9.1直线与直线的方程
9.1.3直线的点法式方程

A
B
1
v =(v1,v2)
1 x
O
直线的法向量
(1)与一条直线垂直的非 零向量叫做这条直线的法向量。 表示。 通常用 n
n a
O
x y
(2)直线的方向向量与法向量有怎样的关系?
(3)由一个点和直线的一个法向量能否确定 一条直线?
在平面直角坐标系中,求过点P0(x0,y0)
且一个法向量为 n =(A,B)的直线l的方程。
设P(x,y)是直线上任意一点,则点P在l上的 充要条件是
n p0 p 0
用坐标表示为 A(x-x0)+B(y-y0)=0 ① 方程① 是由直线上一点和一个法向量确定的,叫 做直线的点法式方程
例9
求经过点P(1,2) ,且一个法向量为
n (3, 4)
的直线方程.
解:根据直线的点法式方程,得
1.直线的法向量:
如果非零向量 n 所在的直线与直线 l 垂直, 则称 n 为直线 l 的一个法向量.
2、直线的点法式方程
A(x-x0)+B(y-y0)=0
必做题:P 86 第 4 题.
选做题:P 86 第 6 题.
x 1 y 2 ( 3 ) 经过点A(1,-2),一个方向向量为v(-1,3) 1 3
(4)经过点 A(8,– 2),斜率是 -1; y+2=-(x-8)
(5)截距是 2 ,斜率为 1 ; y=x+2
方向向量定义: 与一条直线平行的非零向量叫做这条直线 的方向向量。通常用 v =(v1,v2)表示。
圆
直线
直线 圆
9.1.3直线的点法式方程
问:我们已经学过直线方程的哪三种形式?
高考北师大版数学总复习课件:9.1直线的倾斜角与斜率、直线的方程

1.本单元知识特点: (1)直线与方程、圆与方程是解析几何的基础.圆锥曲线是解 析几何的核心,也是高考重点考查的内容之一. (2)概念、公式较多,用坐标法研究平面几何的思想在解题中 显得内容多、难度大、综合性较强. (3)注重常规题型及常规方法在解决问题中的作用.
2.在复习过程中应特别注意: (1)与直线有关的各种题型解题方法的熟练应用. (2)与圆锥曲线有关的定义、方程、图像、几何性质及应用. (3)重视直线与直线位置关系的灵活应用, 在解决直线与圆锥 曲线有关问题时,注意与“距离”、“中点”、“弦长”相关的 问题的解法.
[答案] D
) B.a-b=1 D.a-b=0
[解析] ∵sinα+cosα=0,∴tanα=-1, a 即- =-1,∴a-b=0. b
4. 经过点 A(1,2), 并且在两个坐标轴上的截距相等的直线有 ( ) A. 1 条 C. 3 条 B.2 条 D. 4 条
[答案] B
[解析] 设直线在 x 轴,y 轴上的截距分别为 a, b,则 a= b 若 a= b= 0,则直线方程为 y= kx ∵直线过 A(1,2),∴ k= 2,∴直线方程为 y= 2x x y 若 a≠ 0, b≠ 0,则直线方程为 + =1 a b 1 2 ∵直线过 A(1,2),则 + =1 a b 若 a= b,则 a= b= 3,∴直线方程为 x+ y-3= 0 ∴满足条件的直线有 2 条,故选 B.
x y + =1 a b
适用范围 不含垂直于坐标轴和过原 点的直线
一般式
Ax+By+C=0 平面直角坐标系内的直线 (A2+B2≠0) 都适用
3.过 P1(x1, y1), P2(x2, y2)的直线方程 (1)若 x1= x2,且 y1≠ y2 时,直线垂直于 x 轴,方程为 x=x1 ; (2)若 x1≠ x2,且 y1= y2 时,直线垂直于 y 轴,方程为 y=y1 ; (3)若 x1= x2= 0,且 y1≠ y2 时,直线即为 y 轴,方程为 x=0 ; (4)若 x1≠ x2,且 y1= y2= 0 时,直线即为 x 轴,方程为 y= 0.
课时作业10:§9.1 直线的方程

§9.1 直线的方程1.直线3x -y +a =0(a 为常数)的倾斜角为( ) A .30° B .60° C .150° D .120°答案 B解析 化直线方程为y =3x +a , ∴k =tan α= 3.∵0°≤α<180°,∴α=60°.2.(2018·北京海淀区模拟)过点(2,1)且倾斜角比直线y =-x -1的倾斜角小π4的直线方程是( )A .x =2B .y =1C .x =1D .y =2 答案 A解析 ∵直线y =-x -1的斜率为-1,则倾斜角为3π4,依题意,所求直线的倾斜角为3π4-π4=π2,∴斜率不存在,∴过点(2,1)的直线方程为x =2.3.若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为( ) A.13 B .-13C .-32D.23答案 B解析 依题意,设点P (a,1),Q (7,b ),则有⎩⎪⎨⎪⎧a +7=2,b +1=-2,解得a =-5,b =-3,从而可知直线l 的斜率为-3-17+5=-13.4.(2017·深圳调研)在同一平面直角坐标系中,直线l 1:ax +y +b =0和直线l 2:bx +y +a =0有可能是( )答案 B解析 当a >0,b >0时,-a <0,-b <0.选项B 符合. 5.如图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则 ( )A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 2 答案 D解析 直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2,故选D.6.已知两点M (2,-3),N (-3,-2),直线l 过点P (1,1)且与线段MN 相交,则直线l 的斜率k 的取值范围是( ) A .k ≥34或k ≤-4B .-4≤k ≤34C.34≤k ≤4 D .-34≤k ≤4答案 A解析 如图所示,∵k PN =1-(-2)1-(-3)=34,k PM =1-(-3)1-2=-4, ∴要使直线l 与线段MN 相交, 当l 的倾斜角小于90°时,k ≥k PN ;当l 的倾斜角大于90°时,k ≤k PM , ∴k ≥34或k ≤-4.7.已知直线l :(a -2)x +(a +1)y +6=0,则直线l 恒过定点__________. 答案 (2,-2)解析 直线l 的方程变形为a (x +y )-2x +y +6=0,由⎩⎪⎨⎪⎧x +y =0,-2x +y +6=0,解得x =2,y =-2, 所以直线l 恒过定点(2,-2).8.若直线l 的斜率为k ,倾斜角为α,而α∈⎣⎡⎭⎫π6,π4∪⎣⎡⎭⎫2π3,π,则k 的取值范围是_____. 答案 [)-3,0∪⎣⎡⎭⎫33,1解析 当π6≤α<π4时,33≤tan α<1,∴33≤k <1;当2π3≤α<π时,-3≤tan α<0,∴-3≤k <0. ∴k ∈[-3,0)∪⎣⎡⎭⎫33,1. 9.已知三角形的三个顶点A (-5,0),B (3,-3),C (0,2),则BC 边上中线所在的直线方程为______.答案 x +13y +5=0解析 BC 的中点坐标为⎝⎛⎭⎫32,-12,∴BC 边上中线所在的直线方程为y -0-12-0=x +532+5,即x +13y +5=0.10.直线l 过点(-2,2)且与x 轴、y 轴分别交于点(a,0),(0,b ),若|a |=|b |,则直线l 的方程为_____.答案 x +y =0或x -y +4=0解析 若a =b =0,则直线l 过(0,0)与(-2,2)两点,直线l 的斜率k =-1,直线l 的方程为y =-x , 即x +y =0.若a ≠0,b ≠0,则直线l 的方程为x a +yb =1,由题意知⎩⎪⎨⎪⎧-2a +2b =1,|a |=|b |,解得⎩⎪⎨⎪⎧a =-4,b =4,此时,直线l 的方程为x -y +4=0.11.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程: (1)过定点A (-3,4); (2)斜率为16.解 (1)由题意知,直线l 存在斜率. 设直线l 的方程为y =k (x +3)+4,它在x 轴、y 轴上的截距分别为-4k -3,3k +4,由已知,得(3k +4)⎝⎛⎭⎫4k +3=±6, 解得k 1=-23或k 2=-83.故直线l 的方程为2x +3y -6=0或8x +3y +12=0.(2)设直线l 在y 轴上的截距为b ,则直线l 的方程是y =16x +b ,则它在x 轴上的截距是-6b ,由已知,得|-6b ·b |=6,∴b =±1.∴直线l 的方程为x -6y +6=0或x -6y -6=0.12.如图,射线OA ,OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)作直线AB 分别交OA ,OB 于A ,B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的方程.解 由题意可得k OA =tan 45°=1, k OB =tan(180°-30°)=-33, 所以直线l OA :y =x ,l OB :y =-33x . 设A (m ,m ),B (-3n ,n ), 所以AB 的中点C ⎝⎛⎭⎪⎫m -3n 2,m +n 2,由点C 在直线y =12x 上,且A ,P ,B 三点共线得⎩⎪⎨⎪⎧m +n 2=12·m -3n 2,m -0m -1=n -0-3n -1,解得m =3,所以A (3,3). 又P (1,0),所以k AB =k AP =33-1=3+32,所以l AB :y =3+32(x -1),即直线AB 的方程为(3+3)x -2y -3-3=0.13.已知直线l 过点(1,0),且倾斜角为直线l 0:x -2y -2=0的倾斜角的2倍,则直线l 的方程为( ) A .4x -3y -3=0 B .3x -4y -3=0 C .3x -4y -4=0 D .4x -3y -4=0答案 D解析 由题意可设直线l 0,l 的倾斜角分别为α,2α, 因为直线l 0:x -2y -2=0的斜率为12,则tan α=12,所以直线l 的斜率k =tan 2α=2tan α1-tan 2α=2×121-⎝⎛⎭⎫122=43,所以由点斜式可得直线l 的方程为y -0=43(x -1),即4x -3y -4=0. 14.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,则b 的取值范围是________. 答案 [-2,2]解析 b 为直线y =-2x +b 在y 轴上的截距,如图,当直线y =-2x +b 过点A (-1,0)和点B (1,0)时,b 分别取得最小值-2和最大值2. ∴b 的取值范围是[-2,2].15.(2017·豫南九校联考)若θ是直线l 的倾斜角,且sin θ+cos θ=55,则l 的斜率为( ) A .-12B .-12或-2C.12或2 D .-2答案 D解析 ∵sin θ+cos θ=55,① ∴(sin θ+cos θ)2=1+sin 2θ=15,∴2sin θcos θ=-45,∴(sin θ-cos θ)2=95,易知sin θ>0,cos θ<0, ∴sin θ-cos θ=355,②由①②解得⎩⎨⎧sin θ=255,cos θ=-55,∴tan θ=-2,即l 的斜率为-2,故选D.16.(2017·福建四地六校联考)已知函数f (x )=a sin x -b cos x (a ≠0,b ≠0),若f ⎝⎛⎭⎫π4-x =f ⎝⎛⎭⎫π4+x ,则直线ax -by +c =0的倾斜角为( ) A.π4 B.π3 C.2π3 D.3π4答案 D解析 由f ⎝⎛⎭⎫π4-x =f ⎝⎛⎭⎫π4+x 知,函数f (x )的图象关于x =π4对称,所以f (0)=f ⎝⎛⎭⎫π2,所以a =-b ,则直线ax -by +c =0的斜率为k =ab =-1,又直线倾斜角的取值范围为[0,π),所以该直线的倾斜角为3π4,故选D.。
直线与方程教案

公开课教案高考第一轮复习——§9.1直线与方程林秋林 2012.12.14一.考纲要求(教学目标):1、在平面直角坐标系中,结合具体图形,确定直线位置的几何要素。
2、理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式。
3、能根据两条直线的斜率判定这两条直线平行或垂直。
4、掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系。
5、能用解方程组的方法求两条相交直线的交点坐标。
6、掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。
二.教学重点:1、理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式。
2、掌握直线方程的几种形式,掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。
教学难点:化归与转化思想,函数与方程思想,数形结合思想等数学思想方法。
三.教学内容:(一)近几年福建高考数学解析几何题回顾:(09理题13)过抛物线22(0)y px p =>的焦点F 作倾斜角为45的直线交抛物线于A 、B 两点,若线段AB 的长为8,则p =________________ 。
(09理题19)已知A,B 分别为曲线C : 22x a+2y =1(y ≥0,a>0)与x 轴的左、右两个交点,直线l 过点B,且与x 轴垂直,S 为l 上 异于点B 的一点,连结AS 交曲线C 于点T.(1)若曲线C 为半圆,点T 为圆弧AB 的三等分点,试求出点S 的坐标;(II )如图,点M 是以SB 为直径的圆与线段TB 的交点,试问:是否存在a ,使得O,M,S 三点共线?若存在,求出a 的值,若不存在,请说明理由。
(10理题2)以抛物线24y x =的焦点为圆心,且过坐标原点的圆的方程为( )A.22x +y +2x=0 B. 22x +y +x=0 C. 22x +y -x=0 D. 22x +y -2x=0(10理题7)若点O 和点(2,0)F -分别是双曲线2221(a>0)ax y -=的中心和左焦点,点P 为双曲线右支上的任意一点,则OP FP ⋅的取值范围为 ( )A. [3-23,)+∞B. [323,)++∞C. 7[-,)4+∞D. 7[,)4+∞(10理题8)设不等式组x 1x-2y+30y x ≥⎧⎪≥⎨⎪≥⎩所表示的平面区域是1Ω,平面区域是2Ω与1Ω关于直线3490x y --=对称,对于1Ω中的任意一点A 与2Ω中的任意一点B, ||AB 的最小值等于( ) A.285B.4C. 125D.2(10理题17)已知中心在坐标原点O 的椭圆C 经过点A (2,3),且点F (2,0)为其右焦点。
2019年高三一轮复习热点题型9.1直线的方程

已知平面直角坐标系中的两点 A(x 1,y 1),B(x 2,y 2),点 M (x ,y)是线段 AB 的中点,则 x = 1 y +y 2 y = 1 (2)计算公式:若由 A(x 1,y 1),B(x 2,y 2)确定的直线不垂直于 x 轴,则 k = 2直线的倾斜角为 θ (θ≠ ),则 k =tan_θ.§9.1 直线的方程1.平面直角坐标系中的基本公式(1)两点的距离公式:已知平面直角坐标系中的两点 A(x 1,y 1),B(x 2,y 2),则 d (A ,B)=|AB|= (x 2-x 1)2+(y 2-y 1)2. (2)中点公式:x +x 2 2,2 .2.直线的倾斜角(1)定义:x 轴正向与直线向上的方向所成的角叫做这条直线的倾斜角,我们规定,与x 轴平行或重合的直线的倾斜角为零度角.(2)倾斜角的范围:[0°,180°). 3.直线的斜率(1)定义:通常,我们把直线 y =kx +b 中的系数 k 叫做这条直线的斜率,垂直于 x 轴的直线,人们常说它的斜率不存在;y -y 1x 2-x 1π24.直线方程的五种形式名称 方程 适用范围(x 1≠x 2).若y-y1x-x1y2-y1x2-x1+=1(5)不经过原点的直线都可以用+=1表示.(×)y P y解析由已知得直线Ax+By+C=0在x轴上的截距->0,在y轴上的截距->0,故直点斜式斜截式两点式截距式y-y=k(x-x)y=kx+b=x ya b不含直线x=x0不含垂直于x轴的直线不含直线x=x1(x1≠x2)和直线y=y1(y1≠y2)不含垂直于坐标轴和过原点的直线Ax+By+C=0一般式平面直角坐标系内的直线都适用(A2+B2≠0)【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)根据直线的倾斜角的大小不能确定直线的位置.(√)(2)直线的倾斜角越大,其斜率就越大.(×)(3)斜率相等的两直线的倾斜角不一定相等.(×)(4)经过定点A(0,b)的直线都可以用方程y=kx+b表示.(×)x ya b(6)经过任意两个不同的点P1(x1,1),2(x2,2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示.(√)1.直线3x-y+a=0的倾斜角为()A.30°C.150°B.60°D.120°答案B解析化直线方程为y=3x+a,∴k=tanα= 3.∵0°≤α<180°,∴α=60°.2.如果A·C<0,且B·C<0,那么直线Ax+By+C=0不通过()A.第一象限C.第三象限B.第二象限D.第四象限答案CC CA B线经过一、二、四象限,不经过第三象限.当截距不为0时,设直线方程为+=1,则+=1,解得a=5,m-12答案⎣0,4⎦∪⎝2,π⎭又∵α∈[0,π),∴α∈⎣0,4⎦∪⎝2,π⎭.例1(1)直线2xcosα-y-3=0⎝α∈⎣6,3⎦⎭的倾斜角的取值范围是(A.⎣6,3⎦B.⎣4,3⎦C.⎣4,2⎦D.⎣4,3⎦3.过点P(2,3)且在两坐标轴上截距相等的直线方程为__________________.答案3x-2y=0或x+y-5=0解析当截距为0时,直线方程为3x-2y=0;x ya a23a a所以直线方程为x+y-5=0.综上,直线方程为3x-2y=0或x+y-5=0.4.(教材改编)若过点A(m,4)与点B(1,m)的直线与直线x-2y+4=0平行,则m的值为________.答案34-m1解析=,∴m=3.5.直线l经过A(2,1),B(1,m2)(m∈R)两点,则直线l的倾斜角的取值范围为____________.⎡π⎤⎛π⎫m2-1解析直线l的斜率k==1-m2≤1.1-2若l的倾斜角为α,则tanα≤1.⎡π⎤⎛π⎫题型一直线的倾斜角与斜率⎛⎡ππ⎤⎫)⎡ππ⎤⎡ππ⎤⎡ππ⎤⎡π2π⎤(2)直线l过点P(1,0),且与以A(2,1),B(0,3)为端点的线段有公共点,则直线l斜率的取因为 α∈⎣6,3⎦,所以 ≤cos α≤ 2 2 则有 tan θ∈[1, 3 ].又 θ∈[0,π),所以 θ∈⎣4,3⎦, 即倾斜角的取值范围是⎣4,3⎦.(2)如图,∵k AP ==1, k BP = =- 3,1-02-(-1) 3 k BP = = 3.如图可知,直线 l 斜率的取值范围为⎣3, 3⎦.值范围为__________________.答案 (1)B (2)(-∞,- 3]∪[1,+∞)解析 (1)直线 2xcos α-y -3=0 的斜率 k =2cos α,⎡π π⎤ 1 3 ,因此 k =2·cos α∈[1, 3 ].设直线的倾斜角为 θ,⎡π π⎤⎡π π⎤1-02-13-00-1∴k ∈(-∞,- 3 ]∪[1,+∞).引申探究1.若将本例(2)中 P(1,0)改为 P(-1,0),其他条件不变,求直线 l 斜率的取值范围.解 ∵P(-1,0),A(2,1),B(0, 3),∴k AP = 1= ,3-00-(-1)⎡1 ⎤2.将本例(2)中的 B 点坐标改为 B(2,-1),求直线 l 倾斜角的范围.解 如图:直线 PA 的倾斜角为 45°, 直线 PB 的倾斜角为 135°,由图象知 l 的倾斜角的范围为[0°,45°]∪[135°,180°).率求倾斜角的范围时,要分⎣0,2⎭与⎝2,π⎭两种情况讨论.由正切函数图象可以看出,当α∈⎡⎣0,2⎫⎭时,斜率k∈[0,+∞);当α=时,斜率不存在;当α∈⎛⎝2,π⎫⎭时,斜率k∈(-A.⎣6,2⎭∪⎝2,6⎦B.⎣0,6⎦∪⎣6,π⎭C.⎣0,6⎦D.⎣6,6⎦(2)已知实数x,y满足2x+y=8,当2≤x≤3时,则的最大值为________;最小值为________.∵-1≤cosα≤1,∴-3≤k≤.≤tanθ≤.结合正切函数在⎣0,2⎭∪⎝2,π⎭上的图象可知,0≤θ≤或≤θ<π.(2)本题可先作出函数y=8-2x(2≤x≤3)的图象,把看成过点(x,y)和y)在线段AB上移动,并且A,B两点的坐标分别是(2,4),(3,2).因为的几何意义是直线OP y y(1)直线过点(-4,0),倾斜角的正弦值为10思维升华直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此根据斜⎡π⎫⎛π⎫πππ2∞,0).(1)直线xcosα+3y+2=0的倾斜角的范围是()⎡ππ⎫⎛π5π⎤⎡π⎤⎡5π⎫⎡5π⎤⎡π5π⎤yx答案(1)B(2)22 3解析(1)由xcosα+3y+2=0得直线斜率k=-33cosα.3 33设直线的倾斜角为θ,则-33 33⎡π⎫⎛π⎫π5π66yx原点的直线的斜率进行求解.如图,设点P(x,),因为x,满足2x+y=8,且2≤x≤3,所以点P(x,yx2y2的斜率,且k OA=2,k OB=3,所以x的最大值为2,最小值为3.题型二求直线的方程例2根据所给条件求直线的方程:10;故所求直线方程为 y =± (x +4).a 12-a-3 12-a |10-5k| k 2+1 设倾斜角为 α,则 sin α= 10(0<α<π),从而 cos α=±,则 k =tan α=± .从而 +=1,解得 a =-4 或 a =9.由点线距离公式,得 =5,解得 k = ..(2)直线过点(-3,4),且在两坐标轴上的截距之和为 12;(3)直线过点(5,10),且到原点的距离为 5.解 (1)由题设知,该直线的斜率存在,故可采用点斜式.103 10 110 313即 x +3y +4=0 或 x -3y +4=0.x y(2)由题设知截距不为 0,设直线方程为 + =1, 又直线过点(-3,4),4 a故所求直线方程为 4x -y +16=0 或 x +3y -9=0.(3)当斜率不存在时,所求直线方程为 x -5=0; 当斜率存在时,设其为 k ,则所求直线方程为 y -10=k(x -5), 即 kx -y +(10-5k)=0.34故所求直线方程为 3x -4y +25=0.综上知,所求直线方程为 x -5=0 或 3x -4y +25=0.思维升华 在求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件. 用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距 式不能表示与坐标轴垂直或经过原点的直线.故在解题时,若采用截距式,应注意分类讨论, 判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况求适合下列条件的直线方程:∴l 的方程为 y = x ,即 x -4y =0.若 a ≠0,则设 l 的方程为 + =1,∴ + =1,因此所求直线方程为 y +3=- (x +1),解 方法一 设直线方程为 + =1 (a >0,b >0),点 P(3,2)代入得 + =1≥2∴tan 2α= 2tan α ab ,得 ab ≥24,(1)经过点 P(4,1),且在两坐标轴上的截距相等;(2)经过点 A(-1,-3),倾斜角等于直线 y =3x 的倾斜角的 2 倍.解 (1)设直线 l 在 x ,y 轴上的截距均为 a.若 a =0,即 l 过点(0,0)及(4,1),14x ya a∵l 过点(4,1),4 1a a∴a =5,∴l 的方程为 x +y -5=0.综上可知,直线 l 的方程为 x -4y =0 或 x +y -5=0. (2)由已知:设直线 y =3x 的倾斜角为 α, 则所求直线的倾斜角为 2α. ∵tan α=3,31-tan 2 α=-4.又直线经过点 A(-1,-3),34即 3x +4y +15=0.题型三 直线方程的综合应用命题点 1 与均值不等式相结合求最值问题例 3 已知直线 l 过点 P(3,2),且与 x 轴、y 轴的正半轴分别交于 A 、B 两点,如图所示,求△ABO 的面积的最小值及此时直线 l 的方程.x ya b3 26a b⎛⎫ ∴△S ABO = (2-3k)⎝3-k ⎭2 ⎢ ⎥⎢ = ×(12+12)=12.当且仅当-9k = ,即 k =- 时,等号成立.-k+2,所以四边形的面积 S = ×2×(2-a)+ ×2×(a 2+2)=a 2-a +4=⎝a -2⎭2+ .1 32 b 2从而 △S AOB =2ab ≥12,当且仅当a =b 时等号成立,这时 k =-a =-3,从而所求直线方程为2x +3y -12=0.方法二 依题意知,直线 l 的斜率 k 存在且 k<0. 则直线 l 的方程为 y -2=k(x -3) (k<0),2 且有 A ⎝3-k ,0⎭,B(0,2-3k),1 ⎛ 2⎫=1⎡12+(-9k )+ 4 ⎤2⎣ (-k )⎦≥1⎡12+22⎣4 ⎤(-9k )· ⎥(-k )⎦1 242 3△即 ABO 的面积的最小值为 12.故所求直线的方程为 2x +3y -12=0.命题点 2 由直线方程解决参数问题例 4 已知直线 l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当 0<a <2 时,直线 l 1,l 2 与两 坐标轴围成一个四边形,当四边形的面积最小时,求实数 a 的值.解 由题意知直线 l 1,l 2 恒过定点 P(2,2),直线 l 1 的纵截距为 2-a ,直线 l 2 的横截距为 a 2221 1 ⎛ 1⎫ 15 4,当 a =12时,面积最小.思维升华 与直线方程有关问题的常见类型及解题策略(1)求解与直线方程有关的最值问题,先设出直线方程,建立目标函数,再利用均值不等式 求解最值.(2)求直线方程.弄清确定直线的两个条件,由直线方程的几种特殊形式直接写出方程(3)求参数值或范围.注意点在直线上,则点的坐标适合直线的方程,再结合函数的单调性或答案(1)5 (2)-∴|P A |·|PB|≤ = =5,当且仅当|P A|=|PB|时,上式等号成立.=- .均值不等式求解.(1)(2014·四川)设 m ∈R ,过定点 A 的动直线 x +my =0 和过定点 B 的动直线 mx-y -m +3=0 交于点 P(x ,y),则|P A |·|PB|的最大值是________.(2)(2015· 安徽)在平面直角坐标系 xOy 中,若直线 y =2a 与函数 y =|x -a|-1 的图象只有一个交点,则 a 的值为________.12解析 (1)∵直线 x +my =0 与 mx -y -m +3=0 分别过定点 A ,B ,∴A(0,0),B(1,3).当点 P 与点 A(或 B)重合时,|P A |·|PB|为零; 当点 P 与点 A ,B 均不重合时,∵P 为直线 x +my =0 与 mx -y -m +3=0 的交点, 且易知此两直线垂直, ∴△APB 为直角三角形, ∴|AP|2+|BP|2=|AB|2=10,|P A|2+|PB|2 102 2(2)∵|x -a|≥0 恒成立,∴要使 y =2a 与 y =|x -a|-1 只有一个交点,必有 2a =-1,解得 a1213.求直线方程忽视零截距致误典例 (12 分)设直线 l 的方程为(a +1)x +y +2-a =0 (a ∈R). (1)若 l 在两坐标轴上截距相等,求 l 的方程; (2)若 l 不经过第二象限,求实数 a 的取值范围.易错分析 本题易错点求直线方程时,漏掉直线过原点的情况.规范解答⎪⎪⎩⎩.解(1)当直线过原点时,该直线在x轴和y轴上的截距为零,∴a=2,方程即为3x+y=0.[2分]当直线不经过原点时,截距存在且均不为0.a-2∴=a-2,即a+1=1.[4分]a+1∴a=0,方程即为x+y+2=0.综上,l的方程为3x+y=0或x+y+2=0.[6分](2)将l的方程化为y=-(a+1)x+a-2,⎧-(a+1)>0,⎧-(a+1)=0,∴⎨或⎨⎪a-2≤0⎪a-2≤0,∴a≤-1.[10分]综上可知a的取值范围是a≤-1.[12分]温馨提醒(1)在求与截距有关的直线方程时,注意对直线的截距是否为零进行分类讨论,防止忽视截距为零的情形,导致产生漏解.(2)常见的与截距问题有关的易误点有:“截距互为相反数”;“一截距是另一截距的几倍”等,解决此类问题时,要先考虑零截距情形,注意分类讨论思想的运用[方法与技巧]直线的倾斜角和斜率的关系:(1)任何直线都存在倾斜角,但并不是任意直线都存在斜率.(2)直线的倾斜角α和斜率k之间的对应关系:αk0°0°<α<90°k>090°不存在90°<α<180°k<0[失误与防范]与直线方程的适用条件、截距、斜率有关问题的注意点:(1)明确直线方程各种形式的适用条件点斜式、斜截式方程适用于不垂直于x轴的直线;两点式方程不能表示垂直于x、y轴的直线;截距式方程不能表示垂直于坐标轴和过原点的直线.(2)截距不是距离,距离是非负值,而截距可正可负,可为零,在与截距有关的问题中,要注意讨论截距是否为零.(3)求直线方程时,若不能断定直线是否具有斜率时,应注意分类讨论,即应对斜率是否存在加以讨论.A.m ≠- A.⎝0,3⎦B.⎣3,2⎭C.⎝2, 3 ⎦D.⎣3,π⎭ 切线的倾斜角的取值范围是⎣3,2⎭.A 组 专项基础训练(时间:35 分钟)1.若方程(2m 2+m -3)x +(m 2-m )y -4m +1=0 表示一条直线,则参数 m 满足的条件是()32C.m ≠0 且 m ≠1B.m ≠0D.m ≠1答案 D⎧⎪2m 2+m -3=0,解析 由⎨解得 m =1,⎪⎩m 2-m =0,故 m ≠1 时方程表示一条直线.2.(2015· 山东枣庄第八中学第二次阶段性检测)如果 f ′(x)是二次函数,且 f ′(x)的图象开口向上,顶点坐标为(1, 3),那么曲线 y =f(x)上任一点的切线的倾斜角的取值范围是()⎛ π⎤⎛π 2π⎤ ⎡π π⎫⎡π ⎫答案 B解析 f ′(x)=a(x -1)2+ 3 (a>0),∴k ≥ 3.⎡π π⎫3.如图中的直线 l 1,l 2,l 3 的斜率分别为 k 1,k 2,k 3,则 ( )A.k 1<k 2<k 3B.k 3<k 1<k 2C.k 3<k 2<k 1D.k 1<k 3<k 2 答案 D解析 直线 l 1 的倾斜角 α1 是钝角,故 k 1<0,直线 l 2 与 l 3 的倾斜角 α2 与 α3 均为锐角,且 α2>α3,所以 0<k 3<k 2,因此 k 1<k 3<k 2,故选 D.4.设直线 ax +by +c =0 的倾斜角为 α,且 sin α+cos α=0,则 a ,b 满足 ( )A.a +b =1B.a -b =1解析 由 sin α+cos α=0,得 =-1,即 tan α=-1.又因为 tan α=- ,所以- =-1.6.若直线 l 的斜率为 k ,倾斜角为 α,而 α∈⎣6,4⎭∪⎣ 3 ,π⎭,则 k 的取值范围是__________. 答案[- 3,0)∪⎣ 3 ,1⎭ 解析 当 ≤α< 时, ≤tan α<1,∴ 3≤k<1.当 ≤α<π 时,- 3≤tan α<0.∴k ∈⎣ 3,1⎭∪[- 3,0). 解析 设所求直线的方程为 + =1.a b ①2②C.a +b =0D.a -b =0答案 Dsin αcos αa ab b即 a =b ,故应选 D.5.已知直线 PQ 的斜率为- 3,将直线绕点 P 顺时针旋转 60°所得的直线的斜率为( )A. 3C.0 B.- 3D.1+ 3答案 A解析 直线 PQ 的斜率为- 3,则直线 PQ 的倾斜角为 120°,所求直线的倾斜角为 60°,tan60°= 3.⎡π π⎫ ⎡2π ⎫⎡ 3 ⎫π π 36 4 332π3 ⎡ 3 ⎫7.一条直线经过点 A(-2,2),并且与两坐标轴围成的三角形的面积为 1,则此直线的方程为________________________________________________________________________. 答案 x +2y -2=0 或 2x +y +2=0x ya b∵A(-2,2)在此直线上,2 2 ∴- + =1.又∵直线与坐标轴围成的三角形面积为 1,1 ∴ |a |·|b |=1.故所求的直线方程为 + =1 或 + =1,-1 -2-2 解析 根据 A(a,0)、B(0,b )确定直线的方程为 + =1,又 C(-2,-2)在该直线上,故+ =1,⎪ ⎪ ⎩ ⎩ ⎪ ⎪ ⎩ ⎩ 解得 m =- .⎧a -b =1, ⎧a -b =-1,由①②可得(1)⎨ 或(2)⎨⎪ab =2 ⎪ab =-2.⎧a =2, ⎧a =-1,由(1)解得⎨ 或⎨ 方程组(2)无解.⎪b =1 ⎪b =-2,x y x y2 1即 x +2y -2=0 或 2x +y +2=0 为所求直线的方程.8.若 ab >0,且 A(a,0)、B(0,b )、C(-2,-2)三点共线,则 ab 的最小值为________.答案 16x ya b a-2b所以-2(a +b )=ab.又 ab >0,故 a <0,b <0.根据均值不等式 ab =-2(a +b )≥4 ab ,从而 ab ≤0(舍去)或 ab ≥4,故 ab ≥16,当且仅当 a =b =-4 时取等号.即 ab 的最小值为 16.9.设直线 l :(m 2-2m -3)x +(2m 2+m -1)y -2m +6=0 (m ≠-1),根据下列条件分别确定 m的值:(1)直线 l 在 x 轴上的截距为-3; (2)直线 l 的斜率为 1.解 (1)∵l 在 x 轴上的截距为-3,∴-2m +6≠0,即 m ≠3,又 m ≠-1, ∴m 2-2m -3≠0.2m -6令 y =0,得 x = ,m 2-2m -3由题意知, m 2m-6 =-3,2-2m -353(2)由题意知 2m 2+m -1≠0,m 2-2m -3 且- =1,解得 m = .2m 2+m -1解得 k = .所以 k l =- =2.4 310.已知点 P(2,-1).(1)求过点 P 且与原点的距离为 2 的直线 l 的方程;(2)求过点 P 且与原点的距离最大的直线 l 的方程,最大距离是多少?(3)是否存在过点 P 且与原点的距离为 6 的直线?若存在,求出方程;若不存在,请说明理由.解 (1)过点 P 的直线 l 与原点的距离为 2,而点 P 的坐标为(2,-1),显然,过点 P(2,-1)且垂直于 x 轴的直线满足条件, 此时 l 的斜率不存在,其方程为 x =2.若斜率存在,设 l 的方程为 y +1=k(x -2), 即 kx -y -2k -1=0.|-2k -1|由已知得 =2,k 2+134此时 l 的方程为 3x -4y -10=0.综上,可得直线 l 的方程为 x =2 或 3x -4y -10=0.(2)作图可得过点 P 与原点 O 的距离最大的直线是过点 P 且与 PO 垂直的直线,如图所示.由 l ⊥OP ,得 k l k OP =-1,1 kOP由直线方程的点斜式,得 y +1=2(x -2),即 2x -y -5=0.∴a+b=ab,即+=1,∴a+b=(a+b)⎝a+b⎭=2++≥2+2ba=4,解析直线AB的方程为+=1,∵动点P(x,y)在直线AB上,则x=3-y,∴xy=3y-y2=(-y2+4y)=[-y-22+4]≤3.即当P点坐标为⎝2,2⎭时,xy取最大值3.|-5|所以直线2x-y-5=0是过点P且与原点O的距离最大的直线,最大距离为= 5.5(3)由(2)可知,过点P不存在到原点的距离超过5的直线,因此不存在过点P且到原点的距离为6的直线.B组专项能力提升(时间:25分钟)11.若直线ax+b y=ab(a>0,b>0)过点(1,1),则该直线在x轴,y轴上的截距之和的最小值为()A.1 C.4B.2 D.8答案C解析∵直线ax+by=ab(a>0,b>0)过点(1,1),11a b⎛11⎫b aa bab当且仅当a=b=2时上式等号成立.∴直线在x轴,y轴上的截距之和的最小值为4.12.已知A(3,0),B(0,4),直线AB上一动点P(x,y),则xy的最大值是________.答案3x y3434334434⎛3⎫13.设点A(-1,0),B(1,0),直线2x+y-b=0与线段AB相交,则b的取值范围是________.答案[-2,2]直线y=x上时,求直线AB的方程.3⎝2,2⎭由点C在y=x上,且A、P、B三点共线得3+3213n所以l AB:y=(x-1),解析b为直线y=-2x+b在y轴上的截距,如图,当直线y=-2x+b过点A(-1,0)和点B(1,0)时,b分别取得最小值和最大值.∴b的取值范围是[-2,2].14.如图,射线OA、OB分别与x轴正半轴成45°和30°角,过点P(1,0)作直线AB分别交OA、OB于A、B两点,当AB的中点C恰好落在12解由题意可得k OA=tan45°=1,k OB=tan(180°-30°)=-3所以直线l OA:y=x,l OB:y=-x.设A(m,m),B(-3n,n),⎛m-3n m+n⎫所以AB的中点C ⎪,12⎧m+n=1·m-3n,⎨222解得m=3,所以A(3,3).⎩m-0=-n--1,3又P(1,0),所以k AB=k AP==,3-133,3+32即直线AB的方程为(3+3)x-2y-3-3=0.15.已知直线l:kx-y+1+2k=0(k∈R).(1)证明:直线l过定点;(2)若直线不经过第四象限,求k的取值范围;(3)若直线l交x轴负半轴于A,交y轴正半轴于△B,AOB的面积为S(O为坐标原点),求S 的最小值并求此时直线l的方程.(1)证明直线l的方程是k(x+2)+(1-y)=0,(2)解 由方程知,当 k ≠0 时直线在 x 轴上的截距为- ,在 y 轴上的截距为 1+2k ,要⎪ ⎪ ⎩ ⎩ ,0⎪⎭,B(0,1+2k). (3)解 由 l 的方程,得 A - 依题意得⎨k<0,∵S = ·|OA |·|OB|= · ⎪ ⎪·|1+2k|k = ⎝4k +k +4⎭≥ ×(2×2+4)= · “=”成立的条件是 k >0 且 4k = ,即 k = ,=⎧x +2=0, ⎧x =-2, 令⎨ 解得⎨⎪1-y =0, ⎪y =1,∴无论 k 取何值,直线总经过定点(-2,1).1+2kk⎧1+2k使直线不经过第四象限,则必须有⎨- k ≤-2,⎩1+2k ≥1,当 k =0 时,直线为 y =1,符合题意,故 k ≥0.⎛ 1+2k ⎫ ⎝ k⎧1+2k-⎩1+2k >0,解得 k>0.1 1 ⎪1+2k ⎪2 2 ⎪ k ⎪1 (1+2k )2 1⎛1 ⎫ 12 2 2=4,1 1 k 2∴S min 4,此时直线 l 的方程为 x -2y +4=0.解得 k >0;。
直线与方程知识点归纳总结

第三章 直线与方程1、直线的倾斜角与斜率(1)直线的倾斜角① 关于倾斜角的概念要抓住三点:ⅰ.与x 轴相交; ⅱ.x 轴正向; ⅲ.直线向上方向.② 直线与x 轴平行或重合时,规定它的倾斜角为00.③ 倾斜角α的范围000180α≤<.④ 0,900≥︒≤︒k α; 0,18090 k ︒︒α(2)直线的斜率①直线的斜率就是直线倾斜角的正切值,而倾斜角为090的直线斜率不存在。
②经过两点),(),,(222111y x P y x P (21x x ≠)的直线的斜率公式是1212x x y y k --=(21x x ≠)③每条直线都有倾斜角,但并不是每条直线都有斜率。
2、两条直线平行与垂直的判定(1)两条直线平行对于两条不重合的直线12,l l ,其斜率分别为12,k k ,则有1212//l l k k ⇔=。
特别地,当直线12,l l 的斜率都不存在时,12l l 与的关系为平行。
(2)两条直线垂直如果两条直线12,l l 斜率存在,设为12,k k ,则12121l l k k ⊥⇔=-注:两条直线12,l l 垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1。
如果12,l l 中有一条直线的斜率不存在,另一条直线的斜率为0时,12l l 与互相垂直。
二、直线的方程1、直线方程的几种形式 名称 方程的形式 已知条件 局限性点斜式 )(11x x k y y -=- ),(11y x 为直线上一定点,k 为斜率不包括垂直于x 轴的直线 斜截式 b kx y += k 为斜率,b 是直线在y 轴上的截距 不包括垂直于x 轴的直线两点式 121121x x x x y y y y --=--),(2121y y x x ≠≠其中),(),,(2211y x y x 是直线上两定点 不包括垂直于x 轴和y 轴的直线截距式 1=+b y a x a 是直线在x 轴上的非零截距,b 是直线在y 轴上的非零截距 不包括垂直于x 轴和y 轴或过原点的直线一般式 0=++C By Ax )不同时为其中0,(B A A ,B ,C 为系数无限制,可表示任何位置的直线 注:过两点),(),,(222111y x P y x P 的直线是否一定可用两点式方程表示?(不一定。
高考数学专题《直线与直线方程》习题含答案解析

专题9.1 直线与直线方程1.(福建高考真题(文))“a=1”是“直线x+y =0和直线x-ay =0互相垂直”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 【答案】C 【解析】直线x +y =0和直线x −ay =0互相垂直的充要条件是1×(−a)+1×1=0,即a =1,故选C2.(2020·肥东县综合高中月考(文))点(),P x y 在直线40x y +-=上,O 是坐标原点,则OP 的最小值是( ) A BC .D 【答案】C 【解析】原点到直线40x y +-===故选C. 3.【多选题】(2021·全国高二课时练习)(多选)已知直线:1l y =-,则直线l ( ). A .过点)2-B C .倾斜角为60° D .在y 轴上的截距为1【答案】BC 【分析】根据直线斜截式方程的定义,依次判断,即得解 【详解】 点)2-的坐标不满足方程1y =-,故A 错误;根据斜截式的定义,直线l 的斜率tan k θ=60°,故B ,C 正确; 由1y =-,知直线l 在y 轴上的截距为1-,故D 错误. 故选:BC4.【多选题】(2021·全国高二课时练习)(多选)已知直线:10l x my m -+-=,则下列说法正确的是( ). A .直线l 的斜率可以等于0练基础B .若直线l 与y 轴的夹角为30°,则m =或m =C .直线l 恒过点()2,1D .若直线l 在两坐标轴上的截距相等,则1m =或1m =- 【答案】BD 【分析】讨论0m =和0m ≠时直线的斜率和截距情况,判断AD 的正误;利用倾斜角和斜率的关系判断B 的正误;将方程化为()()110x m y ---=判断直线过定点,判断C 的正误. 【详解】当0m =时,直线:1l x =,斜率不存在, 当0m ≠时,直线l 的斜率为1m,不可能等于0,故A 选项错误; ∵直线l 与y 轴的夹角角为30°,∴直线l 的倾斜角为60°或120°,而直线l 的斜率为1m,∴1tan 60m =︒=1tan120m =︒=m 或m =B 选项正确; 直线l 的方程可化为()()110x m y ---=,所以直线l 过定点()1,1,故C 选项错误; 当0m =时,直线:1l x =,在y 轴上的截距不存在, 当0m ≠时,令0x =,得1m y m-=,令0y =,得1x m =-, 令11m m m-=-,得1m =±,故D 选项正确. 故选:BD .5.【多选题】(2021·全国高二课时练习)(多选)已知直线l 的方程为20ax by +-=,则下列判断正确的是( ).A .若0ab >,则直线l 的斜率小于0B .若0b =,0a ≠,则直线l 的倾斜角为90°C .直线l 可能经过坐标原点D .若0a =,0b ≠,则直线l 的倾斜角为0° 【答案】ABD 【分析】根据直线方程与斜率,倾斜角的关系,依次讨论各选项即可得答案. 【详解】对于A 选项,若0ab >,则直线l 的斜率0ab-<,A 正确; 对于B 选项,若0b =,0a ≠,则直线l 的方程为2x a=,其倾斜角为90°,B 正确; 对于C 选项,将()0,0代入20ax by +-=中,显然不成立,C 错误; 对于D 选项,若0a =,0b ≠,则直线l 的方程为2y b=,其倾斜角为0°,D 正确. 故选:ABD .6.(2021·全国高二课时练习)直线3240x y +-=的斜率为______,在x 轴上的截距为______. 【答案】32- 43【分析】将直线转化为斜截式即可得出斜率,令0y =可求出在x 轴上的截距. 【详解】由3240x y +-=,可得322y x =-+,故该直线的斜率32k =-.令0y =,得43x =,所以该直线在x 轴上的截距为43. 故答案为:32-;43.7.(2021·全国)已知直线1:1l y x =+,将直线1l 绕点()1,2按逆时针方向旋转45︒后,所得直线2l 的方程为_______,将直线1l 绕点()1,2按顺时针方向旋转45°后,所得直线3l 的方程为_______.【答案】1x = 2y = 【分析】根据斜率和倾斜角的关系得出直线2l 和直线3l 的斜率再求解其直线方程即可. 【详解】易知直线1l 的斜率为1,倾斜角为45︒,所以直线2l 的倾斜角为90︒,直线3l 的倾斜角为0︒, 又因为直线2l 和直线3l 都经过点()1,2, 所以直线2l 和直线3l 的方程分别为1x =,2y =. 故答案为:1x =;2y =8.(2021·浙江衢州·高二期末)已知直线1l :3480x y +-=和2l :320x ay -+=,且12l l //,则实数a =__________,两直线1l 与2l 之间的距离为__________. 【答案】-4; 2 【分析】根据两直线平行斜率相等求解参数即可;运用两平行线间的距离公式计算两直线之间的距离可得出答案. 【详解】解:直线1:3480l x y +-=和2:320l x ay -+=,12l l //, 334a -∴=,解得4a =-; ∴2:3420l x y ++= 两直线1l 与2l间的距离是:2d == .故答案为:4-;2.9.(2020·浙江开学考试)已知直线1l 的方程为3420x y --=,直线2l 的方程为6810x y --=,则直线1l 的斜率为___________,直线1l 与2l 的距离为___________. 【答案】34310【解析】直线1l 的方程为3420x y --=即为3142y x =-,斜率为34. 因为直线2l 的方程为6810x y --=即为13402x y --=, 所以直线1l 与2l 平行,则直线1l 与2l310=.故答案为:34;31010.(2021·抚松县第一中学高二月考)已知A (1,0),B (﹣1,2),直线l :2x ﹣ay ﹣a =0上存在点P ,满足|P A |+|PB |=a 的取值范围是 ___________. 【答案】2[,2]3-【分析】计算线段AB 的距离,得到点P 的轨迹,将点A ,B 分别代入2x ﹣ay ﹣a =0,得到a ,根据题意得到直线l 所过定点C,求出直线AC ,BC 的斜率,根结合直线l 与线段AB 始终有交点计算出a 的取值范围. 【详解】因为||AB ==||||PA PB += 由图可知,点P 的轨迹为线段AB ,将点A ,B 的坐标分别代入直线l 的方程,可得a =2,a =23-,由直线l 的方程可化为:2x ﹣a (y +1)=0,所以直线l 过定点C (0,﹣1), 画出图形,如图所示:因为直线AC 的斜率为k AC =1,直线BC 的斜率为k BC =2(1)10----=﹣3, 所以直线l 的斜率为k =2a ,令2123aa⎧≥⎪⎪⎨⎪≤-⎪⎩,解得23-≤a ≤2,所以a 的取值范围是[23-,2].故答案为:[23-,2].1.(2021·绥德中学高一月考)已知0a >,0b >,直线220ax by -+=恒过点(2-,1),则14a b+的最小值为( ) A .8 B .9 C .16 D .18【答案】B 【分析】利用给定条件可得1a b +=,再借助“1”的妙用即可计算得解. 【详解】因直线220ax by -+=恒过点(2-,1),则有2220a b --+=,即1a b +=, 又0a >,0b >,则14144()()559b a a b a b a b a b +=++=++≥+=,当且仅当4b a a b =,即2b a =时取“=”,练提升由21b a a b =⎧⎨+=⎩得12,33a b ==,所以当12,33a b ==时,14a b+取得最小值9.故选:B2.(2019·四川高考模拟(文))已知点(3,0)P -在动直线(1)(3)0m x n y -+-=上的投影为点M ,若点3(2,)2N ,那么||MN 的最小值为( ) A .2 B .32C .1D .12【答案】D 【解析】因为动直线()()130m x n y -+-=方程为,所以该直线过定点Q (1,3), 所以动点M 在以PQ5,2= 圆心的坐标为3(1,)2-,所以点N3=, 所以MN 的最小值为51322-=.故答案为:D 3.(2019·湖南衡阳市八中高三月考(文))已知直线的倾斜角为且过点,其中,则直线的方程为( )C.【答案】B 【解析】,, 则直线方程为:故选4.(四川高考真题(文))设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线l θ1sin()22l 20y --=40y +-=0x -=360y 122sin πθ⎛⎫-= ⎪⎝⎭1cos 2θ∴=-2 3πθ=tan θ=1y x -=40y +-=B30mx y m --+=交于点(,)P x y ,则PA PB +的取值范围是( )A. B. C. D.【答案】B 【解析】易得(0,0),(1,3)A B .设(,)P x y ,则消去m 得:2230x y x y +--=,所以点P 在以AB 为直径的圆上,PA PB ⊥,所以222||||10PA PB AB +==,令,PA PB θθ==,则)4PA PB πθθθ+=+=+.因为0,0PA PB ≥≥,所以02πθ≤≤.sin()14πθ≤+≤PA PB ≤+≤.选B. 法二、因为两直线的斜率互为负倒数,所以PA PB ⊥,点P 的轨迹是以AB 为直径的圆.以下同法一.5.(2020·浙江)已知点(2,1)M -,直线l 过点M 且与直线210x y -+=平行,则直线l 的方程为____________;点M 关于直线10x y -+=的对称点的坐标为_______________. 【答案】240x y -+= (0,1)- 【分析】根据所求直线与直线210x y -+=平行,设方程为()201x y n n -+=≠求解;设点M 关于直线10x y -+=的对称点的坐标为(),M x y ',由112211022y x x y -⎧=-⎪⎪+⎨-+⎪-+=⎪⎩求解.【详解】因为所求直线与直线210x y -+=平行, 所以设方程为()201x y n n -+=≠, 因为直线过点(2,1)M -, 代入直线方程解得4n =,所以所求直线方程为:240x y -+=;设点M 关于直线10x y -+=的对称点的坐标为(),M x y ', 则112211022y x x y -⎧=-⎪⎪+⎨-+⎪-+=⎪⎩,解得01x y =⎧⎨=-⎩,所以点M 关于直线10x y -+=的对称点的坐标为()0.1-故答案为:240x y -+=,(0,1)-6.(2019·黑龙江鹤岗·月考(文))已知直线l 经过点()4,3P ,且与x 轴正半轴交于点A ,与y 轴正半轴交于点B ,O 为坐标原点.(1)若点O 到直线l 的距离为4,求直线l 的方程; (2)求OAB ∆面积的最小值.【答案】(1)7241000x y +-=(2)24 【解析】(1)由题意可设直线l 的方程为()34y k x -=-,即430kx y k --+=,则4d ==,解得724k =-. 故直线l 的方程为774302424x y ⎛⎫---⨯-+= ⎪⎝⎭,即7241000x y +-=. (2)因为直线l 的方程为430kx y k --+=,所以34,0A k ⎛⎫-+ ⎪⎝⎭,()0,43B k -+, 则OAB ∆的面积为()113194431624222S OA OB k k k k ⎛⎫⎛⎫=⋅=-+⨯-+=--+ ⎪ ⎪⎝⎭⎝⎭. 由题意可知k 0<,则91624k k --≥=(当且仅当34k =-时,等号成立).故OAB ∆面积的最小值为()12424242⨯+=. 7.(2021·抚松县第一中学高二月考)已知直线l 1:2x +y +3=0,l 2:x ﹣2y =0.(1) 求直线l 1关于x 轴对称的直线l 3的方程,并求l 2与l 3的交点P ; (2)求过点P 且与原点O (0,0)距离等于2的直线m 的方程. 【答案】(1)2x ﹣y +3=0,P (﹣2,﹣1);(2) 3x +4y +10=0或x =﹣2. 【分析】(1)由对称关系求直线l 3的方程,联立l 2与l 3的方程,求点P 的坐标,(2)当直线m 的斜率存在时,设直线m 的点斜式方程,由点到直线距离公式列方程求斜率,由此可得直线m 的方程,再检验过点P 的斜率不存在的直线是否满足要求. 【详解】(1)由题意,直线l 3与直线l 1的倾斜角互补,从而它们的斜率互为相反数,且l 1与l 3必过x 轴上相同点3(,0)2-,∴直线l 3的方程为2x ﹣y +3=0,由230,20,x y x y -+=⎧⎨-=⎩解得2,1.x y =-⎧⎨=-⎩∴P (﹣2,﹣1).(2)当直线m 的斜率存在时,设直线m 的方程为y +1=k (x +2), 即kx ﹣y +2k ﹣1=0,∴原点O (0,0)到直线m2=,解得34k =-,∴直线m 方程为3x +4y +10=0,当直线m 的斜率不存在时,直线x =﹣2满足题意, 综上直线m 的方程为3x +4y +10=0或x =﹣2.8.(2021·宝山区·上海交大附中高一开学考试)如图,点(),4A m ,4,B n 在反比例函数()0ky k x=>的图象上,经过点A 、B 的直线与x 轴相交于点C ,与y 轴相交于点D .(1)若2m =,求n 的值; (2)求m n +的值;(3)连接OA 、OB ,若tan tan 1AOD BOC ∠+∠=,求直线AB 的函数关系式. 【答案】(1)2(2)0(3)2y x =+ 【分析】(1)先把A 点坐标代入()0k y k x =>求出k 的值得到反比例函数解析式为8y x=,然后把(4,)B n -代8y x=可求出n 的值; (2)利用反比例函数图象上点的坐标特征得到4m =k ,﹣4n =k ,然后把两式相减消去k 即可得到m +n 的值;(3)作AE ⊥y 轴于E ,BF ⊥x 轴于F ,如图,利用正切的定义得到tan ∠AOE 4AE mOE ==,tan 4BF n BOF OF -∠==,则144m n-+=,加上0m n +=,于是可解得2,2m n ==-,从而得到(2,4)A ,(4,2)B --,然后利用待定系数法求直线AB 的解析式.【详解】(1)当m =2,则A (2,4), 把A (2,4)代入ky x=得k =2×4=8, 所以反比例函数解析式为8y x=, 把(4,)B n -代入8y x=得﹣4n =8,解得n =﹣2; (2)因为点A (m ,4),B (﹣4,n )在反比例函数()0ky k x=>的图象上, 所以4m =k ,﹣4n =k , 所以4m +4n =0,即m +n =0;(3)作AE ⊥y 轴于E ,BF ⊥x 轴于F ,如图,在Rt △AOE 中,tan ∠AOE 4AE mOE ==, 在Rt △BOF 中,tan 4BF nBOF OF -∠==, 而tan ∠AOD +tan ∠BOC =1, 所以144m n-+=, 而m +n =0,解得m =2,n =﹣2, 则A (2,4),B (﹣4,﹣2), 设直线AB 的解析式为y =px +q ,把(2,4),(4,2)A B --代入得2442p q p q +=⎧⎨-+=-⎩,解得12p q =⎧⎨=⎩,所以直线AB 的解析式为y =x +2.9.(2021·全国高二课时练习)已知点()2,1P -. (1)求过点P 且与原点的距离为2的直线的方程.(2)是否存在过点P 且与原点的距离为6的直线?若存在,求出该直线的方程;若不存在,请说明理由.【答案】(1) 20x -=或34100x y --=;(2) 不存在这样的直线;理由见解析. 【分析】(1)分k 存在与不存在两种情况讨论,点斜式表示直线方程,利用点到直线距离公式即得解;(2)过点P 且与原点的距离最大的直线为过点P 且与OP 垂直的直线,分析即得解 【详解】(1)①当直线的斜率不存在时,直线方程为2x =,符合题意. ②当直线的斜率存在时,设斜率为k ,则直线方程为()12y k x +=-,即210kx y k ---=.2=,解得34k =,所以直线方程为34100x y --=.故所求直线方程为20x -=或34100x y --=. (2)不存在.理由如下:过点P 且与原点的距离最大的直线为过点P 且与OP 垂直的直线,OP =而6>10.(2021·全国高三专题练习)AOB 是等腰直角三角形,||AB =动直线l 过点(1,1)P 与AOB 的斜边、直角边分别交于不同的点M 、N (如图所示).(1)设直线l 的斜率为k ,求k 的取值范围,并用k 表示M 的坐标; (2)试写出表示AMN 的面积S 的函数解析式()S k ,并求()S k 的最大值.【答案】(1)0k >,1,11kM k k ⎛⎫ ⎪++⎝⎭;(2)112(1)()012(1)k k k S k kk k ⎧⎪+⎪=⎨-⎪<<⎪+⎩,max 1()4S k =.【分析】(1)根据题意,结合图象即可得到k 的取值范围,再联立直线方程即可得到M 的坐标; (2) 由于l 绕P 点转动,则N 点可落在OA 上,也可落在OB 上,AMNS的计算不一样,所以必须对l 的斜率不同的取值范围进行分类讨论,表示出()S k ,结合函数单调性即可求解. 【详解】(1)由已知条件得(1,0)A 、(0,1)B ,0k >,设直线l 的方程为1y kx k =+-.由11x y y kx k+=⎧⎨=+-⎩,得1,11kM k k ⎛⎫ ⎪++⎝⎭. (2)当1k 时,点N 在直角边OA 上,1,0k N k -⎛⎫⎪⎝⎭, 1111()1212(1)k S k k k k k -⎛⎫=-⋅= ⎪++⎝⎭. 当01k <<时,点k 在直角边OB 上,(0,1)N k -,111()11(1)122212(1)k k S k k k k k =⨯⨯--⨯-⨯=++.∴112(1)()012(1)k k k S k k k k ⎧⎪+⎪=⎨-⎪<<⎪+⎩,当1k 时,()S k 递减,∴max 1()(1)4S k S ==,当01k <<时,11111()22(1)244S k k =-<-=+. 综上所述,当1k =时,max 1()4S k =.1.(上海高考真题(文))已知直线1l :(3)(4)10k x k y -+-+=与2l :2(3)230k x y --+=平行,则k 的值是( ). A .1或3 B .1或5C .3或5D .1或2【答案】C 【解析】由两直线平行得,当k-3=0时,两直线的方程分别为1y =- 和32y =,显然两直线平行.当练真题k-3≠0时,由()k 34k1/32k 32--=≠--,可得 k=5.综上,k 的值是 3或5, 故选 C .2.(2020·山东高考真题)已知直线sin cos :y x l θθ=+的图像如图所示,则角θ是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角【答案】D 【分析】本题可根据直线的斜率和截距得出sin 0θ<、cos 0θ>,即可得出结果. 【详解】结合图像易知,sin 0θ<,cos 0θ>, 则角θ是第四象限角, 故选:D.3.(2021·山东高考真题)如下图,直线l 的方程是( )A 0y -=B 20y -=C 310y --=D .10x -=【答案】D 【分析】由图得到直线的倾斜角为30,进而得到斜率,然后由直线l 与x 轴交点为()1,0求解. 【详解】由图可得直线的倾斜角为30°,所以斜率tan 30k =︒=所以直线l 与x 轴的交点为()1,0,所以直线的点斜式方程可得l :)01y x -=-,即10x -=. 故选:D4.(2021·湖南高考真题)点(0,1)-到直线3410x y -+=的距离为( ) A .25B .35C .45D .1【答案】D 【分析】利用点到直线的距离公式即可求解. 【详解】点(0,1)-到直线3410x y -+=的距离为515d ==, 故选:D.5.(全国高考真题(理))已知点A (﹣1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( ) A.(0,1) B.112⎛⎫ ⎪ ⎪⎝⎭, C.113⎛⎤⎥ ⎝⎦, D.1132⎡⎫⎪⎢⎣⎭,【答案】B 【解析】由题意可得,三角形ABC 的面积为12AB OC ⋅⋅=1, 由于直线y =ax +b (a >0)与x 轴的交点为M (ba-,0), 由直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,可得b >0, 故ba-≤0,故点M 在射线OA 上. 设直线y =ax +b 和BC 的交点为N ,则由1y ax b x y =+⎧⎨+=⎩可得点N 的坐标为(11b a -+,1a ba ++).①若点M 和点A 重合,如图:则点N为线段BC的中点,故N(12,12),把A、N两点的坐标代入直线y=ax+b,求得a=b13 =.②若点M在点O和点A之间,如图:此时b13>,点N在点B和点C之间,由题意可得三角形NMB的面积等于12,即1122NMB y⋅⋅=,即111212b a ba a+⎛⎫⨯+⋅=⎪+⎝⎭,可得a212bb=->0,求得b12<,故有13<b12<.③若点M在点A的左侧,则b13<,由点M的横坐标ba--<1,求得b>a.设直线y =ax +b 和AC 的交点为P ,则由 1y ax b y x =+⎧⎨=+⎩求得点P 的坐标为(11b a --,1a ba --),此时,由题意可得,三角形CPN 的面积等于12,即 12•(1﹣b )•|x N ﹣x P |12=, 即12(1﹣b )•|1111b b a a ---+-|12=,化简可得2(1﹣b )2=|a 2﹣1|.由于此时 b >a >0,0<a <1,∴2(1﹣b )2=|a 2﹣1|=1﹣a 2 . 两边开方可得(1﹣b)=1,∴1﹣b ,化简可得 b >12-, 故有1b 13<. 综上可得b 的取值范围应是1122⎛⎫- ⎪ ⎪⎝⎭,, 故选:B .6.(2011·安徽高考真题(理))在平面直角坐标系中,如果与都是整数,就称点为整点,下列命题中正确的是_____________(写出所有正确命题的编号) ①存在这样的直线,既不与坐标轴平行又不经过任何整点 ②如果与都是无理数,则直线不经过任何整点 ③直线经过无穷多个整点,当且仅当经过两个不同的整点④直线经过无穷多个整点的充分必要条件是:与都是有理数 ⑤存在恰经过一个整点的直线 【答案】①③⑤ 【解析】①令直线为:,则其不与坐标轴平行且不经过任何整点,①正确; ②令直线为:,②错误;③令直线为:,过两个不同的整点,则,两式作差得: 即直线经过整点直线经过无穷多个整点,③正确;x y (,)x y k b y kx b =+l l y kx b =+k b l 12y x =+l y =-()2,0l y kx =()11,x y ()22,x y 112y kx y kx =⎧⎨=⎩()1212y y k x x -=-l ()1212,x x y y --∴l④令直线为:,则不过整点,④错误; ⑤令直线为:,则其只经过一个整点,⑤正确.本题正确结果:①③⑤l 1132y x =+ll y =()0,0。
9.1直线的倾斜角与斜率直线的方程 学案

§9.1 直线的倾斜角与斜率、直线的方程考纲展示►1.理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率的计算公式.2.掌握确定直线位置的几何要素;掌握直线方程的几种形式(点斜式、两点式及一般式等),了解斜截式与一次函数的关系.考点1 直线的倾斜角与斜率1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l ________之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴________时,规定它的倾斜角为0°.(2)范围:直线l 的倾斜角的取值范围是________. 答案:(1)向上方向 平行或重合 (2)[0,π) 2.直线的斜率(1)定义:若直线的倾斜角α不是90°,则斜率k =________.(2)计算公式:若由A (x 1,y 1),B (x 2,y 2)确定的直线不垂直于x 轴,则k =y 2-y 1x 2-x 1. 答案:(1)tan α斜率与倾斜角的两个易错点:斜率与倾斜角的对应关系;倾斜角的范围. (1)当a =3时,直线ax +(a -3)y -1=0的倾斜角为________. 答案:90°解析:当a =3时,直线ax +(a -3)y -1=0可化为3x -1=0,其倾斜角为90°. (2)直线x cos α+y +2=0的倾斜角的范围是________.答案:⎣⎢⎡⎦⎥⎤0,π4∪ ⎣⎢⎡⎭⎪⎫3π4,π解析:设直线的倾斜角为θ.依题意知,斜率k =-cos α.∵cos α∈[-1,1],∴k ∈[-1,1],即tan θ∈[-1,1].又θ∈[0,π),∴θ∈ ⎣⎢⎡⎦⎥⎤0,π4∪ ⎣⎢⎡⎭⎪⎫3π4,π.求斜率或倾斜角:公式法.已知直线l 经过A (-cos θ,sin 2θ),B (0,1)两个不同的点,则直线l 的斜率为________,倾斜角的取值范围是________.答案:cos θ ⎣⎢⎡⎭⎪⎫0,π2∪ ⎝ ⎛⎭⎪⎫π2,π解析:当cos θ=0时,sin 2θ=1-cos 2θ=1,此时A ,B 两点重合,∴cos θ≠0,∴斜率k =cos θ∈[-1,0)∪(0,1],因此倾斜角的取值范围是 ⎣⎢⎡⎭⎪⎫0,π2∪ ⎝ ⎛⎭⎪⎫π2,π.[典题1] (1)若直线l 的斜率为k ,倾斜角为α,而α∈⎣⎢⎡⎭⎪⎫π6,π4∪⎣⎢⎡⎭⎪⎫2π3,π,则k 的取值范围是________.[答案] [-3,0)∪⎣⎢⎡⎭⎪⎫33,1[解析] 当π6≤α<π4时,33≤tan α<1,∴33≤k <1.当2π3≤α<π时,-3≤tan α<0,即-3≤k <0.∴k ∈⎣⎢⎡⎭⎪⎫33,1∪[-3,0). (2)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为________.[答案] (-∞,- 3 ]∪[1,+∞) [解析] 如图所示,∵k AP =1-02-1=1,k BP =3-00-1=-3,∴直线l 斜率的取值范围为(-∞,- 3 ]∪[1,+∞).[题点发散1] 若将本例(3)的条件改为“经过P (0,-1)作直线l ,若直线l 与连接A (1,-2),B (2,1)的线段总有公共点”,求直线l 的倾斜角α的取值范围.解:如图所示,k PA =-2--1-0=-1,k PB =1--2-0=1,由图可得,直线l 的倾斜角α的取值范围是⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π.[点石成金] 求倾斜角的取值范围的两个步骤及一个注意点(1)两个步骤:①求出斜率k =tan α的取值范围;②利用三角函数的单调性,借助图象或单位圆数形结合,确定倾斜角α的取值范围. (2)一个注意点:求倾斜角时要注意斜率是否存在.考点2 直线方程直线方程的五种形式答案:y -y 0=k (x -x 0) y =kx +by -y 1y 2-y 1=x -x 1x 2-x 1Ax +By +C =0(A 2+B 2≠0)(1)[教材习题改编]直线l 的倾斜角为60°,且在x 轴上的截距为-13,则直线l 的方程为________.答案:3x -3y +1=0解析: 由题意可知,直线l 的斜率为3,且该直线过 ⎝ ⎛⎭⎪⎫-13,0,∴直线l 的方程为y =3⎝ ⎛⎭⎪⎫x +13,即3x -3y +1=0. (2)[教材习题改编]若方程Ax +By +C =0表示与两条坐标轴都相交的直线(不与坐标轴重合),则应满足的条件是________.答案:A ≠0且B ≠0解析:直线Ax +By +C =0与x 轴相交,即方程组 ⎩⎪⎨⎪⎧Ax +By +C =0,y =0 有唯一解,所以A ≠0.同理,直线Ax +By +C =0与y 轴相交时,有B ≠0.直线方程的易错点:方程形式的变形及转化.(1)给出下列直线方程:①x -3y =6;②2x -3y =0;③ax +by =c ,其中一定能化为截距式方程的是_____.答案:①解析:(1)x -3y =6化为截距式方程为x 6+y-2=1;2x -3y =0不能化为截距式方程;当a ,b ,c 中有1个或2个为0时,ax +by =c 不能化为截距式方程. (2)过点M (3,-4),且在两坐标轴上的截距相等的直线方程为________________.答案:4x +3y =0或x +y +1=0解析:①若直线过原点,则k =-43,所以y =-43x ,即4x +3y =0.②若直线不过原点,设直线方程为x a +y a=1,即x +y =a ,则a =3+(-4)=-1, 所以直线方程为x +y +1=0.综上,所求直线方程为4x +3y =0或x +y +1=0.[典题2] 根据所给条件求直线的方程: (1)直线过点(-4,0),倾斜角的正弦值为1010; (2)直线过点(-3,4),且在两坐标轴上的截距之和为12; (3)直线过点(5,10),且到原点的距离为5.[解] (1)由题设知,该直线的斜率存在,故可采用点斜式. 设倾斜角为α,则sin α=1010(0≤α<π),从而cos α=±31010,则k =tan α=±13. 故所求直线的方程为y =±13(x +4),即x +3y +4=0或x -3y +4=0.(2)由题设知,横、纵截距不为0,设直线方程为x a +y12-a=1,又直线过点(-3,4),从而-3a +412-a =1,解得a =-4或a =9.故所求直线的方程为4x -y +16=0或x +3y -9=0.(3)当斜率不存在时,所求直线的方程为x -5=0,满足题意. 当斜率存在时,设其斜率为k ,则所求直线的方程为y -10=k (x -5), 即kx -y +10-5k =0,由点到直线的距离公式,得|10-5k |k 2+1=5,解得k =34. 故所求直线的方程为3x -4y +25=0.综上知,所求直线的方程为x -5=0或3x -4y +25=0. [点石成金] 根据各种形式的方程,采用待定系数的方法求出其中的系数,在求直线方程时,凡涉及斜率的要考虑其存在与否,凡涉及截距的要考虑是否为零截距以及其存在性.求适合下列条件的直线方程:(1)经过点P (4,1),且在两坐标轴上的截距相等;(2)经过点A (-1,-3),倾斜角等于直线y =3x 的倾斜角的2倍; (3)经过点B (3,4),且与两坐标轴围成一个等腰直角三角形.解:(1)设直线l 在x ,y 轴上的截距均为a ,若a =0,即l 过点(0,0)和(4,1), ∴l 的方程为y =14x ,即x -4y =0.若a ≠0,则设l 的方程为x a +ya =1,∵l 过点(4,1),∴4a +1a=1,∴a =5,∴l 的方程为x +y -5=0.综上可知,直线l 的方程为x -4y =0或x +y -5=0.(2)由已知,设直线y =3x 的倾斜角为α ,则所求直线的倾斜角为2α. ∵tan α=3,∴tan 2α=2tan α1-tan 2α=-34.又直线经过点A (-1,-3), ∴所求直线的方程为y +3=-34(x +1),即3x +4y +15=0.(3)由题意可知,所求直线的斜率为±1.又直线过点(3,4),由点斜式,得y -4=±(x -3). 故所求直线的方程为x -y +1=0或x +y -7=0.[方法技巧] 1.直线的斜率k 与倾斜角θ之间的关系2.(1)直接法:根据已知条件选择恰当的直线方程形式,直接求出直线方程.(2)待定系数法:先根据已知条件设出直线方程,再根据已知条件构造关于待定系数的方程(组),求出待定系数,从而求出直线方程.[易错防范] 1.利用两点式计算斜率时,易忽视x 1=x 2时斜率k 不存在的情况.2.用直线的点斜式求方程时,在斜率k 不明确的情况下,注意分k 存在与不存在讨论,否则会造成失误.3.直线的截距式中易忽视截距均不为0这一条件,当截距为0时可用点斜式.4.由一般式Ax +By +C =0确定斜率k 时易忽视判断B 是否为0的情况,当B =0时,k 不存在;当B ≠0时,k =-AB.真题演练集训[2015·新课标全国卷Ⅰ]在直角坐标系xOy 中,曲线C :y =x 24与直线l :y =kx +a (a >0)交于M ,N 两点.(1)当k =0时,分别求C 在点M 和N 处的切线方程;(2)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.解:(1)由题设,可得M (2a ,a ),N (-2a ,a )或M (-2a ,a ),N (2a ,a ).又y ′=x 2,故y =x 24在x =2a 处的导数值为a ,则C 在点(2a ,a )处的切线方程为y -a =a (x -2a ),即ax -y -a =0;y =x 24在x =-2a 处的导数值为-a ,则C 在点(-2a ,a )处的切线方程为y -a =-a (x +2a ),即ax +y +a =0.故所求切线方程为ax -y -a =0和ax +y +a =0. (2)存在符合题意的点.证明如下:设P (0,b )为符合题意的点,M (x 1,y 1),N (x 2,y 2),直线PM ,PN 的斜率分别为k 1,k 2. 将y =kx +a 代入C 的方程,得x 2-4kx -4a =0. 故x 1+x 2=4k ,x 1x 2=-4a . 从而k 1+k 2=y 1-b x 1+y 2-bx 2=2kx 1x 2+a -b x 1+x 2x 1x 2=k a +ba. 当b =-a 时,有k 1+k 2=0,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故∠OPM =∠OPN ,所以点P (0,-a )符合题意. 失误.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北 师 大 版
高考数学总复习
x y [解析 ] (1)设所求的直线方程为 + = 1(a>0, b>0), a b 2 1 + 2 1 21 a b 2 1 由已知得 + = 1,于是 ·≤ ( )= . a b ab 2 4 2 1 1 当且仅当 = = , a b 2
北 师 大 版
第9章
第一节
第9章
第一节
高考数学总复习
求直线的方程
[例 2] 求适合下列条件的直线方程: (1)经过点 P(3,2),且在两坐标轴上的截距相等; 1 (2)过点 A(- 1,- 3),斜率是直线 y= 3x 的斜率的- ; 4 (3)过点 A(1,- 1)与已知直线 l1:2x+ y- 6= 0 相交于 B 点 且 |AB|= 5.
[答案 ] B
[解析 ] 所有的直线都一定有倾斜角,而倾斜角为 90° 的直 线不存在斜率.
第9章 第一节
高考数学总复习
2. 已知直线的方程分别为 l1: x+ ay+ b= 0, l2: x+ cy+ d = 0,它们在坐标系中的关系如图所示,则 ( )
北 师 大 版
第9章
第一节
高考数学总复习
第9章
第一节
高考数学总复习
3. (文 )(教材改编题 )直线 x- 3y+ a= 0(a 为常数 )的倾斜角 为( ) A. 30° C. 150°
[答案 ] A
B. 60° D. 120°
北 师 大 版
3 [解析 ] 由直线方程可知其斜率为 k= ,所以倾斜角为 3 30° .
第9章
第一节
高考数学总复习
x= 1 解方程组 2 x+ y- 6= 0
,
求得 B 点坐标为 (1,4),此时 |AB|= 5, 即 x= 1 为所求. 设过 A(1,- 1)且与 y 轴不平行的直线为 y+ 1= k(x- 1),
北 师 大 版
第9章
第一节
高考数学总复习
2 x+ y- 6= 0 解方程组 y+ 1= k x- 1
第9章
第一节
高考数学总复习
6. (文 )直线
π π 2sinα· x- y- 3= 0(α∈ , )的倾斜角 6 3
θ 的取值
范围是 ________.
[答案 ]
π π , 4 3
北 师 大 版
[解析 ]
π π ∵ k= 2sinα, α∈ , , 6 3
,
北 师 大 版
x= k+ 7 k+ 2 得两直线交点为 4 k- 2 y= k+ 2
.
第9章
第一节
高考数学总复习
(k≠ - 2,否则与已知直线平行 ). 则
k+ 7 4 k- 2 B 点坐标为 , . k+ 2 k+ 2
北 师 大 版
k+ 7 2 4 k- 2 2 2 由已知 - 1 + + 1 = 5 , k+ 2 k+ 2
北 师 大 版
第9章
第一节
高考数学总复习
北 师 大 版
第9章
第一节
高考数学总复习
2.直线方程的5种形式
名称 点斜式 斜截式 两点式 截距式 一般式 方程形式 y-y0=k(x-x0) y=kx+b y-y1 x-x1 = y2-y1 x2-x1 x y a+b=1 Ax+By+C=0 (A2+B2≠0) 适用条件 不表示垂直于 x 轴 的直线 不表示垂直于 x、y 轴 的直线 不表示垂直于坐标轴 和过原点的直线 直线方程最终都 可化为一般式
北 师 大 版
第9章
第一节
高考数学总复习
[解析 ] 题中△ OAB 的面积与截距有关,自然联想到直线方 程的截距式. x y 方法一 设直线 l 的方程为 + = 1(a>0, b>0), a b ∴ A(a,0), B(0, b), ab= 24, a= 6, ∴3 2 解得 + = 1. b= 4. a b x y ∴所求的直线方程为 + = 1, 6 4 即 2x+ 3y- 12= 0.
高考数学总复习
§9.1
直线与直线的方程
北 师 大 版
第9章
第一节
高考数学总复习
知识框架图
北 师 大 版
第9章 平面解析几何
高考数学总复习
知识梳理 1. 直线的倾斜角与斜率 (1)直线的倾斜角 ①定义:在平面直角坐标系中,对于一条与 x 轴相交的直线 l,把 x 轴 (正方向 )按 逆时针 方向绕着交点旋转到和直线 l 重合 所成的角,叫做直线 l 的倾斜角,当直线 l 和 x 轴平行时,它的 倾斜角为 0° .
北 师 大 版
第9章
第一节
高考数学总复习
5. (文 )(教材改编题 )若三点 A(a,2), B(3,7), C(- 2,- 9a) 在同一条直线上,则 a 的值为 ________.
[答案 ] 2 或 2 9
北 师 大 版
7- 2 - 9a- 7 [解析 ] A、B、C 三点共线, 有 kAB= kBC, 即 = , 3- a - 2- 3 2 ∴ a= 2 或 . 9
第9章
第一节
高考数学总复习
3 解得 k=- , 4 3 ∴ y+ 1=- (x- 1), 4 即 3x+ 4y+ 1= 0. 综上可知,所求直线的方程为 x= 1 或 3x+ 4y+ 1= 0.
北 师 大 版
第9章
第一节
高考数学总复习
直线 l 经过点 P(3,2)且与 x, y 轴的正半轴分别交于 A、 B 两点,△ OAB 的面积为 12,求直线 l 的方程.
高考数学总复习
21 1 即 a= 4, b= 2 时, ·取最大值 , ab 4 1 此时 S△ AOB= ab 取最小值 4. 2 x y 故所求的直线 l 的方程为 + = 1,即 x+ 2y- 4= 0. 4 2
北 师 大 版
第9章
第一节
高考数学总复习
(2)方法一:设直线 l y- 1= k(x- 2)(k<0), 1 分别令 y= 0 得 A(2- , 0),令 x= 0 得 B(0,1- 2k). k 由 |PA|· | PB|= =
北 师 大 版
第9章
第一节
高考数学总复习
[解析 ] 当 m= 0 时,直线 l 的方程为 x= 0,显然 l 与 PQ 相 交. 由直线方程 x+ my+ m= 0 可知直线恒过定点 (0,- 1). - 1- 1 - 1- 2 3 当 m≠ 0 时, kPA= =- 2, kQA= = , 0- - 1 0- 2 2 1 l: y+ 1=- x. m
≤ α<180° ②倾斜角的范围为 0° .
北 师 大 版
第9章
第一节
高考数学总复习
(2)直线的斜率 ①定义:一条直线的倾斜角 α 的 正切值 叫做这条直线的斜 率,斜率常用小写字母 k 表示,即 k= tan α ,倾斜角是 90° 的直 线斜率不存在. ②过两点的直线的斜率公式 经过两点 P1(x1, y1), P2(x2, y2)(x1≠ x2)的直线的斜率公式为 y2- y1 k= . x2- x1
第9章
第一节
高考数学总复习
北 师 大 版
第9章
第一节
高考数学总复习
直线的倾斜角和斜率
[ 例 1] 已知线 段 PQ 两 端点的坐标分别为 P(- 1,1) 和 Q(2,2),若直线 l: x+ my+ m= 0 与线段 PQ 有交点,求实数 m 的取值范围. [分析 ] 求 m 的范围,关键是能够画出它们的图像,结合 图像求解,能够知道直线 l 过定点 (0,- 1).
北 师 大 版
第9章
第一节
高考数学总复习
因为 l 与线段 PQ 相交,
北 师 大 版
第9章
第一节
高考数学总复习
1 3 1 - ≥ 或- ≤- 2, m 2 m
2 ∴ m∈ - , 0 或 3 1 m∈ 0, . 2
北 师 大 版
所以
2 1 m 的取值范围为- , . 3 2
∴ k∈ [1, 3],即 tanθ∈ [1, 3],
π π ∴ θ∈ , . 4 3
第9章
第一节
高考数学总复习
7. 求下列直线 l 的方程: 3 (1)过点 A(0,2),它的倾斜角的正弦值是 ; 5 (2)过点 A(2,1),它的倾斜角是直线 l1:3x+ 4y+ 5= 0 的倾斜 角的一半; (3)过点 A(2,1)和直线 x- 2y- 3= 0 与 2x- 3y- 2= 0 的交点.
北 师 大 版
第9章
第一节
高考数学总复习
[解析 ] (1)设直线 l 的倾斜角为 α, 3 3 则 sinα= , tanα= ± , 5 4 3 由斜截式得 y= ± x+ 2, 4 即 3x- 4y+ 8= 0 或 3x+ 4y- 8= 0.
北 师 大 版
第9章
第一节
高考数学总复习ຫໍສະໝຸດ (2)设直线 l 和 l1 的倾斜角分别为 α, β, β 3 则 α= .又 tanβ=- , 2 4 3 2tan α 则- = , 4 1- tan2α 1 解得 tanα= 3 或 tanα=- (舍去 ). 3 由点斜式得 y- 1= 3(x- 2),即 3x- y- 5= 0.
第9章 第一节
北 师 大 版
高考数学总复习
与直线方程有关的最值问题
[例 3] 如图,经过 P(2,1) 作直线 l,分别交 x、y 正半轴于 A、 B 两点. (1) 当 △ AOB 的 面 积 最 小 时,求直线 l 的方程; (2)当 |PA|· |PB|取最小值时, 求直线 l 的方程.
第9章 第一节