高一数学不等式部分经典习题及答案
高一数学不等式试题答案及解析

高一数学不等式试题答案及解析1.已知a>b, c>d,则()A.ac>bd B.C.D.【答案】D【解析】略2.设,且,则()A.B.C.D.【答案】D【解析】由题意,,又,则,所以,则,,由且,可得,故3.(1)已知x<,求函数y=4x-2+的最大值;(2)已知x>0,y>0且=1,求x+y的最小值.【答案】(1)1;(2)16【解析】本题主要考察函数万能公式的运用,在第一小问中函数化简须与分式分母相对应,在运用万能公式时,要注意不要将符号弄反,解不等式即可求出最大值。
在第二小问中,将条件乘入到所求结果中去,再将式子进行展开,利用万能公式,解不等式即可求出最小值。
试题解析:(1)x<,∴4x-5<0.∴y=4x-5++3=-[(5-4x)+]+3=1.≤-2+3=1,ymax(2)∵x>0,y>0且=1,∴x+y=(x+y)=10+≥10+2=16,即x+y的最小值为16【考点】函数万能关系不等式4.(12分)已知函数y=的定义域为R.(1)求a的取值范围.(2)若函数的最小值为,解关于x的不等式x2﹣x﹣a2﹣a<0.【答案】(1);(2)【解析】(1)定义域为,指被开方数恒大于等于0,讨论两种情况当或是两种情况;(2)函数的最小值,指被开方数为抛物线时的顶点函数值是,所以先根据顶点坐标求参数,然后将参数代入二次不等式,解不等式.试题解析:(1)∵函数y=的定义域为R,∴a=0时,满足题意;a>0时,△=4a2﹣4a≤0,解得0<a≤1;∴a的取值范围是{a|0≤a≤1};(2)∵函数y的最小值为,∴≥, a∈[0,1];∴ax2+2ax+1≥;当a=0时,不满足条件;当1≥a>0时,ax2+2ax+1的最小值是=,∴a=;∴不等式x2﹣x﹣a2﹣a<0可化为x2﹣x﹣<0,解得﹣<x<;∴不等式的解集是{x|﹣<x<}.【考点】1.二次函数;2.二次函数的性质;3.解二次不等式.5.已知实数满足约束条件则的最大值是.【答案】9【解析】作出可行域及目标函数线如图,平移目标函数线使之经过可行域,当目标函数线过点时目标函数线的纵截距最大此时也最大.,所以.【考点】线性规划.6.下列结论正确的是A.若,则B.若,则C.若则D.若,则【答案】D【解析】对于A若c<0则错,对于B,若A,B都是负数则错,对于C,只有两个同向且全正的不等式才恒成立,故只有D正确.【考点】不等式的基本性质.7.(本小题满分8分)已知函数.(Ⅰ)当时,解关于的不等式;(Ⅱ)当时,解关于的不等式.【答案】(Ⅰ)(Ⅱ)当时,,则不等式的解集为,或;当时,不等式化为,此时不等式解集为;当时,,则不等式的解集为,或【解析】第一问考查了一元二次不等式的解法,第二问首先对二次三项式因式分解得到,再分类讨论两根的大小得到不等式的解集.试题解析:(Ⅰ)当时,不等式可化为,即,解得,所以不等式的解集为.(Ⅱ)当时,不等式可化为,即,则,当时,,则不等式的解集为,或;当时,不等式化为,此时不等式解集为;当时,,则不等式的解集为,或.【考点】一元二次不等式的解法,分类讨论的思想.8.已知变量,满足则的最小值为__________.【答案】【解析】如图,当目标函数过点时,函数取得最小值,,目标函数的最小值是.【考点】线性规划9.已知,,,则的最小值是_________.【答案】【解析】∵,,,∴由基本不等式可得≥2=2当且仅当时,取最小值2.故答案为:2【考点】基本不等式10.若实数x,y,且x+y=5,则的最小值是()A.10B.C.D.【答案】D【解析】,,当且仅当即时取得.故D正确.【考点】基本不等式.11.若关于的不等式在区间上有解,则实数的取值范围为()A.B.C.(1,+∞)D.【答案】A【解析】因为,则不等式可化为:,设,由题意得只需,因为函数为区间上的减函数,所以,所以选A【考点】1.分离参数;2.存在性问题;12.若,且,则的最小值是()A.B.C.2D.3【答案】B【解析】由已知条件可得(b=c时等号成立),所以,故选B【考点】不等式和最值计算综合问题13.若,则()A.B.C.D.【答案】C【解析】不等式的两边同时乘以负数,不等号方向改变,故A错,B错,C错,只有B对,故选B.【考点】不等式的基本性质.14.下列函数的最小值为2的是()A.B.C.D.【答案】D【解析】,在其定义域上没有最小值,因为自变量的区间右端点是开的而导致取不到最小值,利用均值不等式取不到最小值,故只能选D.【考点】对勾函数与均值不等式.15.已知,则的最大值是.【答案】3【解析】求解该不等式组在第一象限及与坐标轴的交点坐标是(0,2),(1,4),(5,0),(0,0),分别代入目标函数z=-x+y,得2,3,-5,0比较得最大值是3,当且仅当x=1,y=4时取得最大.【考点】线性规划的应用.16.(12分)已知函数,(1)当时,解不等式;(2)比较的大小;(3)解关于x的不等式.【答案】(1);(2)详见解析;(3)详见解析【解析】(1)当时,将不等式分解因式,得到解集;(2)比较大小,可以做差,然后通分,分解因式,然后讨论的范围,比较两数的大小;(3)第一步,先分解因式,第二步,根据上一问的结果得到与的大小关系,得到解集.试题解析:解:(1)当时,有不等式,∴,∴不等式的解集为:;(2)∵且∴当时,有当时,有当时,;(3)∵不等式当时,有,∴不等式的解集为;当时,有,∴不等式的解集为;当时,不等式的解集为.【考点】1.解二次不等式;2.比较大小.17.(本题满分12分)已知函数,的解集为(1)求,的值;(2)为何值时,的解集为R.【答案】(1);(2)【解析】(1)不等式的解集的端点就是其对应方程的实根,所以代入,解,然后根据韦达定理求;(2)代入上一问的结果,问题转化为解集为,所以讨论两种情况,和.试题解析:解(1)由已知得是方程的两根,的解集为(2)由(1)得解集为,当时,不等式解集为成立,当时,由(1)(2)可得.【考点】1.二次不等式的解法;2.二次不等式恒成立;3.韦达定理.18.不等式的解集是.【答案】【解析】根据解一元二次不等式得口诀“大于取两边,小于取中间”可得不等式的解集是【考点】解一元二次不等式19.关于不等式的解集为,则等于()A.B.11C.D.【答案】C【解析】二次不等式的解集的端点值就是二次方程的实根,所以根据韦达定理,,解得,,所以【考点】1.一元二次不等式的解法;2.韦达定理.20.(共10分)(1)解不等式:;(2)解关于的不等式:【答案】(1);(2)详见解析.【解析】(1)将此分式不等式转化为相乘形式,即,即,然后按二次不等式求解;(2)解此类型的含参二次不等式,第一步,先分解因式,第二步,讨论两根的大小关系,根据根的大小关系,写出不等式的解集.试题解析:解:(1)原不等式等价于故原不等式的解集为(2)原不等式可化为综上:不等式的解集为:【考点】1.解分式不等式;2.解含参二次不等式.21.已知,则的最小值是()A.10B.C.12D.20【答案】C【解析】,,当且仅当时取得等号.【考点】基本不等式.22.若,则下列正确的是()A.B.C.D.【答案】D【解析】A.若,则不成立,所以错误;B.若,则不成立,所以错误;C.若,则不成立,所以错误;D因为,不等式两边同时减去同一个数,不等号方向不变,所以正确,故选择D【考点】不等式性质23.不等式的解集是____________________.【答案】【解析】不等式变形为:,分解因式可得:,所以解集为【考点】解一元二次不等式24.函数f(x)=,若f(x0)=3,则x的值是()A.1B.C.D.【答案】D【解析】f(x)=3,所以,舍去,或,其中舍去,或,舍去,综上,故选D【考点】分段函数求值25.三个数,,的大小关系为()A.B.C.D.【答案】C【解析】,所以有,故选C.【考点】指数的大小比较.26.若,,且恒成立,则的最小值是()A.B.C.D.【答案】B【解析】分离参数得恒成立,两边平方得,而,当且仅当时等号成立,所以,故选B.【考点】1、不等式性质;2、均值不等式;3、不等式的恒成立.【方法点晴】本题主要考查的是含参不等式的恒成立问题,属于中档题题.首先利用不等式的性质将不等式变形分离出常数,转化为求的最大值问题,再平方后运用基本不等式求其最大值,注意分析等号能否取得.27.若0<a<1,且logba<1,则()A.0<b<a B.0<a<b C.0<a<b<1D.0<b<a或b>1【答案】D【解析】利用对数函数的单调性和特殊点,分b>1和0<b<1两种情况,分别求得a、b的关系,从而得出结论.解:当b>1时,∵logb a<1=logbb,∴a<b,即b>1成立.当0<b<1时,∵logb a<1=logbb,∴0<b<a<1,即0<b<a,故选D.【考点】对数函数的单调性与特殊点.28.设,则的大小关系A.B.C.D.【答案】B【解析】在同一直角坐标系中画出函数:的图像(略),由图像可知.故选B.【考点】指数函数和对数函数的图像和性质.29.若关于x的不等式(2x-1)2<ax2的解集中整数恰好有3个,则实数a的取值范围是__________.【答案】【解析】关于x的不等式(2x-1)2<ax2等价于,其中且有,故有,不等式的解集为,所以解集中一定含有1,2,3,可得,所以,解得.【考点】含参数的一元二次方程的解法.30.下列不等式中,解集为的是()A.B.C.D.【答案】D【解析】A.,解集为;B.解集为;C.解集为;解集为,选D【考点】不等式的解集31.下列不等式中,解集为的是()A.B.C.D.【答案】D【解析】A.,解集为;B.解集为;C.解集为;解集为,选D【考点】不等式的解集32.已知实数满足,设,则的取值范围是()A.B.C.D.【答案】D【解析】设且,则,令,所以,当时上述不等式中的等号成立,所以.【考点】基本不等式的应用.【方法点晴】本题主要考查了基本不等式的应用,其中正确构造基本不等式的应用条件是使用基本不等式的基础和关键,试题思维量大,运算繁琐,属于难题,着重考查了构造思想和转化与化归思想的应用,本题的解答中,设且,得,即可利用基本不等式,可求得的值,即可求解取值范围.33.下列关于的不等式解集是实数集R的为()A.B.C.D.【答案】C【解析】A中的解集是,B中的解集是,C中的解集是R,D中的解集是,故答案为C.【考点】不等式的解法.34.已知,那么下列不等式中正确的是()A.B.C.D.【答案】D【解析】由题根据不等式的性质,A,B,C选项,数的正负不明,错误;而选项D,无论取任何数都成立。
高中不等式试题和答案

不等式一、选择题:1.不等式(1+x )(1-|x |)>0的解集是 A .{x |0≤x <1} B .{x |x <0且x ≠-1} C .{x |-1<x <1}D .{x |x <1且x ≠-1}2.直角三角形ABC 的斜边AB =2,内切圆半径为r ,则r 的最大值是 A . 2B .1C .22D .2-13.给出下列三个命题 ①若1->≥b a ,则bba a +≥+11 ②若正整数m 和n 满足n m ≤,则2)(n m n m ≤- ③设),(11y x P 为圆9:221=+y x O 上任一点,圆2O 以),(b a Q 为圆心且半径为1. 当1)()(2121=-+-y b x a 时,圆1O 与圆2O 相切 其中假命题的个数为 A .0B .1C .2D .34.不等式|2x -log 2x |<2x +|log 2x |的解集为 A .(1,2) B .(0,1)C .(1,+∞)D .(2,+∞)5.如果x ,y 是实数,那么“xy <0”是“|x -y |=|x |+|y |”的 A .充分条件但不是必要条件 B .必要条件但不是充分条件 C .充要条件D .非充分条件非必要条件6.若a =ln22,b =ln33,c =ln55,则A .a <b <cB .c <b <aC .c <a <bD .b <a <c7.已知a 、b 、c 满足c b a <<,且a c <0,那么下列选项中不一定成立的是 A .a b a c > B .c b a ()-<0C .c b a b 22< D .0)(<-c a ac 8.设10<<a ,函数)22(log )(2--=xx a a a x f ,则使0)(<x f 的x 的取值范围是A .(-∞,0)B .(0,+∞)C .(-∞,log a 3)D .(log a 3,+∞)9.某工厂第一年年产量为A ,第二年的增长率为a ,第三年的增长率为b ,这两年的平均增长率为x ,则A .x =2ba + B .x ≤2b a + C .x >2b a + D .x ≥2ba + 10.设方程2x +x +2=0和方程log 2x +x +2=0的根分别为p 和q ,函数f (x )=(x +p )(x +q )+2,则A .f (2)=f (0)<f (3)B .f (0)<f (2)<f (3)C .f (3)<f (0)=f (2)D .f (0)<f (3)<f (2)二、填空题:11.对于-1<a <1,使不等式(12)2x ax +<(12)2x +a -1成立的x 的取值范围是_______ .12.若正整数m 满足m m 102105121<<-,则m = .(lg2≈0.3010)13.已知{1,0,()1,0,x f x x ≥=-<则不等式)2()2(+⋅++x f x x ≤5的解集是 .14.已知a >0,b >0,且2212b a +=,则的最大值是 . 15.对于10<<a ,给出下列四个不等式 ①)11(log )1(log aa a a +<+ ②)11(log )1(log aa a a +>+ ③aaa a 111++<④aaaa111++>其中成立的是 .三、解答题:16.(本题满分l2分)设函数f (x )|1||1|2--+=x x ,求使f (x )≥22的x 取值范围.17.(本题满分12分)已知函数2()2sin sin 2,[0,2].f x x x x π=+∈求使()f x 为正值的x 的集合.18.(本题满分14分)⑴已知,a b 是正常数,a b ≠,,(0,)x y ∈+∞,求证:222()a b a b x y x y++≥+,指出等号成立的条件;⑵利用⑴的结论求函数29()12f x x x=+-(1(0,)2x ∈)的最小值,指出取最小值时x 的值.19.(本题满分14分)设函数f(x)=|x-m|-mx,其中m为常数且m<0.⑴解关于x的不等式f(x)<0;⑵试探求f(x)存在最小值的充要条件,并求出相应的最小值.20.(本题满分14分)已知a>0,函数f(x)=ax-bx2.⑴当b>0时,若对任意x∈R都有f(x)≤1,证明a≤2b;⑵当b>1时,证明对任意x∈[0,1],都有|f(x)|≤1的充要条件是b-1≤a≤2b;⑶当0<b≤1时,讨论:对任意x∈[0,1],都有|f(x)|≤1的充要条件.21.(本题满分14分)⑴设函数)10( )1(log )1(log )(22<<--+=x x x x x x f ,求)(x f 的最小值; ⑵设正数n p p p p 2321,,,, 满足12321=++++n p p p p ,证明 n p p p p p p p p n n -≥++++222323222121log log log log .[不等]符号定,比较技巧深参考答案二、填空题11.x ≤0或x ≥2; 12.155;13.]23,(-∞; 14 15.②④ 三、解答题16.解:由于y =2x 是增函数,f (x )≥22等价于|x +1|-|x -1|≥32, ① (2)分(i)当x ≥1时,|x +1|-|x -1|=2。
高中不等式试题及答案解析

高中不等式试题及答案解析试题一:已知不等式 \( ax^2 + bx + c > 0 \),其中 \( a < 0 \),求 x 的取值范围。
答案解析:由于 \( a < 0 \),二次函数 \( ax^2 + bx + c \) 的图像是一个开口向下的抛物线。
不等式 \( ax^2 + bx + c > 0 \) 表示函数值在 x 轴上方的区域。
要找到 x 的取值范围,我们需要找到抛物线的根,即解方程 \( ax^2 + bx + c = 0 \)。
设 \( x_1 \) 和 \( x_2 \) 是方程 \( ax^2 + bx + c = 0 \) 的两个根,根据韦达定理,我们有:\[ x_1 + x_2 = -\frac{b}{a} \]\[ x_1 x_2 = \frac{c}{a} \]由于 \( a < 0 \),\( x_1 \) 和 \( x_2 \) 必定异号,这意味着\( x_1 x_2 < 0 \)。
因此,不等式 \( ax^2 + bx + c > 0 \) 的解集是 \( x \in (x_1, x_2) \)。
试题二:若 \( x > 0 \),求不等式 \( \frac{1}{x} + x \geq 2 \) 成立的条件。
答案解析:我们可以使用 AM-GM 不等式(算术平均数-几何平均数不等式)来解决这个问题。
对于任意正数 \( a \) 和 \( b \),有:\[ \frac{a + b}{2} \geq \sqrt{ab} \]令 \( a = \frac{1}{x} \) 和 \( b = x \),我们得到:\[ \frac{\frac{1}{x} + x}{2} \geq \sqrt{\frac{1}{x} \cdot x} \]\[ \frac{1}{2x} + \frac{x}{2} \geq 1 \]两边乘以 2,得到:\[ \frac{1}{x} + x \geq 2 \]当且仅当 \( a = b \) 时,AM-GM 不等式取等号,即 \( \frac{1}{x} = x \)。
高一不等式考试题及答案

高一不等式考试题及答案一、选择题(每题4分,共40分)1. 若不等式x^2 - 4x + 3 > 0的解集为A,则A中不含元素()A. 0B. 1C. 2D. 3答案:C2. 对于不等式ax^2 + bx + c > 0,若a < 0,则其解集为()A. (-∞, -b/2a) ∪ (-b/2a, +∞)B. (-b/2a, +∞)C. (-∞, -b/2a)D. (-b/2a, -∞)答案:A3. 若不等式x^2 - 6x + 8 < 0的解集为B,则B中包含元素()A. 2B. 3C. 4D. 5答案:B4. 对于不等式x^2 - 5x + 6 ≤ 0,其解集为()A. {x | 2 ≤ x ≤ 3}B. {x | 3 ≤ x ≤ 2}C. {x | 2 < x < 3}D. {x | 3 < x < 2}答案:A5. 若不等式x^2 - 2x - 8 < 0的解集为C,则C中不包含元素()A. -2C. 4D. 5答案:D6. 对于不等式ax^2 + bx + c < 0,若a > 0,b^2 - 4ac < 0,则其解集为()A. ∅B. RC. {x | x < -b/2a}D. {x | x > -b/2a}答案:A7. 若不等式x^2 + 4x + 4 ≥ 0的解集为D,则D中包含元素()A. -2B. 0C. 2答案:B8. 对于不等式x^2 - 8x + 15 ≤ 0,其解集为()A. {x | 3 ≤ x ≤ 5}B. {x | 5 ≤ x ≤ 3}C. {x | 3 < x < 5}D. {x | 5 < x < 3}答案:A9. 若不等式x^2 - 10x + 21 < 0的解集为E,则E中不包含元素()A. 3B. 7C. 9D. 11答案:D10. 对于不等式ax^2 + bx + c > 0,若a < 0,b^2 - 4ac > 0,则其解集为()A. (-b/2a, -b/2a)B. (-∞, -b/2a) ∪ (-b/2a, +∞)C. (-b/2a, -b/2a)D. (-b/2a, +∞) ∪ (-∞, -b/2a)答案:D二、填空题(每题4分,共20分)11. 不等式x^2 - 9x + 14 > 0的解集为______。
高一数学不等式的性质试题答案及解析

高一数学不等式的性质试题答案及解析1.若则下列不等式成立的是()A.B.C.D.【答案】D【解析】由题意可得又有基本不等式可得,且,对不四个选项可得.【考点】基本不等式;不等关系与不等式.2.如果,则下列各式正确的是()A.B.C.D.【答案】D【解析】由于,不等式两边同时乘以,得,其他三项不一定正确,符号不确定,,.【考点】不等式的大小判定.3.,,则与的大小关系为.【答案】【解析】作差法比较大小,,,,所以p-q,【考点】利用不等式比较大小4.下列结论正确的是()A.若ac>bc,则a>b B.若a2>b2,则a>bC.若a>b,c<0,则 a+c<b+c D.若<,则a<b【答案】D【解析】的正负不定,故A错;的正负不定,故B错;不等式两边加上同一个数,不等号方向不变,故C错。
【考点】不等式基本性质的应用。
5.已知不等式的解集是.(1)若,求的取值范围;(2)若,求不等式的解集.【答案】(1)(2)【解析】(1)由,说明元素2满足不等式,代入即可求出的取值范围;(2)由,是方程的两个根,由韦达定理即可求出,代入原不等式解一元二次不等式即可;(1)∵,∴,∴(2)∵,∴是方程的两个根,∴由韦达定理得解得∴不等式即为:其解集为.【考点】一元二次不等式的解法6.设,则不等式的解集为()A.B.C.D.【答案】A【解析】当时,(舍去);当时,;综上所述,不等式的解集为.【考点】不等式的解法、等价转换思想.7.如果, 设, 那么()A.B.C.D.M与N的大小关系随t的变化而变化【答案】A【解析】,已知,所以,.【考点】比较大小.8.如果且,那么下列不等式中不一定成立的是( )A.B.C.D.【答案】D【解析】A是不等式两边同乘-1,正确;B,,C,由,得所以正确,D,不等式两边同乘,但不知道的符号,不一定成立.【考点】不等式的基本性质.9.若为实数,则下列命题正确的是()A.若,则B.若,则C.若,则D.若,则【答案】B【解析】试题分析. A 若,则不成立;C 对两边都除以,可得,C不成立;D令则有所以D不成立,故选B.【考点】不等式的基本性质.10.函数,的值域为_________.【答案】【解析】,又,则,,可知.所以.【考点】本题主要考查分离变量法求函数的值域,不等式的性质.11.若,则下列不等式一定不成立的是()A.B.C.D.【答案】C【解析】根据题意,由于,则根据倒数性质可知成立,对于对数函数性质,底数大于1是递增函数,故成立,对于D, 根据作差法可知成立,而对于C,应该是大于等于号,即左边大于等于右边,故选C。
高一数学不等式部分经典习题及答案

ab ;⑥若a<b<0,贝贝—>—;cdab3.不等式一.不等式的性质:1■同向不等式可以相加;异向不等式可以相减:若a>b,c>d,则a+c>b+d(若a>b,c<d,则a-c>b-d),但异向不等式不可以相加;同向不等式不可以相减;2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若a>b>0,c>d>0,则ac>bd(若a>b>0,0<c<d,则a>—);3•左右同正不等式:两边可以同时乘方或开方:若a>b>0,则a n>—或%疮>n b;4.若ab>0,a>b,则1<1;若ab<0,a>b,则1>1。
如abab(1) 对于实数a,b,c中,给岀下列命题:①若a>b,则ac2>bc2;②若ac2>bc2,则a>b;③若a<b<0,贝Ua2>ab>b2;④若a<b<0,贝』<—;⑦若c>a>b>0,贝卩a>b;⑧若a>b丄>,则a>0,b<0oc一ac一bab其中正确的命题是(答:②③⑥⑦⑧);(2) __________________________________________________ 已知-1<x+y<1,1<x一y<3,则3x一y的取值围是(答:1<3x-y<7);c(3) 已知a>b>c,且a+b+c=0,则_的取值围是二.不等式大小比较的常用方法:1.作差:作差后通过分解因式、配方等手段判断差的符号得岀结果2•作商(常用于分数指数幂的代数式);3•分析法;4. 平方法;答:5. 分子(或分母)有理化;6. 利用函数的单调性;7.寻找中间量或放缩法;8.图象法。
完整版)高一不等式及其解法习题及答案

完整版)高一不等式及其解法习题及答案教学目标】1.能够熟练解一元二次不等式、高次不等式和分式不等式2.理解分类讨论的数学思想并能够应用于解含参不等式教学重难点】分类讨论的数学思想教学过程】题型一:解一元二次不等式例1:解下列不等式1)2x²-3x-2>0;(2)-6x²-x+2≥0;(3)2x²-4x+70方法总结:对于一元二次不等式ax²+bx+c>0或ax²+bx+c<0,可以通过求出其判别式Δ=b²-4ac的值,来判断其解的情况。
1.当Δ>0时,方程有两个不相等的实数根,解集为x根2;2.当Δ=0时,方程有两个相等的实数根,解集为x=根1=根2;3.当Δ<0时,方程无实数根,解集为空集。
变式练】1-1.已知不等式ax²+bx+c的解集为(2,3),求不等式cx²+bx+a的解集。
题型二:解高次不等式例2:求不等式(x-4)(x-6)≤0的解集。
方法总结:对于高次不等式,可以通过将其化为一元二次不等式的形式,再利用一元二次不等式的解法来求解。
变式练】2-1.解不等式x(x-1)(x+1)(x+2)≥0.题型三:解分式不等式例3-1:解下列不等式1) 23/(x²-4x+1) < 1;(2) 23/(x²-4x+1) ≤ 2;(3) 23x-7/(x²-2x+1)。
方法总结:对于分式不等式,可以通过将其化为分子分母同号的形式,再利用一元二次不等式的解法来求解。
题型四:解含参数的一元二次不等式例4-1:解关于x的不等式2x+ax+2>(a∈R)。
方法总结:对于含参不等式,可以通过分类讨论的思想来解决。
首先讨论a的值,然后根据a的取值再讨论不等式的解集。
变式练】1.已知a∈R,解关于x的不等式ax-(a+1)x+1<2.2.解不等式a(x-1)/(x-2)。
高一数学具体的不等式试题答案及解析

高一数学具体的不等式试题答案及解析1.不等式的解集是A.B.C.D.【答案】D【解析】:因为方程的两个根为,所以不等式的解集是。
故选D。
【考点】一元二次不等式的解法.点评:熟练掌握一元二次不等式的解法和实数的性质是解题的关键.2.不等式的解集是【答案】【解析】等价于,所以,,故不等式的解集是。
【考点】简单分式不等式解法点评:简单题,分式不等式解法,主要是转化成整式不等式求解。
3.不等式≥0的解集 .【答案】R【解析】根据题意,不等式≥0等价于,那么根据绝对值的几何意义可知,任意实数的绝对值都大于等于零,故可知解集为R.【考点】一元二次不等式的解集点评:主要是考查了一元二次不等式的解法的运用,属于基础题。
4.函数在上满足,则的取值范围是()A.B.C.D.【答案】D【解析】根据题意,当a=0时,显然成立,故排除答案B,C,对于当时,函数为二次函数,那么使得在实数域上函数值小于零,则判别式小于零,开口向下可知得到,解得,综上可知为,选D.【考点】不等式点评:主要是考查了函数性质的运用,属于基础题。
5.已知存在实数使得不等式成立,则实数的取值范围是 .【答案】【解析】解:由题意借助数轴,|x-3|-|x+2|∈[-5,5],∵存在实数x使得不等式|x-3|-|x+2|≥|3a-1|成立,∴5≥|3a-1|,解得-5≤3a-1≤5,即-≤a≤2,故答案为[-,2]【考点】绝对值不等式点评:本题考查绝对值不等式,求解本题的关键是正确理解题意,区分存在问题与恒成立问题的区别,本题是一个存在问题,解决的是有的问题,故取|3a-1|≤5,即小于等于左边的最大值即满足题意,本题是一个易错题,主要错误就是出在把存在问题当成恒成立问题求解,因思维错误导致错误6.若不等式kx2-2x+6k<0(k≠0)。
(1)若不等式解集是{x|x<-3或x>-2},求k的值;(2)若不等式解集是R,求k的取值。
【答案】(1);(2)【解析】解:∵不等式kx2-2x+6k<0(k≠0),不等式的解集是{x|x<-3或x>-2},∴根据二次函数与方程的关系,得:k<0,且-3,-2为关于x的方程kx2-2x+6k=0的两个实数根,据韦达定理有-3+(-2)=,(2)根据题意,由于k=0,不符合题意舍去,当k不为零时,则根据开口向下,判别式小于零可知,4-24k<0,k<0得到取值范围是【考点】二次函数与不等式点评:本题考查了函数恒成立问题,着重考查二次函数的图象与性质,同时考查了分类讨论思想的运用和转化思想,易错点在于忽略当k=0的情形,属于中档题7.已知关于的不等式的解集是,则 .【答案】【解析】因为,关于的不等式的解集是,所以,a=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学不等式部分经典习题及答案一、不等式一、不等式的性质:1.同向不等式可以相加;异向不等式可以相减。
例如:若a>b。
c>d,则a+c>b+d(若a>b。
cb-d),但异向不等式不可以相加,同向不等式不可以相减。
2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘。
例如:若a>b>0.c>d>0,则ac>bd(若a>b>0.0b/d)。
3.左右同正不等式:两边可以同时乘方或开方。
例如:若a>b>0,则a>b或a^n>b^n。
4.若ab>0,a>b,则a/b>1;若abb,则a/b<-1.例如:对于实数a,b,c,给出下列命题:①若a>b,则ac>bc;②若ac>bc,则a>b;③若a<b<c,则a<b<ab;④若ab^2;⑤若a1;⑥若ab;⑦若c>a>b>d,则(c-a)/(c-a+b-d)>0;其中正确的命题是②③⑥⑦⑧。
2)已知-1≤x+y≤1,1≤x-y≤3,则3x-y的取值范围是1≤3x-y≤7.3)已知a>b>c,且a+b+c=1,则c的取值范围是[-2,-1)。
二、不等式大小比较的常用方法:1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果;2.作商(常用于分数指数幂的代数式);3.分析法;4.平方法;5.分子(或分母)有理化;6.利用函数的单调性;7.寻找中间量或放缩法;8.图象法。
其中比较法(作差、作商)是最基本的方法。
例如:1)设a>1且a不等于1,t>0,比较(1+t)/loga和2loga(t)的大小。
当a>1时,(1+t)/loga=2loga(t)(t=1时取等号)。
2)设a>2,p=a+√a-2.q=2a-√a-2,比较p和q的大小。
p>q。
3)比较1+log3(x)和2log2(x)的大小(x>0且x不等于1)。
当02时,1+log3(x)>2log2(x);当1<x<2时,1+log3(x)<2log2(x)。
当x=1时,两者相等。
三.在利用重要不等式求函数最值时,需要注意到“一正二定三相等,和定积最大,积定和最小”这17字方针。
下列命题中,正确的是C,即y=2-3x-4(x>0)的最小值是2-4/3.若x+2y=1,则2x+4y的最小值是22.正数x,y满足x+2y=1,则(1/x)+(1/y)的最小值为3+2/2=4.根据目标不等式左右的运算结构,可以选用4种常用不等式,如(1)2/(1+a^2)+1/(1+b^2)>=5/4(当且仅当a=b=1时,取等号);(2)a,b,c∈R,a+b+c>=ab+bc+ca(当且仅当a=b=c时,取等号);(3)若a>b>0,m>0,则(b/(a+m))<(b/a)<((b+m)/a);(4)对于任意实数x,有x-1/x<=sqrt(x^2+1)-1<=x。
如果正数a、b满足ab=a+b+3,则ab的取值范围是[9,+∞)。
五.证明不等式的方法有比较法、分析法、综合法和放缩法。
常用的放缩技巧有:1-1/2+1/3-1/4+。
+1/(2n-1)-1/2n<ln(n+1);n/(n+1)<1-1/(n+2)<n/(n+1)-1/(n+2);k+1-k)/(k+1+k^2)=1);2/(n+1)<1+1/2+。
+1/n-ln(n)<1/(n+1);1)已知a>b>c,求证:ab+bc+ca>ab+bc+ca;(2)已知a,b,c∈R,求证:ab+bc+ca>=abc(a+b+c);(3)已知a,b,x,y∈R,且(x+y)/(a+b)>1,x>y,求证:loga+logb+logc<log(x+a)+log(y+b)+logc;4)若a、b、c是不全相等的正数,求证:loga+logb+logc>=3log((a+b+c)/3);5)已知a,b,c∈R,求证:ab+bc+ca>=abc(a+b+c);6)若n∈N,求证:(n+1)^2+1-(n+1)<*n^2+1-n;7)已知|a|≠|b|,求证:|a-b|/|a+b|≤|a|-|b|/|a|+|b|;8)求证:1+1/2+1/4+。
+1/2^n<2.六.一元一次不等式的解法:首先要通过去分母、去括号、移项、合并同类项等步骤化为ax>b的形式。
如果a>0,则x>b/a;如果a0的解集为{x|x<-3}。
七.一元二次不等式的解集(联系图象)。
特别是当Δ=0和Δ0,x1,x2是方程ax^2+bx+c=0的两实根,且x1<x2,则其解集如下表:ax^2+bx+c>0 ax^2+bx+c≥0 ax^2+bx+c0 {x|xx2} {x|x≤x1或x≥x2} {x|x1<x<x2} {x|x1≤x≤x2} Δ=0 {x|x=x1=x2} {x|x=x1或x=x2} {x|x≠x1≠x2} {x|x≠x1或x≠x2} Δ<0 {x|x∈R} {x|无解}{x|x∈R} {x|x∈R}例如,解关于x的不等式:ax^2-(a+1)x+11;当a1或x1时,1<x<1/a)八.简单的一元高次不等式的解法:标根法。
其步骤是:(1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿过偶弹回;(3)根据曲线显现f(x)的符号变化规律,写出不等式的解集。
例如,解不等式(x-1)(x+2)≥0.(解集为{x|x≥1或x≤-2})又如,不等式(x-2)x^2-2x-3≥0的解集是{x|x≥3或x≤-1}。
再例如,设函数f(x)、g(x)的定义域都是实数集,且f(x)≥0的解集为{x|1≤x0的解集为(-∞,1)∪[2,∞)。
最后,要使满足关于x的不等式2x-9x+a<0(解集非空)的每一个x的值至少满足不等式x-4<x^2+3和x-6<x^2+8中的一个,则实数a的取值范围是[7,∞)。
注意到这里不能去分母,但分母恒为正或恒为负时可以去分母。
例如,解不等式(5-x)/(x^2-2x-3)<-1.(解集为(-1,1)∪(3,5))关于不等式的解法和XXX成立问题给定不等式 $ax-b>0$ 的解集为 $(1,+\infty)$,求不等式$\frac{ax+b}{x-2}>0$ 的解集。
解:首先,我们可以将 $\frac{ax+b}{x-2}$ 分解为$\frac{ax-2ax+2ax+b}{x-2}=\frac{ax-2ax}{x-2}+\frac{2ax+b}{x-2}=a-\frac{2a}{x-2}+\frac{2ax+b}{x-2}$。
因此,原不等式的解集为 $x\in(-\infty,-1)\cup(2,+\infty)$。
关于绝对值不等式的解法,有以下几种方法:1.分段讨论法:对于不等式 $|2-\frac{3}{x}|\geq 2-\frac{|x+4|}{2}$,我们可以分别讨论 $x<-4.-4\leq x<0.0\leqx<\frac{3}{2}。
x\geq \frac{3}{2}$ 四个情况,最后得到解集为$x\in\mathbb{R}$。
2.利用绝对值的定义:对于不等式 $|x|+|x-1|>3$,我们可以将其转化为 $x^2-x-4>0$ 或 $x^2-x+2<0$,解得 $x\in(-\infty,-1)\cup(2,+\infty)$。
3.数形结合:对于不等式 $|x+1|+|x-2|<4$,我们可以画出$y=|x+1|+|x-2|$ 的函数图像,发现其最小值为 $0$,因此得到解集为 $x\in(-1,2)$。
4.两边平方:对于不等式 $|3x+2|\geq |2x+a|$,我们可以将其平方得到 $9x^2+12x+4\geq 4x^2+4ax+a^2$,化简得到 $(a-3)x^2-3x+(a^2-4)\leq 0$。
因为不等式对于所有 $x$ 都成立,所以判别式 $\Delta=9-4(a-3)(a^2-4)\leq 0$,解得XXX。
对于含参不等式的解法,我们通常需要先确定其定义域,然后根据函数的增减性进行分类讨论。
例如:1.对于不等式 $\log_a 4-\log_a 30$ 且 $a\neq 1$,然后将其转化为 $a^{\log_a\frac{4}{3}}<a^{\log_a\frac{1}{2}}$,即$\frac{4}{3}<\frac{1}{2}$,解得 $a\in(0,1)\cup(4,+\infty)$。
2.对于不等式$ax^2>x(a-1)$,我们可以先确定$a\neq 0$,然后根据 $a$ 的正负和 $x$ 的正负进行分类讨论,最后得到解集为 $a=0$ 时为 $\{x|x0$ 时为 $\{x|x0\}$,$a<0$ 时为$\{x|0<x<1\}\cup\{x|x<0\}$。
对于不等式的恒成立问题,我们可以根据函数的最值来进行判断。
例如:1.对于不等式 $x+(y-1)>1$,我们可以将其转化为 $y<0$,因此 $c$ 的取值范围为 $(2-\infty)$。
2.对于不等式 $x-4+\frac{x}{x-3}>a$,我们可以将其转化为$\frac{x^2-3x-4}{x-3}>a$,然后根据函数的最值得到$a<1$。
3.对于不等式 $2x-1>m(x-1)$,我们可以将其转化为$x>\frac{m+1}{2}$,然后根据 $m$ 的取值范围得到$x\in(\frac{7-13\sqrt{2}}{2},+\infty)$。
1.若不等式$(-1)a<2^n$对于任意正整数$n$恒成立,则实数$a$的取值范围是$[-2,+\infty)$。
2.若不等式$x-2mx+2m+1>0$对于$x\in[-1,1]$的所有实数$x$都成立,则$m>-\frac{1}{2}$。
3.已知不等式$x-4+x^{-3}1$。
4.对于方程$ax^2+bx+c=0$有实数解的条件是:$a\neq0$且$\Delta=b^2-4ac\geq 0$。