全国名校高考数学优质小题训练汇编(附详解)六

合集下载

2021高考小题训练多抢分与答案 (6)

2021高考小题训练多抢分与答案 (6)

2021高考小题训练多抢分与答案(6)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(导学号:50604075)(2017·十堰调研)设复数z 满足1+z1-z=i ,则|z |=( )A .1 B. 2 C. 3 D .2 2.(2017·咸宁摸底考试)设全集U =R ,集合A ={x |x 2-2x -3<0},B ={x |4x +3>0},则A ∩∁U B =( )A.⎣⎡⎭⎫-34,3B.⎝⎛⎦⎤-1,-34 C.⎝⎛⎦⎤-3,-34 D.⎣⎡⎭⎫34,3 3.(导学号:50604076)(2017·玉林一模)已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0,且f (0)=2,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3 4.(2017·江门调研)一个几何体的三视图如图,则该几何体的体积为( ) A.433 B .4 3 C.833D .8 35.(2017·广元质检)某工厂对一批新产品的长度(单位:mm)进行检测,如图是检测结果的频率分布直方图,据此估计这批产品的中位数为( )A .20B .25C .22.5D .22.756.(导学号:50604077)(2017·梧州一模)⎝⎛⎭⎫x 2+1x 2-23展开式中的常数项为( ) A .-8 B .-12 C .-20 D .207.已知数列{}a n 满足a 1=1,a n -1=2a n ()n ≥2,n ∈N *,则数列{}a n 的前6项和为( )A .63B .127 C.6332 D.127648.(2017·益阳二模)已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥x3-2,y ≤2x +4,2x +3y -12≤0,直线()2+λx -()3+λy +()1-2λ=0()λ∈R 过定点A ()x 0,y 0,则z =y -y0x -x 0的取值范围为()A.⎣⎡⎦⎤15,7B.⎣⎡⎦⎤17,5 C.⎝⎛⎦⎤-∞,15∪[)7,+∞ D.⎝⎛⎦⎤-∞,17∪[)5,+∞9.(导学号:50604078)(2017·鹤壁质检)已知△ABC 的三个顶点在以O 为球心的球面上,且AB =2,AC =4,BC =25,三棱锥O -ABC 的体积为83, 则球O 的表面积为( )A .22π B.74π3C .24πD .36π10.(2017·宜昌调研)在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,且a 2=b 2+c 2+bc ,a =3,S 为△ABC 的面积,则S +3cos B cos C 的最大值为( )A .1 B.3+1 C. 3 D .311.(2017·滨江联考)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|>π2的最小正周期为π,若将其图象向右平移π3个单位后得到的图象关于原点对称,则函数f (x )的图象( )A .关于直线x =π12对称B .关于直线x =5π12对称C .关于点⎝⎛⎭⎫π12,0对称D .关于点⎝⎛⎭⎫5π12,0对称 12.(导学号:50604079)设函数f (x )的定义域为D ,如果∀x ∈D ,∃y ∈D ,使得f (x )=-f (y )成立,则称函数f (x )为“Ω函数”.给出下列四个函数:①y =sin x ;②y =2x ;③y =1x -1;④f (x )=ln x .则其中“Ω函数”共有( )A .1个B .2个C .3个D .4个二、填空题:本题共4小题,每小题5分,共20分. 13.(2017·南昌二模)已知向量a =(sin θ,-2),b =(cos θ,1),若a ∥b ,则tan 2θ=________.14.(导学号:50604080)(2017·吉安调研)函数f (x )=lg ⎝⎛⎭⎫a +21+x 为奇函数,则实数a =________.15.16.(导学号:50604081)(2017·济宁联考)设直线x -3y +m =0(m ≠0)与双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别交于点A ,B ,若点P (m,0)满足|P A |=|PB |,则该双曲线的离心率是________.小题训练多抢分(一)1.A 由1+z 1-z =i 得,z =-1+i 1+i =(-1+i )(1-i )(1+i )(1-i )=i ,故|z|=1.2.B A =(-1,3),∁U B =⎝⎛⎦⎤-∞,-34,A ∩∁U B =⎝⎛⎦⎤-1,-34. 3.B 由题意得f(0)=a 0+b =1+b =2,解得b =1.f(-1)=a -1+b =a -1+1=3,解得a =12.故f(-3)=⎝⎛⎭⎫12-3+1=9, 从而f(f(-3))=f(9)=log 39=2.4.A 该几何体为正四棱锥,高为3,故V =13×4×3,选A .5.C 产品的中位数出现在概率是0.5的地方.自左至右各小矩形面积依次为0.1,0.2,0.4,设中位数是x ,则由0.1+0.2+0.08·(x -20)=0.5得,x =22.5.6.C ∵⎝⎛⎭⎫x 2+1x 2-23=⎝⎛⎭⎫x -1x 6, ∴T r +1=C r 6x 6-r ⎝⎛⎭⎫-1x r =C r 6(-1)r x6-2r, 令6-2r =0,即r =3,∴常数项为C 36(-1)3=-20.7.C 因为a 1=1,a n -1=2a n ()n ≥2,n ∈N *,∴{a n }是首项为1,公比为12的等比数列,∴S 6=1-(12)61-12=6332.8.B 依题意,直线()2+λx -()3+λy +()1-2λ=0()λ∈R 可以转化为2x -3y +1+λ()x -y -2=0,联立⎩⎨⎧ 2x -3y +1=0,x -y -2=0,解得⎩⎨⎧x 0=7,y 0=5,故z =y -5x -7;作出二元一次不等式组所表示的平面区域如下图阴影部分所示,观察可知z =y -5x -7表示阴影区域内的点与A ()7,5两点连线的斜率,故k AD ≤z =y -5x -7≤k AC ,即17≤z =y -5x -7≤5,故z =y -y 0x -x 0的取值范围为⎣⎡⎦⎤17,5,故选B.9.D ∵BC 2=AB 2+AC 2, ∴△ABC 为直角三角形,∴△ABC 的外接圆圆心为BC 中点D ,∴V O -ABC =13·S ABC·OD得OD =2,∴OA =3,∴球O 的表面积为4π×9=36π,故选D. 10.C ∵a 2=b 2+c 2+bc ,∴cos A =b 2+c 2-a 22bc =-12,∴A =2π3.设△ABC 外接圆的半径为R ,则2R =a sin A =3sin 2π3=2,∴R =1,∴S +3cos B cos C =12bc sin A +3cos B cos C =34bc +3cos B cos C =3sin B sin C +3cos B ·cos C =3cos(B -C ),故S +3cos B cos C 的最大值为 3.11.B ∵f (x )的最小正周期为π,∴2πω=π,ω=2,∴f (x )的图象向右平移π3个单位后得到g (x )=sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π3+φ=sin ⎝⎛⎭⎫2x -2π3+φ的图象, 又g (x )的图象关于原点对称,∴-2π3+φ=k π,k ∈Z ,又|φ|<π2,∴⎪⎪⎪⎪2π3+k π<π2, ∴k =-1,φ=-π3,∴f (x )=sin ⎝⎛⎭⎫2x -π3,当x =π12时,2x -π3=-π6, ∴A ,C 错误,当x =5π12时,2x -π3=π2,∴B 正确,D 错误.12.C ∀x ∈D ,∃y ∈D ,使得f (x )=-f (y ),等价于∀x ∈D ,∃y ∈D ,使得f (x )+f (y )=0成立;①因为y =sin x 是奇函数,所以f (x )=-f (-x ),即当y =-x 时,f (x )=-f (y )成立,故y =sin x 是“Ω函数”; ②因为y =2x >0,故f (x )+f (y )=0不成立,所以y =2x 不是“Ω函数”;③y =1x -1时,若f (x )+f (y )=0成立,则1x -1+1y -1=0,整理可得y =2-x ,(x ≠1)即当y =2-x (x ≠1)时,f (x )+f (y )=0成立,故y =1x -1是“Ω函数”;④f (x )=ln x 时,若f (x )+f (y )=0成立,则ln x +ln y =0,解得y =1x ,即y =1x时,f (x )+f (y )=0成立,故f (x )=ln x 是“Ω函数”.13.43 由a ∥b 得sin θ=-2cos θ,所以tan θ=-2,故tan 2θ=2tan θ1-tan 2θ=-41-4=43. 14.-1 因为函数f (x )=lg ⎝⎛⎭⎫a +21+x 为奇函数,所以f (-x )=-f (x ),即lg ⎝⎛⎭⎫a +21-x =-lg ⎝⎛⎭⎫a +21+x ⇒a +21+x =1a +21+x⇒a +21-x =1+x a (1+x )+2⇒1-x 2=(a+2)2-a 2x 2⇒a =-1.15.7 运行该程序,第一次,S =270,i =3;第二次,S =243,i =5;第三次,S =0,i =7.16.52 由双曲线的方程可知,渐近线为y =±bax ,分别与x -3y +m =0(m ≠0)联立,解得A ⎝⎛⎭⎫-am a -3b ,-bm a -3b ,B ⎝⎛⎭⎫-am a +3b ,bma +3b ,由|P A |=|PB |,设AB 的中点为Q ,则Q ⎝ ⎛⎭⎪⎪⎫-am a -3b +-am a +3b 2,-bm a -3b +bm a +3b 2,PQ 与已知直线垂直,故y Q x Q =-3,则e =c a =52.。

全国名校高三数学综合优质试题汇编(附详解) 平面解析几何

全国名校高三数学综合优质试题汇编(附详解) 平面解析几何

全国名校高三数学综合优质试题汇编(附详解) 平面解析几何 考生注意:1.本试卷分第Ⅰ卷(填空题)和第Ⅱ卷(解答题)两部分,共4页.2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上.3.本次考试时间120分钟,满分160分.4.请在密封线内作答,保持试卷清洁完整.第Ⅰ卷一、填空题(本大题共14小题,每小题5分,共70分.把答案填在题中横线上.)1.直线x tan π3+y +2=0的倾斜角α=________. 2.若在平面直角坐标系内过点P (1,3)且与原点的距离为d 的直线有两条,则d 的取值范围为__________.3.直线x +2y =0被圆(x -3)2+(y -1)2=25截得的弦长为________.4.(优质试题·常熟模拟)双曲线x 2m 2-4+y 2m 2=1(m ∈Z )的离心率为________. 5.两直线3ax -y -2=0和(2a -1)x +5ay -1=0分别过定点A ,B ,则AB =________.6.已知圆C :x 2+y 2-2x -4y +a =0,圆C 与直线x +2y -4=0相交于A ,B 两点,且OA ⊥OB (O 为坐标原点),则实数a 的值为________.7.已知直线y =ax 与圆C :(x -a )2+(y -1)2=a 2-1交于A ,B 两点,且∠ACB =60°,则圆的面积为________.8.M 是抛物线C :y 2=2px (p >0)上一点,F 是抛物线C 的焦点,O 为坐标原点,若MF =p ,K 是抛物线C 的准线与x 轴的交点,则∠MKO =________.9.已知直线y =k (x +2)(k >0)与抛物线C :y 2=8x 相交于A ,B 两点,F 为C 的焦点,若F A =2FB ,则k 的值为____________.10.(优质试题·昆山模拟)已知抛物线C :y 2=8x ,点P (0,4),点A 在抛物线上,当点A 到抛物线准线l 的距离与点A 到点P 的距离之和最小时,F 是抛物线的焦点,延长AF 交抛物线于点B ,则△AOB 的面积为________.11.(优质试题·常州模拟)已知双曲线x2a2-y2b2=1(a>0,b>0),过其左焦点F作x轴的垂线,交双曲线于A,B两点,若双曲线的右顶点在以AB为直径的圆内,则双曲线离心率的取值范围是__________.12.已知中心在原点的椭圆与双曲线有公共焦点,左、右焦点分别为F1,F2,且两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,若PF1=10,椭圆与双曲线的离心率分别为e1,e2,则1e1-1e2=______.13.过双曲线x2a2-y2=1(a>0)的左焦点作直线l与双曲线交于A,B两点,使得AB=4,若这样的直线有且仅有两条,则a的取值范围是____________.14.(优质试题·南通模拟)设直线l:3x+4y+4=0,圆C:(x-2)2+y2=r2(r>0),若在圆C上存在两点P,Q,在直线l上存在一点M,使得∠PMQ=90°,则r的取值范围是____________.第Ⅱ卷二、解答题(本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤)15.(14分)如图所示,在平面直角坐标系xOy中,平行于x轴且过点A(33,2)的入射光线l1被直线l:y=33x反射,反射光线l2交y轴于点B,圆C过点A且与l1,l2都相切.(1)求l2所在直线的方程和圆C的方程;(2)设P,Q分别是直线l和圆C上的动点,求PB+PQ的最小值及此时点P的坐标.16.(14分)在圆x 2+y 2=4上任取一点P ,点P 在x 轴的正射影为点Q ,当点P 在圆上运动时,动点M 满足PQ →=2MQ →,动点M 形成的轨迹为曲线C .(1)求曲线C 的方程;(2)点A (2,0)在曲线C 上,过点(1,0)的直线l 交曲线C 于B ,D 两点,设直线AB 的斜率为k 1,直线AD 的斜率为k 2,求证:k 1k 2为定值.17.(14分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的长轴长为22,且椭圆C 与圆M :(x -1)2+y 2=12的公共弦长为 2.(1)求椭圆C 的方程;(2)经过原点作直线l (不与坐标轴重合)交椭圆于A ,B 两点,AD ⊥x 轴于点D ,点E 在椭圆C上,且(AB →-EB →)·(DB →+AD →)=0,求证:B ,D ,E 三点共线.18.(16分)(优质试题·镇江模拟)已知圆M :x 2+y 2-2x +a =0.(1)若a =-8,过点P (4,5)作圆M 的切线,求该切线方程;(2)若AB 为圆M 的任意一条直径,且OA →·OB →=-6(其中O 为坐标原点),求圆M 的半径.19.(16分)如图,某城市有一块半径为1(单位:百米)的圆形景观,有两条与圆形景观相切且互相垂直的道路.最初规划在拐角处(图中阴影部分)建设一块绿化地,后来有众多市民建议在绿化地上建一条小路,便于市民快捷地往返两条道路.规划部门采纳了此建议,决定在绿化地中增建一条与圆C 相切的小道AB .问:A ,B 两点应选在何处可使得小道AB 最短?20.(16分)如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,A 为椭圆上异于顶点的一点,点P 满足OP →=2AO →.(1)若点P 的坐标为(2,2),求椭圆的方程;(2)设过点P 的一条直线交椭圆于B ,C 两点,且BP →=mBC →,直线OA ,OB 的斜率之积为-12,求实数m 的值.答案精析1.2π3解析 因为y =-3x -2,所以斜率k =-3,即tan α=-3(0≤α<π),所以α=2π3. 2.(0,2)解析 OP =2,当直线l 过点P (1,3)且与直线OP 垂直时,有d =2,且直线l 有且只有一条;当直线l 与直线OP 重合时,有d =0,且直线l 有且只有一条;当0<d <2时,有两条.3.4 5解析 由圆(x -3)2+(y -1)2=25,得到圆心坐标为(3,1),半径r =5,所以圆心到直线x +2y =0的距离d =55=5,则直线被圆截得的弦长为2r 2-d 2=4 5.4.2 解析 由题意可得⎩⎪⎨⎪⎧ m ∈Z ,(m 2-4)·m 2<0,∴m 2=1, 即双曲线的标准方程为y 2-x 23=1,其离心率为e =c a =1+31=2. 5.135解析 直线3ax -y -2=0过定点满足⎩⎪⎨⎪⎧3x =0,y +2=0,解得x =0,y =-2.∴直线3ax -y -2=0过定点A (0,-2).将直线(2a -1)x +5ay -1=0整理为(2x +5y )a -(x +1)=0, 满足⎩⎪⎨⎪⎧2x +5y =0,x +1=0,解得x =-1,y =25. ∴直线(2a -1)x +5ay -1=0过定点B ⎝⎛⎭⎫-1,25.6.85 解析 设A (x 1,y 1),B (x 2,y 2),由于OA ⊥OB ,所以x 1x 2+y 1y 2=54x 1x 2-(x 1+x 2)+4=0.(*) 联立直线和圆的方程,消去y 得5x 2-8x +4a -16=0,x 1+x 2=85,x 1x 2=4a -165,代入(*)式得a =85. 7.6π解析 由题意可得圆心C (a,1),半径R =a 2-1(a ≠±1),∵直线y =ax 和圆C 相交,△ABC 为等边三角形,∴圆心C 到直线ax -y =0的距离为R sin 60°=32×a 2-1, 即d =|a 2-1|a 2+1=3(a 2-1)2,解得a 2=7, ∴圆C 的面积为πR 2=π(7-1)=6π.8.45°解析 设点M 在抛物线的准线上的垂足是N ,由于MN =MF =p ,所以四边形MNKF 是正方形,则∠MKO =45°.9.223解析 设A (x 1,y 1),B (x 2,y 2)(y 1>0,y 2>0),由AF =2FB 得x 1+2=2(x 2+2),①又由⎩⎪⎨⎪⎧y 2=8x ,y =k (x +2), 消去y ,得k 2x 2+(4k 2-8)x +4k 2=0,x 1+x 2=8-4k 2k 2,② x 1x 2=4,③由①②③可解得k =223. 10.4 5解析 根据抛物线性质知抛物线上一点到准线的距离等于到焦点的距离,故当P ,A ,F 三点共线时达到最小值,由P (0,4),F (2,0),可得l AB :2x +y -4=0,联立抛物线方程可得x 2-6x +4=0,设点A (x 1,y 1),B (x 2,y 2),故AB =x 1+x 2+p =6+4=10,原点到直线l AB :2x +y -4=0的距离d =|4|4+1=455, 所以△AOB 的面积为455×10×12=4 5. 11.(2,+∞)解析 AB =2b 2a ,由题意a +c <b 2a,即a 2+ac <b 2=c 2-a 2,c 2-ac -2a 2>0,即e 2-e -2>0,解得e >2(e <-1舍去).12.2解析 由椭圆与双曲线的定义得e 1=2c 10+2c ,e 2=2c 10-2c, 所以1e 1-1e 2=4c 2c=2. 13.⎝⎛⎭⎫0,12∪(2,+∞) 解析 根据题意过双曲线x 2a2-y 2=1(a >0)的左焦点F 作直线l 与双曲线交于A ,B 两点,使得AB =4,若这样的直线有且仅有两条,可得2b 2a =2a <AB =4,并且2a >4,解得a >2;或2b 2a =2a>AB =4,并且2a <4,解得0<a <12. 14.[2,+∞)解析 由题意得,圆C :(x -2)2+y 2=r 2的圆心为C (2,0),半径为r ,此时圆心到直线3x +4y +4=0的距离d =|2×3+4|32+42=2,过直线l 上任意一点M 作圆C 的两条切线,切点为P ,Q ,则此时四边形MPCQ 为正方形,所以要使得直线l 上存在一点M ,使得∠PMQ =90°,则d ≤2r ,即2r ≥2,得r ≥2,所以r 的取值范围是[2,+∞).15.解 (1)易知直线l 1:y =2,设l 1交l 于点D ,则D (23,2),因为直线l 的斜率为33, 所以l 的倾斜角为30°,所以l 2的倾斜角为60°,所以k 2=3,所以反射光线l 2所在的直线方程为y -2=3(x -23),即3x -y -4=0.由题意,知圆C 与l 1切于点A ,设圆心C 的坐标为(a ,b ),因为圆心C 在过点D 且与l 垂直的直线上,所以b =-3a +8,①又圆心C 在过点A 且与l 1垂直的直线上,所以a =33,②由①②得a =33,b =-1,故圆C 的半径r =CA =3,故所求圆C 的方程为(x -33)2+(y +1)2=9.综上,l 2所在直线的方程为3x -y -4=0,圆C 的方程为(x -33)2+(y +1)2=9.(2)由(1)知B (0,-4).设点B (0,-4)关于l 对称的点为B ′(x 0,y 0),即⎩⎪⎨⎪⎧ y 0-42=33·x 02,y 0+4x 0=-3, 解得⎩⎪⎨⎪⎧x 0=-23,y 0=2, 故B ′(-23,2). 由题意知,当B ′,P ,Q 三点共线时,PB +PQ 最小,故PB +PQ 的最小值为B ′C -3=(-23-33)2+(2+1)2-3=221-3,由⎩⎪⎨⎪⎧ y +12+1=x -33-23-33,y =33x ,得P ⎝⎛⎭⎫32,12, 故PB +PQ 的最小值为221-3,此时点P 的坐标为⎝⎛⎭⎫32,12. 16.(1)解 设点M 的坐标为(x ,y ),点P 的坐标为(x 0,y 0),则x =x 0,y =y 02, 因为点P (x 0,y 0)在圆x 2+y 2=4上,所以x 20+y 20=4,*把x =x 0,y =y 02代入方程*,得x 24+y 2=1, 所以曲线C 的方程为x 24+y 2=1. (2)证明 方法一 由题意知直线l 的斜率不为0,设直线l 的方程为x =my +1,B (x 1,y 1),D (x 2,y 2),由⎩⎪⎨⎪⎧ x 24+y 2=1,x =my +1,消去x ,得(m 2+4)y 2+2my -3=0, 易知Δ=16m 2+48>0,得y 1+y 2=-2m m 2+4,y 1y 2=-3m 2+4, k 1k 2=y 1y 2(x 1-2)(x 2-2) =y 1y 2(my 1-1)(my 2-1)=y 1y 2m 2y 1y 2-m (y 1+y 2)+1 =-3-3m 2+2m 2+m 2+4=-34. 所以k 1k 2=-34为定值. 方法二 ①当直线l 的斜率不存在时,设B ⎝⎛⎭⎫1,-32,D ⎝⎛⎭⎫1,32,所以k 1k 2=-321-2·321-2=-34. ②当直线l 的斜率存在时,设直线l 的方程为y =k (x -1),B (x 1,y 1),D (x 2,y 2),由⎩⎪⎨⎪⎧x 24+y 2=1,y =k (x -1),消去y ,得(1+4k 2)x 2-8k 2x +4k 2-4=0, 易知Δ=48k 2+16>0,x 1+x 2=8k 21+4k 2,x 1x 2=4k 2-41+4k 2, k 1k 2=y 1y 2(x 1-2)(x 2-2)=k 2(x 1-1)(x 2-1)(x 1-2)(x 2-2)=k 2[x 1x 2-(x 1+x 2)+1]x 1x 2-2(x 1+x 2)+4=k 2(4k 2-4-8k 2+1+4k 2)4k 2-4-16k 2+4+16k 2=-34, 所以k 1k 2=-34为定值. 17.(1)解 由题意得2a =22,则a = 2.由椭圆C 与圆M :(x -1)2+y 2=12的公共弦长为2, 其长度等于圆M 的直径,可得椭圆C 经过点⎝⎛⎭⎫1,±22, 所以12+12b2=1,解得b =1. 所以椭圆C 的方程为x 22+y 2=1. (2)证明 设A (x 1,y 1),E (x 2,y 2),则B (-x 1,-y 1),D (x 1,0).因为点A ,E 都在椭圆C 上,所以⎩⎪⎨⎪⎧x 21+2y 21=2,x 22+2y 22=2, 所以(x 1-x 2)(x 1+x 2)+2(y 1-y 2)(y 1+y 2)=0,即y 1-y 2x 1-x 2=-x 1+x 22(y 1+y 2). 又(AB →-EB →)·(DB →+AD →)=AE →·AB →=0,所以k AB ·k AE =-1,即y 1x 1·y 1-y 2x 1-x 2=-1, 其中k AB ,k AE 分别是直线AB ,AE 的斜率.所以y 1x 1·x 1+x 22(y 1+y 2)=1, 所以y 1x 1=2(y 1+y 2) x 1+x 2, 又k BE -k BD =y 1+y 2x 1+x 2-y 12x 1=y 1+y 2x 1+x 2-y 1+y 2x 1+x 2=0, 所以k BE =k BD ,所以B ,D ,E 三点共线.18.解 (1)若a =-8,则圆M :(x -1)2+y 2=9,圆心M (1,0),半径为3.若切线斜率不存在,圆心M 到直线x =4的距离为3,所以直线x =4为圆M 的一条切线;若切线斜率存在,设切线方程为y -5=k (x -4),化简为kx -y -4k +5=0,则圆心到直线的距离d =|k -4k +5|k 2+1=3, 解得k =815.此时切线方程为8x -15y +43=0. 综上,所求切线方程为x =4或8x -15y +43=0.(2)圆M 的方程可化为(x -1)2+y 2=1-a ,圆心M (1,0),则OM =1.设圆的半径r =1-a (a <1).因为AB 为圆M 的任意一条直径,所以MA →=-MB →,且|MA →|=|MB →|=r ,则OA →·OB →=(OM →+MA →)·(OM →+MB →)=(OM →-MB →)·(OM →+MB →)=OM →2-MB →2=1-r 2.又因为OA →·OB →=-6,解得r =7,所以圆M 的半径为7.19.解 如图,分别以两条道路所在的直线为坐标轴建立平面直角坐标系xOy ,设A (a ,0),B (0,b )(0<a <1,0<b <1),则直线AB 的方程为x a +y b=1, 即bx +ay -ab =0.因为直线AB 与圆C 相切, 所以|b +a -ab |b 2+a2=1, 化简得ab -2(a +b )+2=0,即ab =2(a +b )-2.因为AB =a 2+b 2=(a +b )2-2ab =(a +b )2-4(a +b )+4=(a +b -2)2, 因为0<a <1,0<b <1,所以0<a +b <2,所以AB =2-(a +b ).又ab =2(a +b )-2≤⎝⎛⎭⎪⎫a +b 22, 解得0<a +b ≤4-22或a +b ≥4+2 2.因为0<a +b <2,所以0<a +b ≤4-22,所以AB =2-(a +b )≥2-(4-22)=22-2,当且仅当a =b =2-2时取等号,所以AB 的最小值为22-2,此时a =b =2- 2.答 当A ,B 两点离道路的交点都为(2-2)百米时,小道AB 最短.20.解 (1)因为OP →=2AO →,又点P 的坐标为(2,2),所以点A 的坐标为⎝⎛⎭⎫-1,-22, 代入椭圆方程,得1a 2+12b2=1.① 又椭圆的离心率为22,所以1-b 2a 2=22.② 由①②得a 2=2,b 2=1,故椭圆的方程为x 22+y 2=1. (2)设点A 的坐标为(x 1,y 1),点B 的坐标为(x 2,y 2),点C 的坐标为(x 3,y 3).因为OP →=2AO →,所以点P 的坐标为(-2x 1,-2y 1).因为BP →=mBC →,所以(-2x 1-x 2,-2y 1-y 2)=m (x 3-x 2,y 3-y 2),即⎩⎪⎨⎪⎧ -2x 1-x 2=m (x 3-x 2),-2y 1-y 2=m (y 3-y 2),解得⎩⎪⎨⎪⎧ x 3=m -1m x 2-2m x 1,y 3=m -1m y 2-2m y 1,代入椭圆的方程,得⎝ ⎛⎭⎪⎫m -1mx 2-2m x 12a 2+⎝ ⎛⎭⎪⎫m -1m y 2-2m y 12b 2=1,即4m 2⎝⎛⎭⎫x 21a 2+y 21b 2+(m -1)2m 2⎝⎛⎭⎫x 22a 2+y 22b 2- 4(m -1)m 2⎝⎛⎭⎫x 1x 2a 2+y 1y 2b 2=1.③ 因为点A ,B 在椭圆上,所以x 21a 2+y 21b 2=1,x 22a 2+y 22b 2=1.④ 又直线OA ,OB 的斜率之积为-12, 即y 1x 1·y 2x 2=-12,结合②知x 1x 2a 2+y 1y 2b 2=0.⑤ 将④⑤代入③,得4m 2+(m -1)2m 2=1,解得m =52.。

全国名校高考数学优质小题训练汇编(附详解)02

全国名校高考数学优质小题训练汇编(附详解)02

全国名校高考数学优质小题训练汇编(附详解)高三4月短卷第I 卷(选择题)一、单选题1.已知全集为,集合,,则( )A.B.C.D.2.设是周期为4的奇函数,当时,,则( )A.B.C.D.3.设变量,x y 满足约束条件20{20 1x y x y y +-≥--≤≤,则目标函数2z x y =-的最小值为( )A. 2-B. 1-C. 1D. 2 4.若向区域内投点,则该点落在由直线与曲线围成区域内的概率为A.B.C.D.5.已知O 是△ABC 内部一点, 0OA OB OC ++=, 2AB AC ⋅=且∠BAC=60°,则△OBC 的面积为( )A.3 B. 12C. 2D. 236.下列命题是真命题的是 ( ) A. 已知随机变量,若,则B. 在三角形中,是的充要条件C. 向量,则在的方向上的投影为D. 命题“或为真命题”是命题“且为假命题”的充分不必要条件7.若三棱锥的三视图如图所示,则该三棱锥的四个面中直角三角形的个数是( )A. 1B. 2C. 3D. 48.在平面直角坐标系中,已知,,则的最小值为( )A. 1B. 2C. 3D. 49.已知函数,若的两个零点,满足,则的值为( )A. B. C. D.10.“中国剩余定理”又称“孙子定理”.1852年,英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法复合1801年由高斯得到的关于问余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将到这个数中,能被除余且被除余的数按从小到大的顺序排成一列,构成数列,则此数列共有( )A.项 B. 项 C.项 D. 项11.已知函数()2xf x me x nx =++, (){}()(){}00x f x x f f x φ===≠,则m n +的取值范围为( )A. ()0,4B. [)0,4C. []0,4 D. ()4,+∞12.已知直线与双曲线的渐近线交于两点,设为双曲线上任一点,若(为坐标原点),则下列不等式恒成立的是( )A. B.C.D.全国名校高考数学优质小题训练汇编(附详解)第II 卷(非选择题)二、填空题 13.二项式的展开式中的常数项是__________.(用数字作答)14.有一个质地均匀的正四面体木块4个面分别标有数字1,2,3,4.将此木块在水平桌面上抛两次,则两次看不到的数字都大于2的概率为__________. 15.已知、是双曲线的左、右焦点,点在双曲线上,轴,,则双曲线的离心率为__________.‘16.将1,2,3,4…正整数按如图所示的方式排成三角形数组,则第10行 左数第10个数为______________三、解答题17.函数()()sin (0,)2f x x πωϕωϕ=+><的部分图像如图所示,将()y f x =的图象向右平移4π个单位长度后得到函数()y g x =的图象.(1)求函数()y g x =的解折式; (2)在ABC ∆中,角,,A B C 满足22sin 123A B g C π+⎛⎫=++ ⎪⎝⎭,且其外 接圆的半径2R =,求ABC ∆的面积的最大值.18.依据某地某条河流8月份的水文观测点的历史统计数据所绘制的频率分布直方图如图(甲)所示;依据当地的地质构造,得到水位与灾害等级的频率分布条形图如图(乙)所示.试估计该河流在8月份水位的中位数;(1)以此频率作为概率,试估计该河流在8月份发生1级灾害的概率;(2)该河流域某企业,在8月份,若没受1、2级灾害影响,利润为500万元;若受1级灾害影响,则亏损100万元;若受2级灾害影响则亏损1000万元.现此企业有如下三种应对方案:试问,如仅从利润考虑,该企业应选择这三种方案中的哪种方案?说明理由.全国名校高考数学优质小题训练汇编(附详解)19.已知数列{}{},n n a b 分别是等差数列与等比数列,满足11a =,公差0d >,且2263224,,a b a b a b ===.(1)求数列{}n a 和{}n b 的通项公式; (2)设数列{}n c 对任意正整数n 均有12112nn nc c c a b b b ++++=成立,设{}n c 的前n 项和为n S , 求证: 20182018(S e e ≥是自然对数的底数)20.已知函数()116xa f x x e ⎛⎫=--+ ⎪⎝⎭,其中 2.718e =为自然对数的底数,常数0a >.(1)求函数()f x 在区间()0,+∞上的零点个数;(2)函数()F x 的导数()()()xF x e a f x '=-,是否存在无数个()1,4a ∈,使得ln a 为函数()F x 的极大值点?说明理由.短卷02参考答案1.B 2.D 3.B 4.B 5.A 6.B 7.D 8.B 【解析】根据条件得到表示的是曲线,上两点的距离的平方,∵y=x 2﹣lnx ,∴y′=2x ﹣(x >0),由2x ﹣=1,可得x=1,此时y=1,∴曲线C 1:y=x 2﹣lnx 在(1,1)处的切线方程为y ﹣1=x ﹣1,即x ﹣y=0, 与直线x ﹣y ﹣2=0的距离为=,∴的最小值为2.故答案为B .9.C 【解析】依题意可得函数的周期为,所以,故选.。

全国名校高考数学优质试题汇编(附详解)高三数学解答题训练6

全国名校高考数学优质试题汇编(附详解)高三数学解答题训练6

1.(本小题满分12分)(优质试题·宝鸡模拟)已知数列{a n }满足a 1=5,a 2=5,a n +1=a n +6a n -1(n ≥2).(1)求证:{a n +1+2a n }是等比数列;(2)求数列{a n }的通项公式.【解】 (1)证明:∵a n +1=a n +6a n -1(n ≥2),∴a n +1+2a n =3a n +6a n -1=3(a n +2a n -1)(n ≥2).又a 1=5,a 2=5,∴a 2+2a 1=15,∴a n +2a n -1≠0(n ≥2),∴a n +1+2a n a n +2a n -1=3(n ≥2), ∴数列{a n +1+2a n }是以15为首项,3为公比的等比数列.(2)由(1)得a n +1+2a n =15×3n -1=5×3n ,则a n +1=-2a n +5×3n ,∴a n +1-3n +1=-2(a n -3n ).又∵a 1-3=2,∴a n -3n ≠0,∴{a n -3n }是以2为首项,-2为公比的等比数列.∴a n -3n =2×(-2)n -1,即a n =2×(-2)n -1+3n (n ∈N *).2.某商场的20件不同的商品中有34的商品是进口的,其余是国产的.在进口的商品中高端商品的比例为13,在国产的商品中高端商品的比例为35.(1)若从这20件商品中按分层(分三层:进口高端与进口非高端及国产)抽样的方法抽取4件,求抽取进口高端商品的件数;(2)在该批商品中随机抽取3件,求恰有1件是进口高端商品且国产高端商品少于2件的概率;(3)若销售1件国产高端商品获利80元,国产非高端商品获利50元,若销售3件国产商品,共获利ξ元,求ξ的分布列及数学期望Eξ. 解:(1)由题意得,进口的商品有15件,其中5件是高端商品,10件是非高端商品,国产的商品有5件,其中3件是高端商品,2件是非高端商品,若从这20件商品中按分层抽样的方法抽取4件,则抽取进口高端商品的件数为1.(2)设事件B 为“在该批商品中随机抽取3件,恰有1件是进口高端商品且国产高端商品少于2件”,事件A 1为“抽取的3件商品中,有1件进口高端商品,0件国产高端商品”,事件A 2为“抽取的3件商品中,有1件进口高端商品,1件国产高端商品”,则P (B )=P (A 1)+P (A 2)=C 15C 212C 320+C 15C 13C 112C 320=55190+30190=1738, 所以在该批商品中随机抽取3件,恰有1件是进口高端商品且国产高端商品少于2件的概率是1738.(3)由于这批商品中仅有5件国产商品,其中3件是高端商品,2件是非高端商品,那么,当销售3件国产商品时,可能有1件高端商品,2件非高端商品,或2件高端商品,1件非高端商品,或3件都是高端商品,于是ξ的可能取值为180,210,240.P (ξ=180)=C 13C 22C 35=310,P (ξ=210)=C 23C 12C 35=610=35, P (ξ=240)=C 33C 35=110. 所以ξ的分布列为故E (ξ)=180×310+210×35+240×110=204.3.在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AD ∥BC ,BC =2AD =4,AB =CD =10.(1)证明:BD ⊥平面P AC ;(2)若二面角A -PC -D 的大小为45°,求AP 的值.解:(1)证明:设O 为AC 与BD 的交点,作DE ⊥BC 于点E .由四边形ABCD 是等腰梯形得CE =BC -AD 2=1, DE =DC 2-CE 2=3,所以BE =DE ,从而得∠DBC =∠BCA =45°.所以∠BOC =90°,即AC ⊥BD .由P A ⊥平面ABCD ,得P A ⊥BD ,又因为P A ∩AC =A ,所以BD ⊥平面P AC .(2)法一:作OH ⊥PC 于点H ,连接DH .由(1)知DO ⊥平面P AC ,故DO ⊥PC .所以PC ⊥平面DOH ,从而得PC ⊥DH .故∠DHO 是二面角A -PC -D 的平面角,所以∠DHO =45°.由∠DBC =∠BCA =45°,BC =4,得OC =2 2.同理可得OA =2,从而得AC =3 2.设P A =x ,则PC =x 2+18.在Rt △DOH 中,由DO =2,∠DHO =45°,得OH = 2.在Rt △P AC 中,由P A PC =OH OC ,可得x x 2+18=222, 解得x =6,即AP = 6.法二:由(1)知AC ⊥BD .以O 为原点,OB ,OC 所在直线为x 轴,y 轴,建立空间直角坐标系O -xyz ,如图所示.由题意知各点坐标如下:A (0,-2,0),B (22,0,0),C (0,22,0),D (-2,0,0).由P A ⊥平面ABCD ,得P A ∥z 轴,故设点P (0,-2,t )(t >0).设向量m =(x ,y ,z )为平面PDC 的法向量,由CD →=(-2,-22,0),PD →=(-2,2,-t ),m ·CD →=m ·PD →=0,得⎩⎪⎨⎪⎧ -2x -22y =0,-2x +2y -tz =0.令y =1,得m =⎝ ⎛⎭⎪⎫-2,1,32t . 又平面P AC 的法向量n =(1,0,0),于是|cos 〈m ,n 〉|=|m·n ||m |·|n |=25+18t 2=22,解得t =6,即AP = 6.4.(优质试题·吉林省吉林市模拟)在极坐标系中,已知圆C 的圆心C ⎝ ⎛⎭⎪⎫2,π4,半径r = 3 .(1)求圆C 的极坐标方程;(2)若α∈⎣⎢⎡⎭⎪⎫0,π4,直线l 的参数方程为⎩⎪⎨⎪⎧x =2+t cos α,y =2+t sin α(t 为参数),直线l 交圆C 于A 、B 两点,求弦长|AB |的取值范围.10.解 (1)设圆上任意一点坐标(ρ,θ),由余弦定理得:(3)2=ρ2+(2)2-2ρ×2×cos ⎝ ⎛⎭⎪⎫θ-π4,整理得:ρ2-2ρ(cos θ+sin θ)-1=0.(2)∵x =ρcos θ,y =ρsin θ,∴ x 2+y 2-2x -2y -1=0, 将直线的参数方程代入到圆的直角坐标方程中得:(2+t cos α)2+(2+t sin α)2 -2(2+t cos α)-2(2+t sin α)-1=0, 整理得:t 2+(2cos α+2sin α)t -1=0 ,∴t 1+t 2=-2cos α-2sin α,t 1·t 2=-1,∴|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2 =8+4sin 2α , ∵α∈⎣⎢⎡⎭⎪⎫0,π4,∴2α∈⎣⎢⎡⎭⎪⎫0,π2,∴|AB |∈[22,23).。

高三数学名校试题及答案

高三数学名校试题及答案

高三数学名校试题及答案一、选择题(每题5分,共20分)1. 若函数f(x) = 2x^2 - 3x + 1,则f(-1)的值为:A. 0B. 4C. 2D. -22. 已知集合A = {1, 2, 3},B = {2, 3, 4},则A∩B为:A. {1, 2, 3}B. {2, 3}C. {1, 2}D. {2, 3, 4}3. 若直线y = 2x + 3与直线y = -x + 5平行,则它们的斜率k1和k2的关系为:A. k1 = k2B. k1 > k2C. k1 < k2D. k1 ≠ k24. 已知等比数列的首项为2,公比为3,那么它的第五项a5为:A. 162B. 108C. 72D. 54二、填空题(每题5分,共20分)5. 已知函数f(x) = x^3 - 6x^2 + 9x + 1,求f'(x)的值为______。

6. 已知圆的方程为(x - 2)^2 + (y - 3)^2 = 9,求圆心坐标为______。

7. 已知向量a = (3, 4),向量b = (-4, 3),求向量a与向量b的点积为______。

8. 已知等差数列的前三项为2,5,8,求它的通项公式为______。

三、解答题(每题10分,共60分)9. 已知函数f(x) = x^3 - 3x^2 + 2,求函数的单调区间。

10. 已知直线l1:y = 2x + 1与直线l2:y = -x + 2相交,求交点坐标。

11. 已知三角形ABC的顶点坐标分别为A(1, 2),B(4, 6),C(7, 10),求三角形的面积。

12. 已知函数f(x) = x^2 - 4x + 4,求函数的极值点。

四、附加题(10分)13. 已知函数f(x) = sin(x) + cos(x),求函数在区间[0, π]上的值域。

答案:一、选择题答案1. B2. B3. A4. A二、填空题答案5. 3x^2 - 12x + 96. (2, 3)7. -258. a_n = 2 + 3(n - 1) = 3n - 1三、解答题答案9. 单调递增区间为(-∞, 1)和(2, +∞),单调递减区间为(1, 2)。

全国名校高考数学优质小题训练汇编(附详解)四

全国名校高考数学优质小题训练汇编(附详解)四

理科数学短卷训练一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.全集R U =,集合},0)1)(4(|{R x x x x A ∈≤+-=,集合},0|{R x x x B ∈>=,则=)(B C A U ( ) A . ]4,0( B . ]0,1[- C . ]1,(--∞ D .]1,4[--2.设复数z 满足5)2(=+z i ,则=||z ( ) A . 3 B . 2 C . 5 D .33. 下列命题正确的有( )①用相关指数2R 来刻画回归效果,2R 越小,说明模型的拟合效果越好; ②命题p :“05,R 0200>--∈∃x x x ”的否定p ⌝:“05,R 2≤--∈∀x x x ”; ③设随机变量ξ服从正态分布(0,1)N , 若p P =>)1(ξ,则p P -=<<-21)01(ξ; ④回归直线一定过样本中心(y x ,).A .0个B .1个C .2个D .3个4. 33)11()1(xx --展开式中的常数项是( ) A.20- B .18 C .20 D .05.已知角)2,0(πα∈,且0cos 2cos 2=+αα,则=+)4tan(πα( ) A . 223-- B . -1 C. 223- D .223+ 6. 执行如图所示的程序框图,则输出的c 的值是( )A .8B .13C .21D .347. 已知椭圆22221(0)x y a b a b +=>>的做焦点1F ,过点1F 作倾斜角为030的直线与圆222b y x =+相交的弦长为b 3,则椭圆的离心率为( ) A .21 B .22 C. 43 D .23 8.某几何体的三视图如图所示,则该几何体的体积为( )A . 4B . 3 C. 2 D .19.已知点)3,4(A 和点)2,1(B ,点O 为坐标原点,则)(||R t OB t OA ∈+的最小值为( ) A . 25 B . 5 C. 3 D .510.设点C B A ,,是半径为2的球O 的球面上的三个不同的点,且BC OA ⊥,3=BC ,0120=∠BAC ,则三棱锥ABC O -的体积为( ) A .43 B . 23 C. 433 D .3 11. 跳格游戏:如图,人从格子外只能进入第1个格子,在格子中每次可向前跳1格或2格,那么人从格外跳到第8个格子的方法种数为( )A .8种B .13种C .21种D .34种 12.已知函数)(x f 是定义在),0(+∞上的可导函数,)('x f 是)(x f 的导函数,若)('2)(2)(')(x f x f xx xf x f +≥+,且2)2('=f ,那么=)2(f ( ) A . 0 B . -2 C. -4 D .-6二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知函数)0(cos 3sin >+=ωωωx x y 在区间]6,0[π上的最小值为-1,则=ω .15.已知双曲线2222:1(0,0)x y C a b a b -=>>的左右焦点分别为21,F F ,若C 上一点P 满足||||2121F F PF PF =+,且||2||21PF PF =,则双曲线C 的渐近线方程为 . 14.函数()y f x =为定义在R 上的减函数,函数(1)y f x =-的图像关于点(1,0)对称,x,y 满足不等式22(2)(2)0f x x f y y -+-≤,(1,2)M ,(,)N x y ,O 为坐标原点,则当14x ≤≤时,OM ON ∙的取值范围为16. 设集合M {}123,,...n a a a a =(n N *∈),对M 的任意非空子集A ,定义()f A 为A 中的最大元素,当A 取遍M 的所有非空子集时,对应()f A 的积为n T ,若12n n a -=,则_____n T =(用n 表示)1 2 3 4 5 6 7 8三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列}{n a 满足:)(12*1N n n a a n n ∈+-=+,31=a .(1)证明数列)(*N n n a b n n ∈-=是等比数列,并求数列}{n a 的通项; (2)设11++-=n n nn n a a a a c ,数列}{n c 的前n 项和为}{n S ,求证:1<n S .全国名校高考数学优质小题训练汇编(附详解)18. 如图,AB 为圆O 的直径,点E 、F 在圆O 上,EF AB //,矩形ABCD 所在的平面与圆O 所在的平面互相垂直. 已知2=AB ,1=EF . (1)求证:平面⊥DAF 平面CBF ;(2)当AD 的长为何值时,平面DFC 与平面CBF 所成的锐二面角的大小为60?FABC DO.E19. 某企业计划投资A ,B 两个项目, 根据市场分析,A ,B 两个项目的利润率分别为随机变量X 1和X 2,X 1和X 2的分布列分别为:X 1 5% 10% P0.80.2(1)若在A ,B 两个项目上各投资1000万元,Y 1和Y 2分别表示投资项目A 和B 所获得的利润,求利润的期望()()12,E Y E Y 和方差()()12,D Y D Y ;(2)由于资金限制,企业只能将x (0≤x ≤1000)万元投资A 项目,1000-x 万元投资B 项目,f (x )表示投资A 项目所得利润的方差与投资B 项目所得利润的方差的和.求f (x )的最小值,并指出x 为何值时,f (x )取到最小值.X 2 2% 8% 12% P0.20.50.320. 已知函数()(1)ax f x x e =+(0a ≠),且2x a=是它的极值点. (1)求a 的值;(2)求()f x 在[]1,1t t -+上的最大值;(3)设()()23ln g x f x x x x =++,证明:对任意1x ,2(0,1)x ∈都有12323|()()|1g x g x e e-<++.。

全国名校高三数学优质学案汇编(附详解)专题函数的图象

全国名校高三数学优质学案汇编(附详解)专题函数的图象

答案 D 与曲线y=ex关于y轴对称的图象对应的解析式为y=e-x,将函数
y=e-x的图象向左平移1个单位长度即得y=f(x)的图象,∴f(x)=e-(x+1)=e-x-1,故
选D.
教材研读
栏目索引
3.甲、乙二人同时从A地赶往B地,甲先骑自行车到两地的中点再改为跑 步,乙先跑步到中点再改为骑自行车,最后两人同时到达B地.已知甲骑 车比乙骑车的速度快,且两人骑车速度均大于跑步速度.现将两人离开A 地的距离S与所用时间t的函数关系用图象表示,则下列给出的四个函数 图象中,甲、乙的图象应该是 ( B )
考点突破
栏目索引
Hale Waihona Puke 方法技巧 函数图象的常见画法: (1)直接法:当函数解析式(或变形后的解析式)是熟悉的基本函数时,就 可根据这些函数的特征描出图象的关键点,进而直接作出图象. (2)转化法:含有绝对值符号的函数,可脱掉绝对值符号,转化为分段函数 来画图象. (3)图象变换法:若函数图象可由某个基本函数的图象经过平移、伸 缩、翻折、对称得到,则可利用图象变换作出.
x 2 2 x 1( x 0), (2)y= 2 的图象如图②. x 2 x 1( x 0) x2 3 3 (3)y= =1+ ,先作出y= 的图象, x 1 x 1 x
将其图象向右平移1个单位,
再向上平移1个单位,
x2 即得y= 的图象,如图③. x 1
教材研读
栏目索引
与函数图象的对称变换相关的结论 (1)与y=f(x)的图象关于直线y=x对称的图象是函数y=f-1(x)的图象(y=f-1(x) 表示y=f(x)的反函数). (2)与y=f(x)的图象关于直线x=m对称的图象是函数y=f(2m-x)的图象. (3)与y=f(x)的图象关于直线y=n对称的图象是函数y=2n-f(x)的图象. (4)与y=f(x)的图象关于点(a,b)对称的图象是函数y=2b-f(2a-x)的图象.

全国名校高考数学经典复习题汇编(附详解)专题:诱导公式

全国名校高考数学经典复习题汇编(附详解)专题:诱导公式

全国名校高考数学经典复习题汇编(附详解)专题:诱导公式1.(全国名校·山东师大附中模拟)(tan10°-3)sin40°的值为( ) A .-1 B .0 C .1 D .2答案 A解析 (tan10°-3)·sin40°=(sin10°cos10°-sin60°cos60°)·sin40°=-sin50°cos10°·cos60°·sin40°=-2sin40°·cos40°cos10°=-sin80°cos10°=-1.2.(全国名校·广东珠海期末)已知tan (α+π5)=2,tan (β-4π5)=-3,则tan(α-β)=( )A .1B .-57C.57 D .-1答案 D解析 ∵t an(β-4π5)=-3,∴tan (β+π5)=-3.∵tan (α+π5)=2,∴tan (α-β)=tan [(α+π5)-(β+π5)]=tan (α+π5)-tan (β+π5)1+tan (α+π5)tan (β+π5)=2-(-3)1+2×(-3)=-1.故选D.3.(全国名校·湖南永州一模)已知sin (α+π6)+cos α=-33,则cos(π6-α)=( )A .-223B.223 C .-13D.13 答案 C解析 由sin (α+π6)+cos α=-33,得sin (α+π3)=-13,所以cos(π6-α)=cos[π2-(α+π3)]=sin (α+π3)=-13.4.(全国名校·山东,文)函数y =3sin2x +cos2x 的最小正周期为( ) A.π2 B.2π3 C .π D .2π答案 C解析 ∵y =3sin2x +cos2x =2(32sin2x +12cos2x)=2sin(2x +π6),∴T =2π2=π.故选C. 5.在△ABC 中,tanA +tanB +3=3tanAtanB ,则C 等于( ) A.π3 B.2π3 C.π6 D.π4答案 A解析 由已知得tanA +tanB =-3(1-tanAtanB), ∴tanA +tanB1-tanAtanB=-3,即tan(A +B)=- 3.又tanC =tan[π-(A +B)]=-tan(A +B)=3,0<C<π,∴C =π3.6.sin47°-sin17°cos30°cos17°=( )A .-32B .-12C.12D.32答案 C解析 sin47°=sin(30°+17°)=sin30°cos17°+cos30°sin17°,∴原式=sin30°cos17°cos17°=sin30°=12.7.(全国名校·河北冀州考试)(1+tan18°)(1+tan27°)的值是( ) A. 2 B. 3 C .2 D. 5答案 C解析 (1+tan18°)(1+tan27°)=1+tan18°+tan27°+tan18°tan27°=1+tan45°·(1-tan18°tan27°)+tan18°tan27°=2.8.(全国名校·课标全国Ⅰ,理)设α∈(0,π2),β∈(0,π2)且tan α=1+sin βcos β,则( )A .3α-β=π2B .3α+β=π2C .2α-β=π2D .2α+β=π2答案 C解析 ∵α,β∈(0,π2),∴-β∈(-π2,0),∴α-β∈(-π2,π2).∵tan α=1+sin βcos β,∴sin αcos α=1+sin βcos β. 即sin αcos β-cos αsin β=cos α. 化简得sin (α-β)=cos α.∵α∈(0,π2),∴cos α>0,sin (α-β)>0.∴α-β∈(0,π2),得α-β+α=π2,即2α-β=π2,故选C.9.(全国名校·湖北中学联考)4sin80°-cos10°sin10°=( )A. 3 B .- 3 C. 2 D .22-3答案 B 解析4sin80°-cos10°sin10°=4sin80°sin10°-cos10°sin10°=2sin20°-cos10°sin10°=2sin (30°-10°)-cos10°sin10°=- 3.故选B.10.(全国名校·四川自贡一诊)已知cos (α+2π3)=45,-π2<α<0,则sin (α+π3)+sin α=( )A .-435B .-335C.335D.435答案 A 解析 ∵cos (α+2π3)=45,-π2<α<0,∴cos (α+23π)=cos αcos 23π-sin αsin 23π=-12cos α-32sin α=45,∴32sin α+12cos α=-45.∴sin (α+π3)+sin α=32sin α+32cos α=3(32sin α+12cos α)=-435.故选A.11.(全国名校·湖南邵阳二联)若tan π12cos 5π12=sin 5π12-msin π12,则实数m 的值为( )A .2 3B. 3C .2D .3答案 A解析 由tan π12cos 5π12=sin 5π12-msin π12,得sin π12cos 5π12=sin 5π12cos π12-msin π12cos π12,∴12msinπ6=sin(5π12-π12)=sin π3,解得m =2 3. 12.(2013·课标全国Ⅱ,理)设θ为第二象限角,若tan (θ+π4)=12,则sin θ+cos θ=________.答案 -105解析 由tan (θ+π4)=1+tan θ1-tan θ=12,得tan θ=-13,即sin θ=-13cos θ.将其代入sin 2θ+cos 2θ=1,得109cos 2θ=1.因为θ为第二象限角,所以cos θ=-31010,sin θ=1010.所以sin θ+cos θ=-105.13.化简:sin (3α-π)sin α+cos (3α-π)cos α=________.答案 -4cos2α解析 原式=-sin3αsin α+-cos3αcos α=-sin3αcos α+cos3αsin αsin αcos α=-sin4αsin αcos α=-4sin αcos α·cos2αsin αcos α=-4cos2α.14.求值:1sin10°-3sin80°=________.答案 4解析 原式=cos10°-3sin10°sin10°cos10°=2(12cos10°-32sin10°)sin10°cos10°=4(sin30°cos10°-cos30°sin10°)2sin10°cos10°=4sin (30°-10°)sin20°=4.15.已知cos (α+β)cos (α-β)=13,则cos 2α-sin 2β=________.答案 13解析 ∵(cos αcos β-sin αsin β)(cos αcos β+sin αsin β)=13,∴cos 2αcos 2β-sin 2αsin 2β=13.∴cos 2α(1-sin 2β)-(1-cos 2α)sin 2β=13.∴cos 2α-sin 2β=13.16.(全国名校·北京,理)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,则cos (α-β)=________.答案 -79解析 方法一:因为角α与角β的终边关于y 轴对称,所以α+β=2k π+π,k ∈Z ,所以cos (α-β)=cos(2k π+π-2α)=-cos2α=-(1-2sin 2α)=-[1-2×(13)2]=-79.方法二:因为sin α=13>0,所以角α为第一象限角或第二象限角,当角α为第一象限角时,可取其终边上一点(22,1),则cos α=223,又(22,1)关于y 轴对称的点(-22,1)在角β的终边上,所以sin β=13,cos β=-223,此时cos (α-β)=cos αcos β+sin αsin β=223×(-223)+13×13=-79.当角α为第二象限角时,可取其终边上一点(-22,1),则cos α=-223,因为(-22,1)关于y 轴对称的点(22,1)在角β的终边上,所以sin β=13,cosβ=223,此时cos(α-β)=cos αcos β+sin αsin β=(-223)×223+13×13=-79.综上可得,cos (α-β)=-79.17.(全国名校·广东深圳测试)2sin46°-3cos74°cos16°=________.答案 1 解析2sin46°-3cos74°cos16°=2sin (30°+16°)-3sin16°cos16°=cos16°cos16°=1.18.(全国名校·江苏泰州中学摸底)已知0<α<π2<β<π,且sin (α+β)=513,tan α2=12.(1)求cos α的值;(2)证明:sin β>513.答案 (1)35(2)略解析 (1)∵tan α2=12,∴tan α=2tan α21-tan 2α2=2×121-(12)2=43.∴⎩⎪⎨⎪⎧sin αcos α=43,sin 2α+cos 2α=1.又α∈(0,π2),解得cos α=35.(2)证明:由已知得π2<α+β<3π2.∵sin (α+β)=513,∴cos (α+β)=-1213.由(1)可得sin α=45,∴sin β=sin [(α+β)-α]=513×35-(-1213)×45=6365>513.19.(全国名校·江苏南京调研)如图,在平面直角坐标系xOy 中,以x 轴正半轴为始边的锐角α和钝角β的终边分别与单位圆交于点A ,B.若点A 的横坐标是31010,点B 的纵坐标是255.(1)求cos (α-β)的值; (2)求α+β的值. 答案 (1)-55 (2)3π4解析 因为锐角α的终边与单位圆交于A ,且点A 的横坐标是31010,所以由任意角的三角函数的定义可知cos α=31010,从而sin α=1-cos 2α=1010.因为钝角β的终边与单位圆交于点B ,且点B 的纵坐标是255,所以sin β=255,从而cos β=-1-sin 2β=-55.(1)cos (α-β)=cos αcos β+sin αsin β=31010×(-55)+1010×255=-210.(2)sin (α+β)=sin αcos β+cos αcos β=1010×(-55)+31010×255=22. 因为α为锐角,β为钝角,所以α+β∈(π2,3π2),所以α+β=3π4.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中学理科数学小题训练六
一、选择题:
1.设集合A={x|x 2
﹣x ﹣6<0,x ∈R},B={y|y=|x|﹣3,x ∈A},则A ∩B 等于( )
A .{x|0<x <3}
B .{x|﹣1<x <0}
C .{x|﹣2<x <0}
D .{x|﹣3<x <3}
2.命题p :∃x0∈R ,不等式01cos 0
0<-+x e x 成立,则p 的否定为( )
A .∃x0∈R ,不等式01cos 0
0≥-+x e x 成立 B .∀x ∈R ,不等式0
1cos <-+x e x 成立
C .∀x ∈R ,不等式01cos ≥-+x e x 成立
D .∀x ∈R ,不等式01cos >-+x e x 成立
3.在复平面内复数的模为
,则复数z ﹣bi 在复平面上对应
的点在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
4.我国数学史上有一部堪与欧几里得《几何原本》媲美的书,这就是历来被尊为算经之首的《九章算术》,其中卷第五《商功》有一道关于圆柱体的体积试题:今有圆堡,周四丈八尺,高一丈一尺,问积几何?其意思是:含有圆柱形的土筑小城堡,底面周长是4丈8尺,高1丈1尺,问它的体积是多少?若π取3,估算小城堡的体积为( )
A.1998立方尺 B.2012立方尺 C.2112立方尺 D.2324立方尺
5.cos54°+cos66°﹣cos6°=()
A.0 B. C. D.1
6.已知双曲线=1(a>b>0)与两条平行直线l1:y=x+a与l2:y=x﹣a相交所得的平行四边形的面积为6b2.则双曲线的离心率是()
A. B. C. D.2
7.如图,已知在等腰梯形ABCD中,AB=4,AB∥CD,
∠BAD=45°,E,F,G分别是AB,BC,CD的中点,
若在方向上的投影为,则=
()
A.1 B.2 C.3 D.4
8.如图所示,函数离y轴
最近的零点与最大值均在抛物线上,则f (x)=()
A.B.
C.D.
9.某程序框图如图所示,若输出S=,则判断框中M为()
A.k<7? B.k≤6?C.k≤8?D.k<8?
10.已知(a﹣bx)5的展开式中第4项的系数与含x4的系数分别
为﹣80与80,则(a﹣bx)5展开式所有项系数之和为()
A.﹣1 B.1 C.32 D.64
11.如图所示是沿圆锥的两条母线将圆锥削去一部分后所得
几何体的三
视图,其体积为,则圆锥的母线长为()
A.B.C.4 D.
12.已知关于x的方程x2﹣2alnx﹣2ax=0有唯一解,则实数a的值为()
A.1 B.C.D.
二、填空题:
13.已知函数为偶函数,则实数a= .
14.已知F是抛物线y2=4x的焦点,过该抛物线上一点M作准线的垂线,垂足为N,
若,则∠NMF= .
15.已知实数x、y满足,则的取值范围是.
16.如图,已知点D在△ABC的BC边上,且∠DAC=90°,cosC=,AB=6,BD=,
则ADsin∠BAD= .。

相关文档
最新文档