总体的个体数有限;(2)都是从总体中逐个地进行抽取,都是不放回抽样.不同点:(1)在总体容量较小的情况下,抽签法比随机数法简单;(2)抽签法适用于总体中的个体数相对较少的情况,而随机数法更适用于总体中的个体数较多的情况,这样可以节约大量的人力和制作号签的成本.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区有20个大型销售点,要从中抽取7个调查其销售收入和售后服务等情况,记这项调查为②.则完成①②这两项调查宜采用的抽样方法依次为( )A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法解析:选B 一般甲、乙、丙、丁四个地区会存在差异,采用分层抽样法较好.在丙地区中总体个体数较少,易采用简单随机抽样法.[全盘巩固]1.下列抽取样本的方式是简单随机抽样的有( )①从无限多个个体中抽取50个个体作为样本;②箱子里有100支铅笔,今从中选取10支进行检验.在抽样操作时,从中任意拿出一支,检测后再放回箱子里;③从50个个体中一次性抽取5个个体作为样本.A .0个B .1个C .2个D .3个解析:选A ①不满足样本的总体数是有限个的特点;②不满足不放回抽取的特点;③不满足逐个抽取的特点.2.(2014·商洛模拟)某地区高中分三类,A 类学校共有学生2 000人,B 类学校共有学生3 000人,C 类学校共有学生4 000人,若采取分层抽样的方法抽取900人,则A 类学校中的学生甲被抽到的概率为( )A.110B.920C.12 000D.12解析:选 A 利用分层抽样,每个学生被抽到的概率是相同的,故所求的概率为9002 000+3 000+4 000=110. 3.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为( )A .6B .8C .10D .12解析:选B 由分层抽样的比例都等于样本容量比总体容量可知:若设高二年级抽取x 人,则有630=x 40,解得x =8. 4.800名学生中抽50名学生做牙齿健康检查.现将800名学生从1到800进行编号,求得间隔数k =80050=16,即每16人抽取一个人.在1~16中随机抽取一个数,如果抽到的是7,则从33~48这16个数中应取的数是( )A .40B .39C .38D .37解析:选B 按系统抽样分组,33~48这16个数属第3组,则这一组应抽到的数是7+2×16=39.5.某工厂生产甲、乙、丙三种型号的产品,产品数量之比为3∶5∶7,现用分层抽样的方法抽出容量为n 的样本,其中甲种产品有18件,则样本容量n =( )A .54B .90C .45D .126解析:选B 依题意得33+5+7×n =18,解得n =90,即样本容量为90. 6.为了检查某超市货架上的饮料是否含有塑化剂,要从编号依次为1到50的塑料瓶装饮料中抽取5瓶进行检验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5瓶饮料的编号可能是( )A .5,10,15,20,25B .2,4,8,16,32C .1,2,3,4,5D .7,17,27,37,47解析:选D 利用系统抽样,把编号分为5段,每段10个,每段抽取1个,号码间隔为10.7.(2014·重庆模拟)某单位有职工960人,其中青年职工420人,中年职工300人,老年职工240人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为14人,则样本容量为________.解析:因为分层抽样的抽样比应相等,所以420960=14样本容量,样本容量=960×14420=32. 答案:328.一个总体中有100个个体,随机编号为00,01,02,…,99,依编号顺序平均分成10个小组,组号分别为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1小组中随机抽取的号码为m ,那么在第k 小组中抽取的号码个位数字与m +k 的个位数字相同.若m =6,则在第7小组中抽取的号码为________.解析:第7小组中号码的十位数字为6.又m +k =6+7=13,由规定知抽取号码的个位数字为3,所以抽取号码为63.答案:639.某高级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案.使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270.则________既可能为分层抽样又可能为系统抽样.解析:①在1~108之间有4个,109~189之间有3个,190~270之间有3个,符合分层抽样的规律,可能是分层抽样.同时,从第二个数据起每个数据与前一个的差都为27,符合系统抽样的规律,则可能是系统抽样得到的;同理③符合分层抽样的规律,可能是分层抽样时,从第二个数据起每个数据与前一个的差都为27,符合系统抽样的规律,则可能是系统抽样得到的.答案:①③10.某批零件共160个,其中,一级品48个,二级品64个,三级品32个,等外品16个,从中抽取一个容量为20的样本,请说明分别用简单随机抽样、系统抽样和分层抽样法抽取时总体中的每个个体被取到的概率均相同.解:(1)简单随机抽样法:可采取抽签法,将160个零件按1~160编号,相应地制作1~160号的160个号签,从中随机抽取20个,显然每个个体被抽到的概率为20160=18. (2)系统抽样法:将160个零件从1至160编上号,按编号顺序分成20组,每组8个.先在第1组用抽签法抽得k 号(1≤k ≤8),则在其余组中分别抽取第k +8n (n =1,2,3, (19)号,此时每个个体被抽到的概率为18. (3)分层抽样法:按比例20160=18,分别在一级品、二级品、三级品、等外品中抽取48×18=6个,64×18=8个,32×18=4个,16×18=2个,每个个体被抽到的概率分别为648,864,432,216,都是18. 总之,无论采取哪种抽样,总体中的每个个体被抽到的概率都是18. 11.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作为样本.用系统抽样法将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是多少?若用分层抽样方法,则40岁以下年龄段应抽取多少人?解:系统抽样的抽样间隔为20040=5. 由于第5组抽取号码为22,所以第8组抽取的号码为22+3×5=37.由题图知,40岁以下年龄段应抽取50%×40=20人.12.某中学举行了为期3天的新世纪体育运动会,同时进行全校精神文明擂台赛.为了解这次活动在全校师生中产生的影响,分别在全校500名教职员工、3 000名初中生、4 000名高中生中作问卷调查,如果要在所有答卷中抽出120份用于评估.(1)应如何抽取才能得到比较客观的评价结论?(2)要从3 000份初中生的答卷中抽取一个容量为48的样本,如果采用简单随机抽样,应如何操作?(3)为了从4 000份高中生的答卷中抽取一个容量为64的样本,如何使用系统抽样抽取到所需的样本?解:(1)由于这次活动对教职员工、初中生和高中生产生的影响不会相同,所以应当采取分层抽样的方法进行抽样.因为样本容量为120,总体个数为500+3 000+4 000=7 500,则抽样比:1207 500=2125, 所以有500×2125=8,3 000×2125=48,4 000×2125=64, 所以在教职员工、初中生、高中生中抽取的个体数分别是8,48,64.分层抽样的步骤是:①分层:分为教职员工、初中生、高中生,共三层.②确定每层抽取个体的个数:在教职员工、初中生、高中生中抽取的个体数分别是8,48,64.③各层分别按简单随机抽样或系统抽样的方法抽取样本.④综合每层抽样,组成样本.这样便完成了整个抽样过程,就能得到比较客观的评价结论.(2)由于简单随机抽样有两种方法:抽签法和随机数表法.如果用抽签法,要作3 000个号签,费时费力,因此采用随机数表法抽取样本,步骤是:①编号:将3 000份答卷都编上号码:0001,0002,0003, (3000)②在随机数表上随机选取一个起始位置.③规定读数方向,向右连续读取数字,以4个数为一组,如果读取的4位数大于3 000,则去掉,如果遇到相同号码则只取一个,这样一直到取满48个号码为止.(3)由于4 000÷64=62.5不是整数,则应先使用简单随机抽样从4 000名学生中随机剔除32个个体,再将剩余的3 968个个体进行编号:1,2,…,3 968,然后将整体分为64个部分,其中每个部分中含有62个个体,如第1部分个体的编号为1,2,…,62.从中随机抽取一个号码,如若抽取的是23,则从第23号开始,每隔62个抽取一个,这样得到容量为64的样本:23,85,147,209,271,333,395,457,…,3 929.[冲击名校]1.某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为( )A.80 B.120 C.160 D.240解析:选C 设样本中男、女生分别为x,y,且x∶y=4∶3,所以x=280×47=160.2( ) A.24 B.18 C.16 D.12解析:选C 一年级的学生人数为373+377=750,二年级的学生人数为380+370=750,于是三年级的学生人数为2 000-750-750=500,那么三年级应抽取的人数为500×642 000=16.。
高考数学一轮复习分层抽样与系统抽样专题复习题(带答案)-精选学习文档

高考数学一轮复习分层抽样与系统抽样专题复习题(带答案)在抽样时,将总体分成互不交叉的层,然后按一定的比例,从各层次独立地抽取一定数量的个体,将各层次取出的个体合在一起作为样本,这种抽样方法是一种分层抽样。
以下是分层抽样与系统抽样专题复习题,请考生认真练习。
一、选择题1.为了了解参加一次知识竞赛的1 252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么总体中应随机剔除的个体数目是()A.2B.3C.4D.5[答案] A[解析] 因为1 252=5025+2,所以应随机剔除2个个体. 2.有40件产品,其中一等品10件,二等品25件,次品5件,现从中抽出8件进行质量分析,问应采取何种抽样方法()A.抽签法B.随机数表法C.系统抽样D.分层抽样[答案] D[解析] 因为个体之间有明显差异,所以应用分层抽样. 3.系统抽样适用的总体应是()A.容量较小B.容量较大C.个体数较多但均衡D.任何总体[答案] B[解析] 系统抽样适用于容量较大,且个体之间无明显差异的个体.4.(2019重庆文,3)某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为()A.100B.150C.200D.250[答案] A[解析] 由题意,得抽样比为=,总体容量为3 500+1 500=5 000,故n=5 000=100.5.下列抽样中,不是系统抽样的是()A.从标有1~15的15个小球中任选3个作为样本,按从小号到大号顺序确定起点i,以后为i+5,i+10(超过15则从1再数起)号入样B.工厂生产的产品,用传送带将产品送入包装车间前,检验员从传送带上每隔5分钟抽一件产品检验C.搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的调查人数为止D.电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈[答案] C[解析] C项因为事先不知道总体,抽样方法不能保证每个个体按事先的规定入样.6.一个单位职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人,为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本,则从上述各层中依次抽取的人数分别是()A.12,24,15,9B.9,12,12,7C.8,15,12,5D.8,16,10,6[答案] D[解析] 本题考查分层抽样的概念和应用,利用分层抽样抽取人数时,首先应计算抽样比.从各层中依次抽取的人数分别是40=8,40=16,40=10,40=6.二、填空题7.某高校甲、乙、丙、丁四个专业分别有150、150、400、300名学生,为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在丙专业抽取的学生人数为________.[答案] 16[解析] 考查分层抽样.解答此题必须明确每个个体被抽到的概率相同及每层以相同比例抽取.所有学生数为150+150+400+300=1000人,则抽取比例为=,所以应在丙专业抽取400=16人.8.总体中含有1 645个个体,若采用系统抽样的方法从中抽取容量为35的样本,则编号后确定编号分为________段,分段间隔k=________,每段有________个个体.[答案] 35 47 47[解析] N=1 645,n=35,则编号后确定编号分为35段,且k===47,则分段间隔k=47,每段有47个个体.三、解答题9.某家电视台在因特网上征集某电视节目现场参与观众,报名的总人数为12 000人,分别来自4个城区,其中东城区2 400人,西城区4 600人,南城区3 800人,北城区1 200人,用分层抽样的方式从中抽取60人参加现场的节目,应当如何抽取?写出抽取过程.[解析] 第一步:分层:按城区分为四层:东城区、西城区、南城区、北城区.第二步:按比例确定每层抽取个体的个数.抽样比为=,所以在东城区抽取2 400=12(人),在西城区抽取4 600 =23(人),在南城区抽取3 800=19(人),在北城区抽取1 200=6(人). 第三步在各层分别用简单随机抽样法抽取样本.第四步确定样本.将各城区抽取的观众合在一起组成样本. 分层抽样与系统抽样专题复习题及答案的全部内容就是这些,查字典数学网希望对考生复习数学有帮助。
高考数学一轮复习学案+训练(理科): 课时分层训练59 随机抽样 理

课时分层训练(五十九) 随机抽样A 组 基础达标一、选择题1.下面的抽样方法是简单随机抽样的为( )A .在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2709的为三等奖B .某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格C .某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解对学校机构改革的意见D .用抽签方法从10件产品中选取3件进行质量检验D [A ,B 选项中为系统抽样,C 为分层抽样.]2.(2017·安徽宣城二模)一支田径队共有运动员98人,其中女运动员42人,用分层抽样的方法抽取一个样本,每名运动员被抽到的概率都是27,则男运动员应抽取( ) A .18人B .16人C .14人D .12人B [∵田径队共有运动员98人,其中女运动员有42人,∴男运动员有56人,∵每名运动员被抽到的概率都是27, ∴男运动员应抽取56×27=16(人),故选B.] 3.对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p 1,p 2,p 3,则( )A .p 1=p 2<p 3B .p 2=p 3<p 1C .p 1=p 3<p 2D .p 1=p 2=p 3D [由于三种抽样过程中,每个个体被抽到的概率都是相等的,因此p 1=p 2=p 3.]4.福利彩票“双色球”中红色球的编号有33个,分别为01,02,…,33,某彩民利用下面的随机数表选取6组数作为6个红色球的编号,选取方法是从随机数表第1行的第6列和第7列数字开始由左到右依次选取两个数字,则选出来的第6个红色球的编号为( ) 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76A .23B .09C .02D .17C [从随机数表第1行的第6列和第7列数字开始由左到右依次选取两个数字,则选出的6个红色球的编号依次为21,32,09,16,17,02,故选出的第6个红色球的编号为02.]5.在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图921所示.13 0 0 3 4 5 66 8 8 8 9 14 1 1 1 2 2 23 34 45 5 56 678 15 0 1 2 2 3 3 3图921若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是( )【导学号:79140325】A .3B .4C .5D .6B [抽样间隔为35÷7=5,因此可将编号为1~35的35个数据分成7组,每组有5个数据,在区间[139,151]上共有20个数据,分在4个小组中,每组取1人,共取4人.]6.某防疫站对学生进行身体健康调查,欲采用分层抽样的办法抽取样本.某中学共有学生2 000名,抽取了一个容量为200的样本,已知样本中女生比男生少6人,则该校共有女生( )A .1 030人B .97人C .950人D .970人D [由题意可知抽样比为2002 000=110, 设样本中女生有x 人,则x +(x +6)=200,所以x =97,该校共有女生97110=970人.] 7.从编号为001,002,…,500的500个产品中用系统抽样的方法抽取一个样本,已知样本中编号最小的两个编号分别为007,032,则样本中最大的编号应该为( )A .480B .481C .482D .483C [根据系统抽样的定义可知样本的编号成等差数列,令a 1=7,a 2=32,则d =25,所以7+25(n -1)≤500,所以n ≤20.72,因为n ∈N +,所以n 的最大值为20,最大编号为7+25×(20-1)=482.]二、填空题8.某大学为了了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取________名学生.60 [根据题意,应从一年级本科生中抽取的人数为44+5+5+6×300=60.] 9.(2017·北京海淀模拟)某企业三个分厂生产同一种电子产品,三个分厂产量分布如图922所示,现在用分层抽样方法从三个分厂生产的该产品中共抽取100件做使用寿命的测试,则第一分厂应抽取的件数为________;由所得样品的测试结果计算出一、二、三分厂取出的产品使用寿命的平均值分别为1 020小时、980小时、1 030小时,估计这个企业所生产的该产品的平均使用寿命为________小时.【导学号:79140326】图92250 1 015 [第一分厂应抽取的件数为100×50%=50;该产品的平均使用寿命为 1 020×0.5+980×0.2+1 030×0.3=1 015.]10.某校有840名学生,现采用系统抽样方法,抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为________.12 [使用系统抽样方法,从840名学生中抽取42人,抽样比为84042=20,所以从编号1~480的人中,恰好抽取48020=24(人),接着从编号481~720共240人中抽取24020=12人.] B 组 能力提升11.某中学有高中生3 500人,初中生1 500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取70人,则n 为( )A .100B .150C .200D .250A [样本抽取比例为703 500=150,该校总人数为1 500+3 500=5 000,则n 5 000=150,故n =100,选A.]12.某工厂的三个车间在12月份共生产了3 600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从第一、二、三车间抽取的产品数分别为a ,b ,c ,且a ,b ,c 构成等差数列,则第二车间生产的产品数为( )A .800B .1 000C .1 200D .1 500C [因为a ,b ,c 成等差数列,所以2b =a +c ,所以a +b +c 3=b ,所以从第二车间抽取的产品数占抽样产品总数的13,根据分层抽样的性质,可知第二车间生产的产品数占总数的13,即13×3 600=1 200.] 13.某城市修建经济适用房.已知甲、乙、丙三个社区分别有低收入家庭360户、270户、180户,若首批经济适用房中有90套住房用于解决住房紧张问题,采用分层抽样的方法决定各社区户数,则应从乙社区中抽取低收入家庭的户数为( )【导学号:79140327】A .40B .36C .30D .20C [利用分层抽样的比例关系,设从乙社区抽取n 户,则270360+270+180=n 90,解得n =30.]14.将参加夏令营的600名学生编号为001,002,…,600,采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300住在第Ⅰ营区,从301到495住在第Ⅱ营区,从496到600住在第Ⅲ营区,三个营区被抽中的人数依次为( )A .26,16,8B .25,17,8C .25,16,9D .24,17,9B [由系统抽样的特点知,从号码003开始每间隔60050=12人抽出1个, 设抽出的第n 个号码为a n ,则a n =3+12(n -1),由a n ≤300知n ≤25;由a n ≤495知n ≤42,所以第Ⅰ营区被抽取的人数为25,第Ⅱ营区被抽取的人数为42-25=17,第Ⅲ营区被抽取的人数为50-42=8.]15.已知某地区中小学生人数和近视情况分别如图923(1)和(2)所示.为了解该地区中学学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为________,________.(1) (2)图923200 20[易知,样本容量为(3 500+4 500+2 000)×2%=200.又样本中高中学生共有2 000×2%=40(人).利用图(2)知,高中学生的近视率为50%.因此所抽样本中高中学生的近视人数为40×50%=20(人).]16.一个总体中有90个个体,随机编号0,1,2,…,89,依从小到大的编号顺序平均分成9个小组,组号依次为1,2,3,…,9.现用系统抽样方法抽取一个容量为9的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同,若m=8,则在第8组中抽取的号码是________.【导学号:79140328】76 [由题意知,m=8,k=8,则m+k=16,也就是第8组抽取的号码个位数字为6,十位数字为8-1=7,故抽取的号码为76.]。
高考数学一轮题组训练:《随机抽样》(人教版)

第九篇统计与统计案例第1讲随机抽样基础巩固题组(建议用时:40分钟)一、选择题1.某中学进行了该学年度期末统一考试,该校为了了解高一年级1 000名学生的考试成绩,从中随机抽取了100名学生的成绩单,就这个问题来说,下面说法正确的是().A.1 000名学生是总体B.每个学生是个体C.1 000名学生的成绩是一个个体D.样本的容量是100解析 1 000名学生的成绩是总体,其容量是1 000,100名学生的成绩组成样本,其容量是100.答案 D2.(2013·新课标全国Ⅰ卷)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是().A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样解析因为男女生视力情况差异不大,而学段的视力情况有较大差异,所以应按学段分层抽样,故选C.答案 C3.(2014·东北三校联考)某工厂生产甲、乙、丙三种型号的产品,产品数量之比为3∶5∶7,现用分层抽样的方法抽出容量为n的样本,其中甲种产品有18件,则样本容量n=().A.54 B.90C.45 D.126解析依题意有33+5+7×n=18,由此解得n=90,即样本容量为90.答案 B4.(2013·江西卷)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为().A.08 B.07C.02 D.01解析由题意知前5个个体的编号为08,02,14,07,01.答案 D5.(2014·石家庄模拟)某学校高三年级一班共有60名学生,现采用系统抽样的方法从中抽取6名学生做“早餐与健康”的调查,为此将学生编号为1,2,…,60.选取的这6名学生的编号可能是().A.1,2,3,4,5,6 B.6,16,26,36,46,56C.1,2,4,8,16,32 D.3,9,13,27,36,54解析系统抽样是等间隔抽样.答案 B二、填空题6.(2014·成都模拟)某课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应城市数分别为4,12,8.若用分层抽样抽取6个城市,则甲组中应抽取的城市数为________.解析甲组中应抽取的城市数为624×4=1.答案 17.某校高级职称教师26人,中级职称教师104人,其他教师若干人.为了了解该校教师的工资收入情况,按分层抽样从该校的所有教师中抽取56人进行调查,已知从其他教师中共抽取了16人,则该校共有教师________人.解析设其他教师为x人,则5626+104+x=16x,解得x=52,∴x+26+104=182(人).答案1828.(2014·青岛模拟)某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号1~50号,并分组,第一组1~5号,第二组6~10号,…,第十组46~50号,若在第三组中抽得号码为12的学生,则在第八组中抽得号码为________的学生.解析因为12=5×2+2,即第三组抽出的是第二个同学,所以每一组都相应抽出第二个同学,所以第8组中抽出的号码为5×7+2=37号.答案37三、解答题9.某初级中学共有学生2 000名,各年级男、女生人数如下表:0.19.(1)求x的值;(2)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名?解(1)∵x2 000=0.19.∴x=380.(2)初三年级人数为y+z=2 000-(373+377+380+370)=500,现用分层抽样的方法在全校抽取48名学生,应在初三年级抽取的人数为:482 000×500=12名.10.某政府机关有在编人员100人,其中副处级以上干部10人,一般干部70人,工人20人.上级机关为了了解政府机构改革意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,请具体实施抽取.解用分层抽样方法抽取.具体实施抽取如下:(1)∵20∶100=1∶5,∴105=2,705=14,205=4,∴从副处级以上干部中抽取2人,从一般干部中抽取14人,从工人中抽取4人.(2)因副处级以上干部与工人的人数较少,他们分别按1~10编号与1~20编号,然后采用抽签法分别抽取2人和4人;对一般干部70人采用00,01,02,…,69编号,然后用随机数表法抽取14人.(3)将2人,4人,14人的编号汇合在一起就取得了容量为20的样本.能力提升题组(建议用时:25分钟)一、选择题1.某工厂在12月份共生产了3 600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a,b,c,且a,b,c构成等差数列,则第二车间生产的产品数为().A.800 B.1 000C.1 200 D.1 500解析因为a,b,c成等差数列,所以2b=a+c,即第二车间抽取的产品数占抽样产品总数的三分之一,根据分层抽样的性质可知,第二车间生产的产品数占总数的三分之一,即为1 200双皮靴.答案 C2.将参加夏令营的600名学生编号为:001,002,…,600,采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为().A.26,16,8 B.25,17,8C.25,16,9 D.24,17,9解析由题意知间隔为60050=12,故抽到的号码为12k+3(k=0,1,…,49),列出不等式可解得:第Ⅰ营区抽25人,第Ⅱ营区抽17人,第Ⅲ营区抽8人.答案 B二、填空题3.200名职工年龄分布如图所示,从中随机抽40名职工作样本,采用系统抽样方法,按1~200编号为40组,分别为1~5,6~10,…,196~200,第5组抽取号码为22,第8组抽取号码为______.若采用分层抽样,40岁以下年龄段应抽取________人.解析将1~200编号分为40组,则每组的间隔为5,其中第5组抽取号码为22,则第8组抽取的号码应为22+3×5=37;由已知条件200名职工中40岁以下的职工人数为200×50%=100,设在40岁以下年龄段中抽取x人,则40200=x100,解得x=20.答案3720三、解答题4.某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:文艺节目新闻节目总计(1)40岁的观众应该抽取几名?(2)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率.解(1)应抽取大于40岁的观众人数为2745×5=35×5=3(名).(2)用分层抽样方法抽取的5名观众中,20至40岁有2名(记为Y1,Y2),大于40岁有3名(记为A1,A2,A3).5名观众中任取2名,共有10种不同取法:Y1Y2,Y1A1,Y1A2,Y1A3,Y2A1,Y2A2,Y2A3,A1A2,A1A3,A2A3.设A表示随机事件“5名观众中任取2名,恰有1名观众年龄为20至40岁”,则A中的基本事件有6种:Y1A1,Y1A2,Y1A3,Y2A1,Y2A2,Y2A3,故所求概率为P(A)=610=35.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时分层训练(五十九) 随机抽样A 组 基础达标一、选择题1.下面的抽样方法是简单随机抽样的为( )A .在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2709的为三等奖B .某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格C .某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解对学校机构改革的意见D .用抽签方法从10件产品中选取3件进行质量检验D [A ,B 选项中为系统抽样,C 为分层抽样.]2.(2017·安徽宣城二模)一支田径队共有运动员98人,其中女运动员42人,用分层抽样的方法抽取一个样本,每名运动员被抽到的概率都是27,则男运动员应抽取( ) A .18人B .16人C .14人D .12人B [∵田径队共有运动员98人,其中女运动员有42人,∴男运动员有56人,∵每名运动员被抽到的概率都是27, ∴男运动员应抽取56×27=16(人),故选B.] 3.对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p 1,p 2,p 3,则( )A .p 1=p 2<p 3B .p 2=p 3<p 1C .p 1=p 3<p 2D .p 1=p 2=p 3D [由于三种抽样过程中,每个个体被抽到的概率都是相等的,因此p 1=p 2=p 3.]4.福利彩票“双色球”中红色球的编号有33个,分别为01,02,…,33,某彩民利用下面的随机数表选取6组数作为6个红色球的编号,选取方法是从随机数表第1行的第6列和第7列数字开始由左到右依次选取两个数字,则选出来的第6个红色球的编号为( ) 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76A .23B .09C .02D .17C [从随机数表第1行的第6列和第7列数字开始由左到右依次选取两个数字,则选出的6个红色球的编号依次为21,32,09,16,17,02,故选出的第6个红色球的编号为02.]5.在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图921所示.13 0 0 3 4 5 66 8 8 8 9 14 1 1 1 2 2 23 34 45 5 56 678 15 0 1 2 2 3 3 3图921若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是( )【导学号:79140325】A .3B .4C .5D .6B [抽样间隔为35÷7=5,因此可将编号为1~35的35个数据分成7组,每组有5个数据,在区间[139,151]上共有20个数据,分在4个小组中,每组取1人,共取4人.]6.某防疫站对学生进行身体健康调查,欲采用分层抽样的办法抽取样本.某中学共有学生2 000名,抽取了一个容量为200的样本,已知样本中女生比男生少6人,则该校共有女生( )A .1 030人B .97人C .950人D .970人D [由题意可知抽样比为2002 000=110, 设样本中女生有x 人,则x +(x +6)=200,所以x =97,该校共有女生97110=970人.] 7.从编号为001,002,…,500的500个产品中用系统抽样的方法抽取一个样本,已知样本中编号最小的两个编号分别为007,032,则样本中最大的编号应该为( )A .480B .481C .482D .483C [根据系统抽样的定义可知样本的编号成等差数列,令a 1=7,a 2=32,则d =25,所以7+25(n -1)≤500,所以n ≤20.72,因为n ∈N +,所以n 的最大值为20,最大编号为7+25×(20-1)=482.]二、填空题8.某大学为了了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取________名学生.60 [根据题意,应从一年级本科生中抽取的人数为44+5+5+6×300=60.] 9.(2017·北京海淀模拟)某企业三个分厂生产同一种电子产品,三个分厂产量分布如图922所示,现在用分层抽样方法从三个分厂生产的该产品中共抽取100件做使用寿命的测试,则第一分厂应抽取的件数为________;由所得样品的测试结果计算出一、二、三分厂取出的产品使用寿命的平均值分别为1 020小时、980小时、1 030小时,估计这个企业所生产的该产品的平均使用寿命为________小时.【导学号:79140326】图92250 1 015 [第一分厂应抽取的件数为100×50%=50;该产品的平均使用寿命为 1 020×0.5+980×0.2+1 030×0.3=1 015.]10.某校有840名学生,现采用系统抽样方法,抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为________.12 [使用系统抽样方法,从840名学生中抽取42人,抽样比为84042=20,所以从编号1~480的人中,恰好抽取48020=24(人),接着从编号481~720共240人中抽取24020=12人.] B 组 能力提升11.某中学有高中生3 500人,初中生1 500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取70人,则n 为( )A .100B .150C .200D .250A [样本抽取比例为703 500=150,该校总人数为1 500+3 500=5 000,则n 5 000=150,故n =100,选A.]12.某工厂的三个车间在12月份共生产了3 600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从第一、二、三车间抽取的产品数分别为a ,b ,c ,且a ,b ,c 构成等差数列,则第二车间生产的产品数为( )A .800B .1 000C .1 200D .1 500C [因为a ,b ,c 成等差数列,所以2b =a +c ,所以a +b +c 3=b ,所以从第二车间抽取的产品数占抽样产品总数的13,根据分层抽样的性质,可知第二车间生产的产品数占总数的13,即13×3 600=1 200.] 13.某城市修建经济适用房.已知甲、乙、丙三个社区分别有低收入家庭360户、270户、180户,若首批经济适用房中有90套住房用于解决住房紧张问题,采用分层抽样的方法决定各社区户数,则应从乙社区中抽取低收入家庭的户数为( )【导学号:79140327】A .40B .36C .30D .20C [利用分层抽样的比例关系,设从乙社区抽取n 户,则270360+270+180=n 90,解得n =30.]14.将参加夏令营的600名学生编号为001,002,…,600,采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300住在第Ⅰ营区,从301到495住在第Ⅱ营区,从496到600住在第Ⅲ营区,三个营区被抽中的人数依次为( )A .26,16,8B .25,17,8C .25,16,9D .24,17,9B [由系统抽样的特点知,从号码003开始每间隔60050=12人抽出1个, 设抽出的第n 个号码为a n ,则a n =3+12(n -1),由a n ≤300知n ≤25;由a n ≤495知n ≤42,所以第Ⅰ营区被抽取的人数为25,第Ⅱ营区被抽取的人数为42-25=17,第Ⅲ营区被抽取的人数为50-42=8.]15.已知某地区中小学生人数和近视情况分别如图923(1)和(2)所示.为了解该地区中学学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为________,________.(1) (2)图923200 20[易知,样本容量为(3 500+4 500+2 000)×2%=200.又样本中高中学生共有2 000×2%=40(人).利用图(2)知,高中学生的近视率为50%.因此所抽样本中高中学生的近视人数为40×50%=20(人).]16.一个总体中有90个个体,随机编号0,1,2,…,89,依从小到大的编号顺序平均分成9个小组,组号依次为1,2,3,…,9.现用系统抽样方法抽取一个容量为9的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同,若m=8,则在第8组中抽取的号码是________.【导学号:79140328】76 [由题意知,m=8,k=8,则m+k=16,也就是第8组抽取的号码个位数字为6,十位数字为8-1=7,故抽取的号码为76.]。