高一上数学不等式等综合测试题

合集下载

高一数学不等式解题技巧精析及针对练习题(含答案)

高一数学不等式解题技巧精析及针对练习题(含答案)

1. (1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”)(3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”) 若0x <,则12x x+≤- (当且仅当1x =-时取“=”)若0x ≠,则11122-2x x x x x x+≥+≥+≤即或 (当且仅当b a =时取“=”)4.若0>ab ,则2≥+ab b a (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注意:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用例:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x 2 ≥23x 2·12x 2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x)≤-2x ·1x=-2 ∴值域为(-∞,-2]∪[2,+∞)解题技巧技巧一:凑项例 已知54x <,求函数14245y x x =-+-的最大值。

高一数学绝对值不等式试题

高一数学绝对值不等式试题

高一数学绝对值不等式试题1.(2014•江西)对任意x,y∈R,|x﹣1|+|x|+|y﹣1|+|y+1|的最小值为()A.1B.2C.3D.4【答案】C【解析】把表达式分成2组,利用绝对值三角不等式求解即可得到最小值.解:对任意x,y∈R,|x﹣1|+|x|+|y﹣1|+|y+1|=|x﹣1|+|﹣x|+|1﹣y|+|y+1|≥|x﹣1﹣x|+|1﹣y+y+1|=3,当且仅当x∈[0,],y∈[0,1]成立.故选:C.点评:本题考查绝对值三角不等式的应用,考查利用分段函数或特殊值求解不等式的最值的方法.2.(2014•宜春模拟)若关于x的不等式|x﹣1|+|x﹣3|≤a2﹣2a﹣1在R上的解集为∅,则实数a的取值范围是()A.a<﹣1或a>3B.a<0或a>3C.﹣1<a<3D.﹣1≤a≤3【答案】C【解析】|x﹣1|+|x﹣3|表示数轴上的x对应点到1和3对应点的距离之和,其最小值等于2,再由a2﹣2a﹣1<2,解得a的取值范围.解:|x﹣1|+|x﹣3|表示数轴上的x对应点到1和3对应点的距离之和,其最小值等于2,由题意|x﹣1|+|x﹣3|≤a2﹣2a﹣1的解集为空集,可得|x﹣1|+|x﹣3|>a2﹣2a﹣1恒成立,故有2>a2﹣2a﹣1,解得﹣1<a<3,故选:C.点评:本题考查绝对值的意义,绝对值不等式的解法,得到2>a2﹣2a﹣1,是解题的关键,属于中档题.3.(2014•吉安二模)已知f(x)=|x﹣1|+|x+m|(m∈R),g(x)=2x﹣1,若m>﹣1,x∈[﹣m,1],不等式f(x)<g(x)恒成立,则实数m的取值范围是()A.(﹣1,﹣]B.(﹣1,﹣)C.(﹣∞,﹣]D.(﹣1,+∞)【答案】B【解析】依题意,x∈[﹣m,1]时,f(x)=1﹣x+x+m=1+m;又x∈[﹣m,1],不等式f(x)<g (x)恒成立,问题转化为1+m<g(x)min=﹣2m﹣1恒成立,从而可得答案.解:∵f(x)=|x﹣1|+|x+m|,∴当m>﹣1,x∈[﹣m,1]时,f(x)=1﹣x+x+m=1+m;又g(x)=2x﹣1,x∈[﹣m,1],不等式f(x)<g(x)恒成立,即1+m<2x﹣1(x∈[﹣m,1])恒成立,又当x∈[﹣m,1]时,g(x)min =﹣2m﹣1,∴1+m<﹣2m﹣1,解得:m<﹣,又m>﹣1,∴﹣1<m<﹣.故选:B.点评:本题考查绝对值不等式的解法,考查等价转化思想与综合运算能力,属于中档题.4.(2014•梧州模拟)不等式|x2﹣1|>3的解集为()A.(﹣2,2)B.(﹣∞,﹣1)∪(1,+∞)C.(﹣1,1)D.(﹣∞,﹣2)∪(2,+∞)【答案】D【解析】由原不等式可得可得 x2﹣1>3,或 x2﹣1<﹣3,分别求得每个不等式的解集,再取并集,即得所求.解:由不等式|x2﹣1|>3,可得 x2﹣1>3,或 x2﹣1<﹣3.解x2﹣1>3,可得 x>2,或 x<﹣2;解x2﹣1<﹣3可得 x无解.综上可得,不等式的解集为[x|x>2,或 x<﹣2},故选:D.点评:本题主要考查分式不等式的解法,体现了等价转化和分类讨论的数学思想,属于基础题.5.(2013•红桥区二模)已知集合 M={x||x+2|+|x﹣1|≤5},N={x|a<x<6},且M∩N=(﹣1,b],则b﹣a=()A.﹣3B.﹣1C.3D.7【答案】C【解析】解绝对值不等式求得 M={x|﹣3≤x≤2},再由N={x|a<x<6},且M∩N=(﹣1,b],可得a=﹣1,b=2,从而求得b﹣a的值.解:由于|x+2|+|x﹣1|表示数轴上的x对应点到﹣2和1对应点的距离之和,而﹣3和2对应点到﹣2和1对应点的距离之和正好等于5,故由|x+2|+|x﹣1|≤5可得﹣3≤x≤2,∴集合 M={x||x+2|+|x﹣1|≤5}={x|﹣3≤x≤2}.再由N={x|a<x<6},且M∩N=(﹣1,b],可得a=﹣1,b=2,b﹣a=3,故选C.点评:本题主要考查绝对值的意义,绝对值不等式的解法,两个集合的交集的定义,属于中档题.6.(2013•红桥区二模)集合A={x||x﹣2|≤2},B={y|y=﹣x2,﹣1≤x≤2},则A∩B=()A.{x|﹣4≤x≤4}B.{x|x≠0}C.{0}D.∅【答案】C【解析】解绝对值不等式|x﹣2|≤2可求得集合A,由y=﹣x2,﹣1≤x≤2可求得集合B,从而可得A∩B.解:∵|x﹣2|≤2,∴﹣2≤x﹣2≤2,∴0≤x≤4,即A={x|0≤x≤4};又B={y|y=﹣x2,﹣1≤x≤2}={y|﹣4≤y≤0},∴A∩B={0}.故选C.点评:本题考查绝对值不等式的解法,考查函数的值域,考查交集及其运算,求得集合A与集合B是关键,数中档题.7.(2014•湖南)若关于x的不等式|ax﹣2|<3的解集为{x|﹣<x<},则a= .【答案】﹣3【解析】分a=0、a>0、a<0三种情况,分别去掉绝对值求得不等式的解集,再把求得的解集和所给的解集作对比,从而求得a的值,综合可得结论.解:显然,a=0不满足条件.当a>0时,由关于x的不等式|ax﹣2|<3可得﹣3<ax﹣2<3,解得﹣<x<,再根据的解集为{x|﹣<x<},∴,a无解.当a<0时,由关于x的不等式|ax﹣2|<3可得﹣3<ax﹣2<3,解得<x<﹣,再根据的解集为{x|﹣<x<},∴,解得a=﹣3,故答案为:﹣3.点评:本题主要考查绝对值不等式的解法,体现了分类讨论的数学思想,属于中档题.8.(2014•重庆模拟)不等式对一切非零实数x,y均成立,则实数a的范围为.【答案】[1,3]【解析】由对勾函数的性质,我们可以求出不等式左边的最小值,再由三角函数的性质,我们可以求出siny的最大值,若不等式恒成立,则|a﹣2|≤1,解这个绝对值不等式,即可得到答案.解:∵∈(﹣∞,﹣2]∪[2,+∞)∴||∈[2,+∞),其最小值为2又∵siny的最大值为1故不等式恒成立时,有|a﹣2|≤1解得a∈[1,3]故答案为[1,3]点评:本题考查的知识点是绝对值三角不等式的解法,其中根据对勾函数及三角函数的性质,将不等式恒成立转化为|a﹣2|≤1,是解答本题的关键.9.(2014•江西二模)不等式|2﹣x|+|x+1|≤a对任意x∈[0,5]恒成立的实数a的取值范围是.【答案】[9,+∞)【解析】:|2﹣x|+|x+1|表示数轴上的x对应点到﹣1和2对应点的距离之和,当x∈[0,5]时,其最大值为9,故应有a≥9.解:|2﹣x|+|x+1|表示数轴上的x对应点到﹣1和2对应点的距离之和,当x∈[0,5]时,|2﹣x|+|x+1|的最大值为9.要使不等式|2﹣x|+|x+1|≤a对任意x∈[0,5]恒成立,需a≥9,故实数a的取值范围是[9,+∞),故答案为[9,+∞).点评:本题考查绝对值的意义,函数的最大值及函数的恒成立问题,求出|2﹣x|+|x+1|的最大值为9,是解题的关键.10.(2014•安徽模拟)若存在实数x使|x﹣a|+|x﹣1|≤3成立,则实数a的取值范围是.【答案】[﹣2,4].【解析】利用绝对值的几何意义,可得到|a﹣1|≤3,解之即可.解:在数轴上,|x﹣a|表示横坐标为x的点P到横坐标为a的点A距离,|x﹣1|就表示点P到横坐标为1的点B的距离,∵(|PA|+|PB|)min =|a﹣1|,∴要使得不等式|x﹣a|+|x﹣1|≤3成立,只要最小值|a﹣1|≤3就可以了,即|a﹣1|≤3,∴﹣2≤a≤4.故实数a的取值范围是﹣2≤a≤4.故答案为:[﹣2,4].点评:本题考查绝对值不等式的解法,考查绝对值的几何意义,得到|a﹣1|≤3是关键,也是难点,考查分析问题、转化解决问题的能力,属于中档题.。

高一数学基本不等式试题

高一数学基本不等式试题

高一数学基本不等式试题1.(2014•榆林模拟)已知各项均为正数的等比数列{an }满足a7=a6+2a5,若存在两项am,an使得的最小值为()A.B.C.D.【答案】A【解析】由a7=a6+2a5求得q=2,代入求得m+n=6,利用基本不等式求出它的最小值.解:由各项均为正数的等比数列{an }满足a7=a6+2a5,可得,∴q2﹣q﹣2=0,∴q=2.∵,∴q m+n﹣2=16,∴2m+n﹣2=24,∴m+n=6,∴,当且仅当=时,等号成立.故的最小值等于,故选A.点评:本题主要考查等比数列的通项公式,基本不等式的应用,属于基础题.2.(2014•兴安盟一模)x、y满足约束条件,若目标函数z=ax+by(a>0,b>0)的最大值为7,则的最小值为()A.14B.7C.18D.13【答案】B【解析】作出可行域,得到目标函数z=ax+by(a>0,b>0)的最优解,从而得到3a+4b=7,利用基本不等式即可.解:∵x、y满足约束条件,目标函数z=ax+by(a>0,b>0),作出可行域:由图可得,可行域为△ABC区域,目标函数z=ax+by(a>0,b>0)经过可行域内的点C时,取得最大值(最优解).由解得x=3,y=4,即C(3,4),∵目标函数z=ax+by(a>0,b>0)的最大值为7,∴3a+4b=7(a>0,b>0),∴=(3a+4b)•()=(9++16+)≥(25+2)=×49=7(当且仅当a=b=1时取“=”).故选B.点评:本题考查线性规划,作出线性约束条件下的可行域,求得其最优解是关键,也是难点,属于中档题.3.(2014•烟台三模)设二次函数f(x)=ax2﹣4x+c(x∈R)的值域为[0,+∞),则的最小值为()A.3B.C.5D.7【答案】A【解析】先判断a、c是正数,且ac=4,把所求的式子变形使用基本不等式求最小值.解:由题意知,a>0,△=1﹣4ac=0,∴ac=4,c>0,则则≥2×=3,当且仅当时取等号,则的最小值是3.故选A.点评:本题考查函数的值域及基本不等式的应用,求解的关键就是拆项,属于基础题.4.(2014•淮南一模)函数y=a x+3﹣2(a>0,且a≠1)的图象恒过定点A,且点A在直线mx+ny+1=0上(m>0,n>0),则的最小值为()A.12B.10C.8D.14【答案】A【解析】先求出定点A,将其代入直线方程即可得到n、m满足的关系式,再利用基本不等式的性质即可.解:当x=﹣3时,f(﹣3)=a0﹣2=1﹣2=﹣1,∴定点A(﹣3,﹣1).∵点A在直线mx+ny+1=0上,∴﹣3m﹣n+1=0,即3m+n=1.∵m>0,n>0,∴=(3m+n)=6+=12,当且仅当m>0,n>0,3m+n=1,,即n=,时取等号.因此的最小值为12.故选A.点评:熟练掌握基本不等式的性质是解题的关键.5.(2014•安徽模拟)若2m+4n<2,则点(m,n)必在()A.直线x+y=1的左下方B.直线x+y=1的右上方C.直线x+2y=1的左下方D.直线x+2y=1的右上方【答案】C【解析】利用基本不等式得2m+4n≥2,再结合题意并化简2m+2n<2,由指数函数的单调性求解此不等式,再解集转化为几何意义.解:由基本不等式得,2m+4n=2m+22n≥2=2∵2m+4n<2,∴2<2,∴<,则2m+2n<2,又因y=2x在定义域上递增,则m+2n<1,∴点(m,n)必在直线x+2y=1的左下方.故选C.点评:本题考查了基本不等式的应用,结合题意列出含有指数不等式,利用指数函数的单调性求解,还得判断出与选项中直线的位置关系.6.(2014•烟台二模)已知向量=(x﹣1,2),=(4,y),若⊥,则9x+3y的最小值为()A.2B.C.6D.9【答案】C【解析】由于⊥⇔=0,即可得出x,y的关系,再利用基本不等式即可得出9x+3y的最小值.解:∵⊥,∴(x﹣1,2)•(4,y)=0,化为4(x﹣1)+2y=0,即2x+y=2.∴9x+3y≥===6,当且仅当2x=y=1时取等号.故选C.点评:本题考查了⊥⇔=0、基本不等式的性质,属于基础题.7.(2014•天津模拟)已知点P(x,y)在直线x+2y=3上移动,当2x+4y取最小值时,过P点(x,y)引圆C:=1的切线,则此切线长等于()A.1B.C.D.2【答案】D【解析】由条件利用基本不等式可得当2x+4y取最小值时,P点的坐标为(,),再根据CP==,大于圆的半径1,由此求得圆的切线长为的值.解:∵x+2y=3,2x+4y =2x+22y≥2=4,当且仅当x=2y=时,等号成立,∴当2x+4y取最小值4时,P点的坐标为(,),点P到圆心C的距离为CP==,大于圆的半径1,故切线长为==2,故选:D.点评:本题主要考查基本不等式的应用,点到直线的距离公式,直线和圆相切的性质,属于基础题.8.(2014•鹤城区二模)已知a,b为正实数,函数y=2ae x+b的图象经过点(O,1),则的最小值为()A.3+2B.3﹣2C.4D.2【答案】A【解析】将点(O,1)的坐标代入y=2ae x+b,得到a,b的关系式,再应用基本不等式即可.解:∵函数y=2ae x+b的图象经过点(O,1),∴1=2a•e0+b,即2a+b=1(a>0,b>0).∴=()•1=()•(2a+b)=(2+1++)≥3+2(当且仅当b=a=﹣1时取到“=”).故选A.点评:本题考查基本不等式,将点(O,1)的坐标代入y=2ae x+b,得到a,b的关系式是关键,属于基础题.9.(2014•萧山区模拟)已知a>0,b>0,且a+2b=ab,则ab的最小值是()A.4B.8C.16D.32【答案】B【解析】由条件可得ab≥2,化简可得≥2,从而有ab≥8,由此求得ab的最小值.解:∵已知a>0,b>0,且a+2b=ab,∴ab≥2.化简可得≥2,∴ab≥8,当且仅当a=2b时等号成立,故ab的最小值是8,故选B.点评:本题主要考查基本不等式的应用,注意检验等号成立的条件,式子的变形是解题的关键,属于基础题.10.(2014•南昌模拟)若正数x,y满足x2+3xy﹣1=0,则x+y的最小值是()A.B.C.D.【答案】B【解析】先根据题中等式将y用x表示出来,然后将x+y中的y消去,然后利用基本不等式可求出最值,注意等号成立的条件.解:∵正数x,y满足x2+3xy﹣1=0,∴3xy=1﹣x2,则y=,∴x+y=x+=+≥2=当且仅当=即x=时取等号,故x+y的最小值是.故选:B.点评:本题主要考查了消元法的应用,以及基本不等式的应用,同时考查了分析问题的能力和运算求解的能力,属于中档题.。

高中数学教师资格证笔试练题:第二章 一元二次函数、方程和不等式 综合测试卷

高中数学教师资格证笔试练题:第二章 一元二次函数、方程和不等式  综合测试卷

2019版新课标高一数学第二章综合测试卷一元二次函数方程及不等式第I 卷一、单项选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知集合A={x |x -2x -5≤ 0},B={1,2,3,4,5},则A∩B 等于( )A .{2,3,4,5}B .{3,4}C .{3,4,5}D .{2,3,4} 2.“∀x<0,x 2+ax+2 ≥ 0”为真命题,则实数a 的取值范围为( )A .{a| a ≤ 2√2}B .{a|a ≤ -2√2}C .{a|a ≥ 2√2}D .{a|a ≥ -2√2}3.已知a ,b ∈R ,条件甲:a>b>0,条件乙:1a <1b,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知命题p :存在x ∈R ,x 2+ax+4a ≤ 0。

若命题p 是假命题,则实数a 的取值范围是( )A .-16<a<0B .-4<a<0C .0<a<4D .0<a<165.若集合A={x|ax 2-ax+1<0}= ,则实数a 的取值范围是( )A .{a|0< a < 4}B .{a|0≤ a <4}C .{a|0< a ≤4}D .{a|0≤ a ≤4} 6.下列结论错误的是( )A .若a>b ,则1a <1bB .若ac<0,ad>bc ,则b a >dcC .若a>b>0,m>0,则b a <b+ma+mD .若a>0,b>0,则2ab a+b≤√a 2+b 227.已知2xy-y+1=0(x ,y>0),则2+xyx的最小值为( )A .4√2B .8C .9D .8√28.要制作一个容积为4 m 3 ,高为1 m 的无盖长方体容器。

高一数学一元二次不等式试题

高一数学一元二次不等式试题

高一数学一元二次不等式试题1.不等式x(2﹣x)≤0的解集为()A.{x|0≤x≤2}B.{x|x≤0,或x≥2}C.{x|x≤2}D.{x|x≥0}【答案】B【解析】试题分析:,,;即不等式的解集为.【考点】解不等式.2.不等式的解集是()A.B.C.D.【答案】A【解析】,故选A,注意分解因式后变量系数的正负.【考点】解不等式.3.已知函数f(x)=mx2-mx-1.(1)若对于x∈R,f(x)<0恒成立,求实数m的取值范围;(2)若对于x∈[1,3],f(x)<5-m恒成立,求实数m的取值范围.【答案】(1)的取值范围(2)的取值范围【解析】试题分析:(1)对于含二次项恒成立的问题,注意讨论二次项系数是否为0,这是学生容易漏掉的地方.(2)恒成立问题一般需转化为最值,利用单调性证明在闭区间的单调性.(3)一元二次不等式在上恒成立,看开口方向和判别式.(4)含参数的一元二次不等式在某区间内恒成立的问题通常有两种处理方法:一是利用二次函数在区间上的最值来处理;二是分离参数,再去求函数的最值来处理,一般后者比较简单.试题解析:解析(1)由题意可得m=0或⇔m=0或-4<m<0⇔-4<m≤0.故m的取值范围为(-4,0]. 6分(2)∵f(x)<-m+5⇔m(x2-x+1)<6,∵x2-x+1>0,∴m<对于x∈[1,3]恒成立,记g(x)=,x∈[1,3],记h(x)=x2-x+1,h(x)在x∈[1,3]上为增函数.则g(x)在[1,3]上为减函数,∴[g(x)]=g(3)=,∴m<. 所以m的取值范围为. 3分min【考点】一元二次不等式恒成立的问题.4.不等式的解集为,则( )A.a =-8,b =-10B.a =-1,b = 9C.a =-4,b =-9D.a =-1,b = 2【答案】【解析】不等式的解集为,为方程的两根,则根据根与系数关系可得,.故选C.【考点】一元二次不等式;根与系数关系.5.已知不等式的解集为,则不等式的解集为()A.B.C.D.【答案】D【解析】由不等式的解集为,知,是不等式不等式对应方程的两个根,所以有,,由以上两式得,,所以即为,分解因式得,不等式对应方程的根为,,由口诀“大于取两边,小于取中间”得不等式的解为;【考点】不等式解集6.解关于的不等式【答案】见解析【解析】对于含参数的不等式,要对参数进行分类讨论,二次项系数含参数的要分系数等于0和不等于0来讨论,不等于0时要注意讨论方程根的大小;试题解析:解:当时,原不等式变为:当时,原不等式分解为:当时,解集为:;当时,解集为:;当时,解集为:当时,解集为:【考点】含参数的不等式的解法;7.不等式的解集为________________.【答案】.【解析】将原不等式变形为,∴不等式的解集为.【考点】解一元二次不等式.8.若不等式恒成立,则的取值范围是 .【答案】【解析】当时,恒成立,当时,由得,解得因此.【考点】不等式恒成立9.若不等式,对恒成立,则关于的不等式的解集为()A.B.C.D.【答案】A【解析】根据题意,不等式,对恒成立,则,根据题意,由于,故可知,且t>1,故可知答案为A.【考点】一元二次不等式点评:主要是考查了一元二次不等式的恒成立的问题的运用,属于基础题。

(易错题)高中数学高中数学选修4-5第一章《不等关系与基本不等式》测试卷(答案解析)

(易错题)高中数学高中数学选修4-5第一章《不等关系与基本不等式》测试卷(答案解析)

一、选择题1.当[1,1]x ∈-时,不等式2||||1ax b x c ++≤恒成立,则||||||a b c ++的最大值为( ) A .18B .17C .16D .152.已知,a b R +∈,2229ab b a b +++=,则+a b 的最小值( ) A .1B .2C .52D .33.不等式2122x x a a ++-≥-恒成立,则a 的取值范围是( ) A .[]1,3-B .][),33,(-∞⋃+∞C .(),3-∞D .()3,+∞)4.已知1x <-,那么在下列不等式中,不成立的是( ) A .210x ->B .12x x+<- C .sin 0x x -> D .cos 0x x +>5.下列命题中,正确的是( ) A .若a b >,c d >,则a c > B .若ac bc >,则a b > C .若22a b c c <,则a b < D .若a b >,c d >,则ac bd >6.已知log e a π=,ln eb π=,2e lnc π=,则( ) A .a b c <<B .b c a <<C .b a c <<D .c b a <<7.已知()f x 是定义在R 上的偶函数,且在区间(],0-∞上单调递增,若实数m 满足321(log (211))(log )2f m f -+>,则m 的取值范围是( )A .13(,)(,)22-∞-+∞) B .3(,)2-∞C .1(,)2-+∞ D .13(,)22-8.已知x ,y ∈R ,且0x y >>,则( )A .11x y> B .11()()22xy<C .1122x y <D .sin sin x y >9.若()0,2x π∈,则不等式sin sin x x x x +<+的解集为( ) A .()0,πB .5,44ππ⎛⎫ ⎪⎝⎭C .3,22ππ⎛⎫ ⎪⎝⎭D .(),2ππ10.已知实数,a b ,且a b >,则以下不等式恒成立的是( )A .33a b >B .22a b >C .1133a b⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭D .11a b< 11.已知,a b ∈R ,且2a bP +=,Q =P ,Q 的关系是( ) A .P Q ≥B .P Q >C .P Q ≤D .P Q <12.若0a b >>,则( )A .11a b>B .22log log a b <C .22a b <D .1122ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭二、填空题13.已知关于x 的不等式1+1ax ax ->在[2,5]有实数解,则实数a 的取值范围为________. 14.已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______ 15.函数11y x x =+--的最大值是___________16.已知实数a b c >>,且满足:2221,3a b c a b c ++=++=,则s b c =+的取值范围是______.17.某种商品在某一段时间内进行提价,提价方案有三种:第一种:先提价%m ,再提价%n ;第二种:先提价%2m n +,再提价%2m n+;第三种:一次性提价()%+m n .已知0m n >>,则提价最多的方案是第__________种.18.不等式252x xy -<-对任意[]1,2x ∈都成立,则实数y 的取值范围为______;19.若存在实数a 使得44max cos 3,cos 710cos 3cos 3c c a a a a ⎧⎫++++≥⎨⎬++⎩⎭成立,则实数c 的取值范围是_____. 20.不等式4x x>的解集为__________. 三、解答题21.已知函数()|21||23|f x x x =++-. (1)求不等式()6f x ≤的解集;(2)若关于x 的不等式22()log (3)2f x a a -->恒成立,求实数a 的取值范围. 22.(1)已知()|1||2|f x x x =-+-,当()5f x ≤时,求x 的取值范围.(2)已知2()28f x x x =--,若对于一切2x >,均有()()215f x m x m ≥+--成立,求实数m 的取值范围. 23.已知()12f x x x =-+-.(1)求使得()2f x >的x 的取值集合M ;(2)求证:对任意实数a ,()0b a ≠,当R x C M ∈时,()a b a b a f x ++-≥恒成立. 24.已知函数()1144f x x x =-++,M 为不等式()2f x ≤的解集. (1)求M ;(2)证明:当a ,b M ∈时,a b -. 25.已知函数()12f x x a x a=-++. (1)当1a =时,求不等式()4f x >的解集;(2)若不等式()2f x m m ≥-+对任意实数x 及a 恒成立,求实数m 的取值范围.26.设x ∈R ,解不等式211x x +->.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】 分别令0x =、12、1,则可求得1,1,142a b c c a b c ≤++≤++≤,利用这三个不等式,可构造出a 、b ,即可求出a 、b 的范围,即可得答案. 【详解】 因为[1,1]x ∈-, 所以[0,1]x ∈,当0x =时,可得1c ≤①, 当12x =时,可得142a b c ++≤②,当1x =时,可得1a b c ++≤③, 由①②③可得114()()84222ab ac a b c c =++-++-≤, 134()()84244a b b c a b c c =++-++-≤,所以88117a b c ++≤++=,故选:B 【点睛】本题考查利用不等式性质求范围,解题的关键是分别求出c 、42a bc ++、a b c ++的范围,再整体代入求出a 、b 的范围,考查整体代入,转化求解的能力,属中档题.2.C解析:C 【分析】令z a b =+,得a z b =-,代入2229ab b a b +++=,化简后利用判别式列不等式,解不等式求得+a b 的最小值. 【详解】令z a b =+,得a z b =-,代入2229ab b a b +++=并化简得()212290b z b z +--+=,关于b 的一元二次方程有正解,所以首先()()2124290z z ∆=---+≥, 即()()27250z z +-≥,由于,a b 是正实数,所以250z -≥,即52z ≥,也即+a b 的最小值为52. 此时对称轴1221120222z z z ---==-≥>,所以关于b 的一元二次方程()212290b z b z +--+=有正解,符合题意.故选:C 【点睛】本小题主要考查判别式法求最值,考查一元二次不等式的解法,属于中档题.3.A解析:A 【分析】利用绝对值三角不等式求得12x x ++-的最小值,由此可得出关于实数a 的不等式,进而可解得实数a 的取值范围. 【详解】由绝对值三角不等式可得()()12123x x x x ++-≥++-=,当12x -≤≤时等号成立,由于不等式2122x x a a ++-≥-恒成立,则223a a -≤,解得13a -≤≤. 因此,实数a 的取值范围是[]1,3-. 故选:A. 【点睛】本题考查利用绝对值不等式恒成立求参数,考查了绝对值三角不等式的应用,考查计算能力,属于中等题.4.D解析:D 【分析】利用作差法可判断A 、B 选项的正误,利用正弦、余弦值的有界性可判断C 、D 选项的正误.综合可得出结论. 【详解】1x <-,则()()21110x x x -=-+>,()22112120x x x x x x x+++++==<,又sin x 、[]cos 1,1x ∈-,sin 0x x ∴->,cos 0x x +<.可得:ABC 成立,D 不成立. 故选:D. 【点睛】本题考查不等式正误的判断,一般利用作差法来进行判断,同时也要注意正弦、余弦有界性的应用,考查推理能力,属于中等题.5.C解析:C 【分析】利用不等式的基本性质进行逐项判断即可,不成立的举反例. 【详解】对于选项A:若2,3,1,2a b c d =-=-==-,满足a b >,c d >,但是a c >不成立,故选项A 错误;对于选项B :若1,3,2c a b =-=-=-,满足ac bc >,但a b >不成立,故选项B 错误; 对于选项C :因为22a b c c<,整理化简可得20a bc -<,因为20c >,所以0a b -<,即a b <成立,故选项C 正确;对于选项D:若1, 1.1,2a b c d ==-=-=-,满足a b >,c d >,但是ac bd >不成立,故选项D 错误; 【点睛】本题考查不等式与不等关系;不等式的基本性质的灵活运用是求解本题的关键;属于中档题、常考题型.6.B解析:B【分析】因为1b c +=,分别与中间量12做比较,作差法得到12b c <<,再由211log e log e 22a ππ==>,最后利用作差法比较a 、c 的大小即可.【详解】解:因为1b c +=,分别与中间量12做比较,2223111ln ln e ln 022e 2e b ππ⎛⎫-=-=< ⎪⎝⎭,432211e 1e ln ln e ln 0222c ππ⎛⎫-=-=> ⎪⎝⎭,则12b c <<,211log e log e 22a ππ==>,()112ln ln 20ln ln a c ππππ-=--=+->,所以b c a <<, 故选:B . 【点睛】 本题考查作差法比较大小,对数的运算及对数的性质的应用,属于中档题.7.D解析:D 【分析】不等式等价于()()()3log 2111f m f -+>,利用函数是偶函数和其单调性可知()3log 2111m -+<,转化为解对数和含绝对值的不等式.【详解】()f x 是偶函数,()()21log 112f f f ⎛⎫∴=-= ⎪⎝⎭,即不等式等价于()()()3log 2111f m f -+>()3log 2110m -+≥ ,()f x 是定义在R 上的偶函数,且在区间(],0-∞上单调递增,()f x ∴在[)0,+∞单调递减,()3log 2111m ∴-+<,即2113m -+<,整理为:212m -< ,2212m ∴-<-<,解得:1322m -<<. 故选:D 【点睛】本题考查利用函数的性质解不等式,主要考查转化与化归的思想和计算能力,属于中档题型,一般利用函数是偶函数,并且已知函数在区间上的单调性时,()()()()1212f x f x f x f x >⇒>,然后利用()0,∞+或[)0,+∞的单调性解不等式.8.B解析:B 【分析】取特殊值排除ACD 选项,由指数函数12xy ⎛⎫= ⎪⎝⎭的单调性证明不等式,即可得出正确答案. 【详解】当11,2x y ==时,1112x y =<=,则A 错误;12xy ⎛⎫= ⎪⎝⎭在R上单调递减,x y >,则11()()22x y <,则B 正确;当4,1x y ==时,112221x y =>=,则C 错误; 当3,22x y ππ==时,sin 1sin 1x y =-<=,则D 错误; 故选:B 【点睛】本题主要考查了由条件判断不等式是否成立,属于中档题.9.D解析:D 【分析】由绝对值三角不等式的性质得出sin 0x x <,由02x π<<,得出sin 0x <,借助正弦函数图象可得出答案. 【详解】因为sin sin x x x x +<+成立,所以sin 0x x <, 又(0,2)x π∈,所以sin 0x <,(,2)x ππ∈,故选D . 【点睛】本题考查绝对值三角不等式的应用,再利用绝对值不等式时,需要注意等号成立的条件,属于基础题.10.A解析:A 【解析】 【分析】根据幂函数的单调性判断A ;令1a =,1b =-判断,B D ,根据指数函数的单调性判断C .【详解】因为()3f x x =是增函数,所以由b a >可得33b a >,选项A 正确;当1a =,1b =-时,22a b >不成立,选项B 错误;因为1y ()3x =是减函数,由a b >可得11()()33a b<,选项C 错误,1a =,1b =-时,11a b<不成立,选项D 错误,故选A . 【点睛】本题主要考查不等关系与不等式的性质,属于中档题.利用条件判断不等式是否成立主要从以下几个方面着手:(1)利用不等式的性质直接判断;(2)利用函数式的单调性判断;(3)利用特殊值判断.11.C解析:C 【解析】分析:因为P 2﹣Q 2=﹣2()4a b -≤0,所以P 2≤Q 2,则P≤Q ,详解:因为a ,b ∈R ,且P=2a b +,,所以P 2=2224a b ab ++,Q 2=222a b +,则P 2﹣Q 2=2224a b ab ++﹣222a b +=2224ab a b --=﹣2()4a b -≤0, 当且仅当a=b 时取等成立,所以P 2﹣Q 2≤0,即P 2≤Q 2,所以P≤Q , 故选:C .点睛:比较大小的常用方法 (1)作差法:一般步骤:①作差;②变形;③定号;④结论.其中关键是变形,常采用配方、因式分解、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差. (2)作商法:一般步骤:①作商;②变形;③判断商与1的大小;④结论.(3)函数的单调性法:将要比较的两个数作为一个函数的两个函数值,根据函数的单调性得出大小关系. (4)借助第三量比较法12.D解析:D 【解析】分析:对每一个选项逐一判断得解.详解:对于选项A,11110,b a a b ab a b--=<∴<,所以选项A 错误. 对于选项B,因为0a b >>,对数函数2log y x =是增函数,所以22log log a b >,所以选项B 错误.对于选项C,2222()()0,a b a b a b a b -=+->∴>,所以选项C 错误.对于选项D, 因为0a b >>,指数函数1()2x y =是减函数,所以 1122a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,所以选项D 正确. 故答案为D.点睛:(1)本题主要考查不等式的性质和函数的性质,意在考查学生对这些知识的掌握水平.(2)比较实数的大小,一般利用作差法和作商法,本题利用的是作差法,注意函数的图像和性质的灵活运用.二、填空题13.【分析】根据题意分析可得原问题转化为在上能够成立设求出的最小值分析可得答案【详解】解:根据题意不等式在有实数解即在上能够成立又由则在上能够成立设则在区间上为减函数其最小值为若在上能够成立则;故的取值 解析:3(,)2a ∈+∞【分析】根据题意,分析可得原问题转化为11x a x +>-在[2,5]上能够成立,设1()1x f x x +=-,求出()f x 的最小值,分析可得答案.【详解】解:根据题意,不等式11ax a x ->+在[2,5]有实数解,即111x a x -⨯>+在[2,5]上能够成立,又由[2x ∈,5],则11x a x +>-在[2,5]上能够成立, 设1()1x f x x +=-,则2()11f x x =+-,在区间[2,5]上为减函数,其最小值为()352f =,若11x a x +>-在[2,5]上能够成立,则32a >; 故a 的取值范围是3|2a a ⎧⎫>⎨⎬⎩⎭; 故答案为:3,2a ⎛⎫∈+∞ ⎪⎝⎭. 【点睛】本题考查分式不等式的解法,关键是将分式不等式转化为整式不等式进行分析.14.【分析】令求得st 利用不等式的性质可求的取值范围【详解】令则又①②①+②得故答案为【点睛】本题考查简单线性规划问题可以作图利用线性规划知识解决也可以用待定系数法利用不等式的性质解决是中档题 解析:[]1,7【分析】令3()()x y s x y t x y -=++-,求得s,t ,利用不等式的性质可求3()()x y s x y t x y -=++-的取值范围. 【详解】令3()()x y s x y t x y -=++-()()s t x s t y =++-则31s t s t +=⎧⎨-=-⎩, 12s t =⎧∴⎨=⎩, 又11x y -≤+≤①13x y ≤-≤,22()6x y ∴≤-≤⋯②∴①+②得137x y ≤-≤.故答案为[1,7] 【点睛】本题考查简单线性规划问题,可以作图利用线性规划知识解决,也可以用待定系数法,利用不等式的性质解决,是中档题.15.2【分析】利用表示数轴上的到的距离减去它到1的距离求得它的最大值等于2即可【详解】∵表示数轴上的到的距离减去它到1的距离最大值等于2故答案为2【点睛】本题主要考查绝对值不等式绝对值的意义函数的值域属解析:2 【分析】利用表示数轴上的x 到1-的距离减去它到1的距离,求得它的最大值等于2即可. 【详解】∵11x x +--表示数轴上的x 到1-的距离减去它到1的距离, 最大值等于2,故答案为2. 【点睛】本题主要考查绝对值不等式,绝对值的意义,函数的值域,属于中档题.16.【分析】根据题意可得从而可得将看为一元二次方程的根利用求出的范围再利用反证法求出即可求解【详解】由已知可得即因此以为根的方程为解得故同理可得下面精确的下限假设由由所以因此矛盾故所以综上故答案为:【点解析:2,03⎛⎫- ⎪⎝⎭【分析】根据题意可得1+=-b c a ,()2223b c bc a +-=-,从而可得21bc a a =--,将,b c 看为一元二次方程的根,利用0∆>求出a 的范围,再利用反证法求出1a >,即可求解. 【详解】由已知可得1+=-b c a ,()2223b c bc a +-=-,即21bc a a =--,因此,以,b c 为根的方程为()22110x a x a a +-+--=,()()221410a a a ∴∆=---->,解得513a -<<, 故23b c +>-, 同理可得513b -<<,513c -<<, 下面精确a 的下限,假设1a ≤,由a b c >>,由1b a -<<<,1c a -<<<, 所以21a ≤,21b <,21c <, 因此2223a b c ++<,矛盾,故1a >, 所以10b c a +=-< 综上,203b c -<+<, 故答案为:2,03⎛⎫- ⎪⎝⎭.【点睛】关键点点睛:本题考查了不等式的性质、一元二次不等式的解法,解题的关键是求出a 的取值范围,考查了转化能力、运算能力.17.二【分析】设原商品价格为1三种提价方案后的价格分别为:第一种:;第二种:;第三种:展开利用基本不等式的性质即可得出【详解】设原商品价格为1三种提价方案后的价格分别为:第一种:;第二种:;第三种:因此解析:二 【分析】设原商品价格为1,三种提价方案后的价格分别为:第一种:(1%)(1%)m n ++;第二种:(1%)(1%)22m n m n++++;第三种:1()%m n ++.展开利用基本不等式的性质即可得出.【详解】0m n >>,设原商品价格为1,三种提价方案后的价格分别为:第一种:(1%)(1%)1%%%%m n m n m n ++=+++; 第二种:(1%)(1%)1%%%%222222m n m n m n m n m n m n++++++++=+++⨯ 1()%%%1()%22m n m n m n m n ++=+++⨯>++1()%%%m n m n =+++;第三种:1()%m n ++. 因此提价最多的方案是第二种. 故答案为:二. 【点睛】本题考查了基本不等式的性质,考查了推理能力与计算能力,属于中档题.18.【分析】由于时故问题转化为不等式对任意都成立再根据绝对值为求解即可得答案【详解】解:因为时所以所以不等式对任意都成立所以对任意都成立即对任意都成立因为在的最大值为:所以故答案为:【点睛】本题考查绝对 解析:()3,5【分析】由于[]1,2x ∈时,[]22,4x∈,故问题转化为不等式252x x y -<-对任意[]1,2x ∈都成立,再根据绝对值为求解即可得答案. 【详解】解:因为[]1,2x ∈时,[]22,4x∈,所以520x ->,所以不等式252x xy -<-对任意[]1,2x ∈都成立所以25252x x x y -<-<-对任意[]1,2x ∈都成立, 即1255x y +-<<对任意[]1,2x ∈都成立 因为125x y +=-在[]1,2x ∈的最大值为:3,所以35y << 故答案为:()3,5 【点睛】本题考查绝对值不等式恒成立求参数问题,是中档题.19.或【分析】令利用整体代换原不等式等价于:存在实数使得易得或令则问题转化为存在使得或成立利用分离参数法易得的范围【详解】令存在实数使得成立转化为:存在实数使得成立易得或因为实数令则问题转化为存在使得或解析:6c ≤-或2c ≥ 【分析】令4cos 3cos 3ct a a =+++,利用整体代换,原不等式等价于:存在实数t 使得{}max ,410t t +≥,易得10t ≤-,或6t ≥,令[]cos 324m a =+∈,,则4c t m m=+,问题转化为存在[]2,4m ∈,使得10t ≤-,或6t ≥成立,利用分离参数法,易得c 的范围. 【详解】 令4cos 3cos 3ct a a =+++,存在实数a 使得44max cos 3,cos 710cos 3cos 3c c a a a a ⎧⎫++++≥⎨⎬++⎩⎭成立, 转化为:存在实数t 使得max ,}1{40t t +≥成立,易得10t ≤-,或6t ≥,因为a 实数,[]cos 32,4a +∈,令[]cos 324m a =+∈,, 则4ct m m=+, 问题转化为存在[]2,4m ∈,使得10t ≤-,或6t ≥成立; 当10t ≤-时,可得410cm m+≤-,可得[]2410,2,4c m m m ≤--∈ ,可得6c ≤-; 当6t ≥时,可得46cm m+≥,即246,24[,]c m m m ≥-∈,可得2c ≥; 所以c 的范围为6c ≤-或2c ≥.故答案为:6c ≤-或2c ≥. 【点睛】本题考查函数与方程的应用,函数能成立问题的转化,考查分析问题解决问题以及分类讨论思想的应用.20.【分析】由题意可化为根据不等式性质化简即可求解【详解】由题意可知即解得所以不等式的解集故答案为:【点睛】本题主要考查了含绝对值不等式的解法一元二次不等式的解法属于中档题 解析:()0,2【分析】 由题意可化为4,0x x x>>,根据不等式性质化简即可求解. 【详解】由题意可知40xx x ⎧>⎪⎨⎪>⎩,即240x x ⎧>⎨>⎩,解得02x <<,所以不等式的解集()0,2, 故答案为:()0,2. 【点睛】本题主要考查了含绝对值不等式的解法,一元二次不等式的解法,属于中档题.三、解答题21.(1){}|12x x -;(2)()()1,03,4-【分析】(1)通过对自变量x 的范围的讨论,去掉绝对值符号,从而可求得不等式()6f x ≤的解集;(2)不等式22()(3)2f x log a a -->恒成立⇔22(3)2()min log a a f x -+<恒成立,利用绝对值不等式的性质易求()4min f x =,从而解不等式22(3)2log a a -<即可. 【详解】解:(1)原不等式等价于32(21)(23)6x x x ⎧>⎪⎨⎪++-⎩或1322(21)(23)6x x x ⎧-⎪⎨⎪+--⎩或12(21)(23)6x x x ⎧<-⎪⎨⎪-+--⎩, 解得:322x <或1322x -或112x -<-, ∴不等式()6f x 的解集为{}|12x x -.(2)不等式22()(3)2f x log a a -->恒成立,22(3)2()|21||23|log a a f x x x ∴-+<=++-恒成立,∴22(3)2()min log a a f x -+<恒成立,|21||23||(21)(23)|4x x x x ++-+--=,()f x ∴的最小值为4,∴22(3)24log a a -+<,即2230340a a a a ⎧->⎨--<⎩, 解得:10a -<<或34a <<.∴实数a 的取值范围为()()1,03,4-.【点睛】本题考查函数恒成立问题,着重考查等价转化思想与分类讨论思想的综合运用,考查函数的单调性与解不等式组的能力,属于中档题.22.(1)[1,4]-;(2)(,2]-∞. 【分析】(1)由()5f x ≤,得到|1||2|5x x -+-≤,分类讨论,即可求得不等式的解集;(2)把对于一切2x >,均有()()215f x m x m ≥+--成立,转化为2471x x m x -+≤-在(2,)+∞恒成立,结合基本不等式,即可求解.【详解】(1)由题意,函数()|1||2|f x x x =-+-, 因为()5f x ≤,即|1||2|5x x -+-≤,当1x <时,不等式可化为325x -≤,解得1x ≥-,即11x -≤<; 当12x ≤≤时,不等式可化为15≤恒成立,12x ≤≤;当2x >时,不等式可化为235x -≤,解得4x ≤,即24x <≤, 综上可得,实数x 的取值范围[1,4]-.(2)由对于一切2x >,均有()()215f x m x m ≥+--成立, 即()228215x x m x m --≥+--在(2,)+∞恒成立,即247(1)x x x m -+≥-在(2,)+∞恒成立,等价于2471x x m x -+≤-在(2,)+∞恒成立,因为2x >,可得11x ->,则2247(2(1)44(1)22221)111x x x x x x x x x -+--+==-+-≥=----+,当且仅当411x x -=-,即3x =时,等号成立,所以2m ≤,即实数m 的取值范围(,2]-∞. 【点睛】使用基本不等式解答问题的策略:1、利用基本不等式求最值时,要注意三点:一是各项为正;二是寻求定值;三是考虑等号成立的条件;2、若多次使用基本不等式时,容易忽视等号的条件的一致性,导致错解;3、巧用“拆”“拼”“凑”:在使用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中的“正、定、等”的条件. 23.(1)12x x ⎧<⎨⎩或52x ⎫>⎬⎭;(2)见解析 【分析】(1)利用|1||2|x x -+-的几何意义,表示数轴上的x 对应点到1和2对应点的距离之和,分析即得解.(2)把||||||()a b a b a f x ++-≥,转化为()||||||a b a b f x a ++-≤,利用绝对值的性质求得||||||a b a b a ++-得最小值即得解.【详解】(1)由()2f x >,即|1||2|2x x -+->.而|1||2|x x -+-表示数轴上的x 对应点到1和2对应点的距离之和, 而数轴上满足|1||2|2x x -+-=的点的坐标为12和52, 故不等式|1||2|2x x -+->的解集为15{|}22x x <>或. (2)证明:要证||||||()a b a b a f x ++-≥,只需证()||||||a b a b f x a ++-≤,∵||||||2||a b a b a b a b a ++-≥++-=,当且仅当()()0a b a b +-≥时取等号,∴||||2||a b a b a ++-≥ 由(1),当R x C M ∈时,()2f x ≤∴||||()||a b a b f x a ++-≤∴原命题成立.. 【点睛】本题考查了绝对值不等式得解集及不等式证明,考查了学生综合分析,转化与划归,逻辑推理得能力,属于中档题.24.(1)[]1,1M =-;(2)证明见解析. 【分析】(1)根据绝对值定义化简函数,再解三个不等式组,最后求并集得结果; (2)利用分析法证明不等式 【详解】(1)()12,,411111,,4424412,4x x f x x x x x x ⎧-≤-⎪⎪⎪=-++=-<<⎨⎪⎪≥⎪⎩ ()12422x f x x ⎧≤-⎪≤∴⎨⎪-≤⎩或1144122x ⎧-<<⎪⎪⎨⎪≤⎪⎩或1422x x ⎧≥⎪⎨⎪≤⎩114x ∴-≤≤-或1144x -<<或114x ≤≤所以不等式的解集为[]1,1M =-.(2)要证a b -,只需证a b -,即证()241ab a b -≥-,只需证22442ab a ab b --+≥,即2242a ab b ++≥, 即证()24a b ≥+,只需证2a b ≥+ 因为a ,b M ∈,所以2a b +≤, 所以所证不等式成立. 【点睛】本题考查含绝对值不等式解法、分析法证明不等式,考查基本分析论证与求解能力,属中档题.25.(1)32x x ⎧<-⎨⎩或52x ⎫>⎬⎭;(2)[]0,1. 【分析】(1)分1x <-、12x -≤≤、2x >三种情况解不等式()4f x >,综合可得出不等式()4f x >的解集;(2)利用绝对值三角不等式以及基本不等式求得()f x 的最小值,可得出关于实数m 的不等式,由此可解得实数m 的取值范围. 【详解】(1)当1a =时,不等式()4f x >为214x x -++>. 当1x <-时,不等式可化为()()214x x ---+>,解得32x <-,此时32x <-; 当12x -≤≤时,不等式可化为()()214x x --++>,即34>,不成立; 当2x >时,不等式可化为()()214x x -++>,解得52x >,此时52x >. 综上所述,不等式的解集为32x x ⎧<-⎨⎩或52x ⎫>⎬⎭; (2)()()1122f x x a x x a x a a ⎛⎫=-++≥--+ ⎪⎝⎭12a a =+,而1122a a a a +=+≥2a =时等号成立.即当x 和a 变化时,()f x 的最小值为因为不等式()2f x m m ≥-+x 及a 恒成立,2m m ∴-+20m m -≤,解得01m ≤≤.因此,实数m 的取值范围是[]0,1. 【点睛】本题考查含绝对值不等式的求解,同时也考查了含绝对值不等式恒成立求参数的取值范围,考查计算能力,属于中等题. 26.{|0x x <或}32x > 【分析】利用零点分区间法去掉绝对值符号,分组讨论求并集,即可求得不等式的解集 【详解】当0x <时,原不等式可化为121x x -+->,解得0x <: 当102x ≤≤时,原不等式可化为121x x +->,即0x <,无解; 当12x >时,原不等式可化为211x x +->,解得23x > 综上,原不等式的解集为{|0x x <或}32x >. 【点睛】本题考查含有两个绝对值符号的不等式解法问题. 含有两个绝对值符号的不等式常用解法可用零点分区间法去掉绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解。

高一数学必修一 第二章一元二次函数、方程和不等式单元测试试卷 (3)

高一数学必修一 第二章一元二次函数、方程和不等式单元测试试卷 (3)

高一数学必修一第二章一元二次函数、方程和不等式单元测试试卷 (3)数学第二章测试卷A卷本试卷满分100分,考试时间80分钟。

一、单项选择题(本大题共5小题,每小题5分,共计25分。

在每小题给出的四个选项中,只有一个是符合题目要求的,请把答案填涂在答题卡相应位置上)1.若$a+b+c=0$,且$a<b<c$,则下列不等式一定成立的是A。

$ab<bc$B。

$ab<ac$XXX<bc$D。

$ab<bc$2.已知正数$a$、$b$满足$\frac{22}{1194}+\frac{a}{b}=1$,则$\frac{a}{b}+\frac{b}{a}$的最小值是A。

6B。

12C。

24D。

363.已知二次函数$f(x)=x^2+bx+c$的两个零点分别在区间$(-2,-1)$和$(-1,0)$内,则$f(3)$的取值范围是A。

$(12,20)$B。

$(12,18)$C。

$(18,20)$D。

$(8,18)$4.若$x>0$,$y>0$,且$\frac{2}{x+1}+\frac{1}{x+2y}=1$,则$2x+y$的最小值为A。

2B。

$\frac{2}{3}$C。

$2+\frac{2}{3}$D。

$3$5.关于$x$的不等式$(ax-1)<x$恰有2个整数解,则实数$a$的取值范围是A。

$-\frac{34}{43}<a\leq-\frac{3}{4}$或$\frac{4}{3}<a\leq\frac{43}{34}$B。

$-\frac{3}{4}<a\leq-\frac{2}{3}$或$\frac{2}{3}<a\leq\frac{3}{4}$C。

$-\frac{34}{43}\leq a<-\frac{3}{4}$或$\frac{4}{3}\leq a<\frac{43}{34}$D。

$-\frac{3}{4}\leq a<-\frac{2}{3}$或$\frac{2}{3}\leq a\leq\frac{3}{4}$二、多项选择题(本大题共2小题,每小题5分,共计10分。

新北师大版高中数学高中数学选修4-5第一章《不等关系与基本不等式》测试卷(有答案解析)

新北师大版高中数学高中数学选修4-5第一章《不等关系与基本不等式》测试卷(有答案解析)

一、选择题1.下列命题中正确的是( ) A .若ac bc >22,则a b >B .若a b >,则11a b< C .若a b >,c d >,则a c b d ->-D .若a b >,c d <,则a b c d> 2.若不等式()()2||20x a b x x ---≤对任意实数x 恒成立,则a b +=( )A .-1B .0C .1D .23.2016年1月14日,国防科工局宣布,嫦娥四号任务已经通过了探月工程重大专项领导小组审议通过,正式开始实施.如图所示,假设“嫦娥四号”卫星将沿地月转移轨道飞向月球后,在月球附近一点P 变轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行.若用12c 和22c 分别表示椭圆轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴长,给出下列式子:①1122a c a c +=+;②1122a c a c -=-;③1212c c a a <;④1212c a a c >.其中正确式子的序号是( )A .①③B .①④C .②③D .②④4.如果sin 2a =,1212b ⎛⎫= ⎪⎝⎭,0.51log 3c =,那么( ) A .a b c >> B .c b a >>C .a c b >>D .c a b >>5.不等式ax b >,()0b ≠的解集不可能是( ) A .∅B .RC .,b a ⎛⎫+∞⎪⎝⎭D .,b a ⎛⎫-∞-⎪⎝⎭6.设0x >,则()2142f x x x=--的最大值为( ) A .242-B .42C .不存在D .527.已知01a <<,01c b <<<,下列不等式成立的是( )A .b cb ac a>++ B .c c a b b a+>+ C .log log b c a a < D .b c a a >8.已知a b R ∈,,且a b >,则下列不等式中恒成立的是( ) A .22a b >B .()lg a b 0->C .a b 22--<D .a 1b> 9.已知0a b >>,0c >,下列不等式中不.成立的是 A .a c b c +>+B .a c b c ->-C .ac bc >D .c ca b> 10.若a ,b ,c ∈R ,且a >b ,则下列不等式一定成立的是( ) A .a +c >b -cB .(a -b )c 2>0C .a 3>b 3D .a 2>b 211.对于任意实数,,,,a b c d 以下四个命题正确的是( ) A .若,,a b c d >>则a c b d +>+ B .22a b ac bc >>若,则 C .若,a b >则11a b< D .若,,a b c d >>则ac bd >12.对于任意实数,,,,a b c d 以下四个命题正确的是 A .,a b c d a c b d >>+>+若,则 B .22a b ac bc >>若,则 C .11,a b a b><若则D .,a b c d ac bd >>>若,则二、填空题13.已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______14.已知R a ∈,若关于x 的方程2210x x a a -+++=有实根,则a 的取值范围是__________.15.设函数|1||1|()2x x f x +--=,则使()f x ≥x 取值范围是______16.对任意实数x ,不等式|1|||1x x a a ++-≥-+恒成立,则实数a 的取值范围是___________.17.定义运算x ·y ,,1,,x x y m y x y ≤⎧=-⎨>⎩若·m=|m-1|,则m 的取值范围是_____.18.已知a R ∈,函数16()f x x a a x=+-+在区间[2,5]上的最大值为10,则a 的取值范围是______.19.已知|a +b|<-c(a ,b ,c ∈R),给出下列不等式: ①a <-b -c ;②a >-b +c ;③a <b -c ;④|a|<|b|-c ; ⑤|a|<-|b|-c.其中一定成立的不等式是________(填序号). 20.若a >0,b >0,则lg 12a b +⎛⎫+⎪⎝⎭________12 [lg(1+a)+lg(1+b)].(选填“≥”“≤”或“=”)三、解答题21.已知函数()211f x x x =-++. (1)解不等式()4f x <;(2)若不等式()2f x log t >对任意x ∈R 恒成立,求实数t 的取值范围. 22.已知()|2||3|f x x x =-+-. (1)解关于x 的不等式()5f x ≤;(2)若2()1f x m m >+-恒成立,求实数m 的取值范围. 23.已知函数()()30f x x x a a =-++>. (1)若1a =,求不等式()6f x ≥的解集;(2)若()221f x a a ≥--恒成立,求实数a 的取值范围.24.已知函数()23,0f x x m x m m =--+>. (1)当1m =时,求不等式()1f x ≥的解集;(2)对于任意实数,x t ,不等式()21f x t t <++-恒成立,求实数m 的取值范围. 25.已知函数()|21|||2g x x x =-+++. (1)解不等式()0g x ≤;(2)若存在实数x ,使得()||g x x a ≥--,求实数a 的取值范围. 26.已知函数()2f x x =-,()()2g x f x x =-. (1)求()g x 的最大值m ; (2)若0a >,0b >,且22m a b+=,求证:()()314f a f b +++≥.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】对于选项A ,由不等式性质得该选项正确;对于选项B ,11b aa b ab--=符号不能确定,所以该选项错误;通过举反例说明选项C 和选项D 错误. 【详解】对于选项A ,若ac bc >22,所以20c >,则a b >,所以该选项正确;对于选项B ,11b a a b ab--=符号不能确定,所以该选项错误; 对于选项C ,设1,0,1,3,2,3a b c d a c b d ===-=--=-=,所以a c b d -<-,所以该选项错误;对于选项D ,设0,1,2,1,0,1,a b a ba b c d c d c d==-=-=-==∴<,所以该选项错误; 故选:A 【点睛】本题主要考查不等式的性质,考查实数大小的比较,意在考查学生对这些知识的理解掌握水平.2.D解析:D 【分析】可采用分类讨论法,分别讨论22x x -与x a b --的正负,确定,a b 之间的关系即可求解. 【详解】当220x x -≥时,即[]02x ,∈时,||0x a b --≤恒成立,所以b a x b a -+≤≤+恒成立,所以2a b +≥且a b ≤; 当220x x -≤时,即(][),02,x ∈-∞+∞时,||0x a b --≥恒成立所以x a b ≥+或x a b ≤-恒成立,所以2a b +≤且a b ≥,综上,2a b += 故选:D 【点睛】本题考查一元二次不等式的解法,由含参数绝对值不等式求参数关系,分类讨论的数学思想,属于中档题3.C解析:C 【分析】根据题意,可知两个椭圆有公共点P .结合图象可知2121,a a c c >>,进而由椭圆的几何性质及不等式性质判断选项即可. 【详解】对于①,由图可知2121,a a c c >>,则2211a c a c +>+,所以①错误;对于②,由椭圆几何性质可知11PF a c =-,22PF a c =-,即1122a c a c -=-,所以②正确; 对于③,由②可知,1122a c a c -=-.所以1221a c a c +=+.两边同时平方可得()()221221a c a c +=+,展开得22221122221122a a c c a a c c ++=++移项变形可得22221112222122a c a c a c a c -+=-+根据椭圆的性质可知22222211122,a c b a c b -=-= 所以2211222122b a c b a c +=+ 因为12<b b所以1221a c a c >,两边同时除以12a a ,可得2121c c a a >,所以③正确. 对于④,由③可知1221a c a c >,所以④错误. 综上可知,正确的为②③ 故选:C 【点睛】本题考查了椭圆的几何性质及应用,不等式性质比较大小,分析、解决实际问题的能力,属于中档题.4.D解析:D 【分析】由题意可知,3sin 2sin4a π=>,121122b ⎛⎫==< ⎪⎝⎭,0.51log 13c =>,从而判断,,a b c 的大小关系即可.【详解】3224ππ<<∴3sinsin 2sin 42ππ<<,即12a << 110.523=> 0.50.511log log 132∴>=,即0.51log 13c =>12112b ⎛⎫==< ⎪⎝⎭∴b a c <<故选:D 【点睛】本题考查比较大小,是比较综合的一道题,属于中档题.5.D解析:D 【解析】 【分析】当0a =,0b >时,不等式ax b >,(0b ≠)的解集是∅;当0a =,0b <时,不等式ax b >,(0b ≠)的解集是R ;当0a >时,不等式ax b >,(0b ≠)的解集是(,b a +∞);当0a <时,不等式ax b >,(0b ≠)的解集是,b a ⎛⎫-∞ ⎪⎝⎭.【详解】当0a =,0b >时,不等式ax b >,(0b ≠)的解集是∅; 当0a =,0b <时,不等式ax b >,(0b ≠)的解集是R ; 当0a >时,不等式ax b >,(0b ≠)的解集是(,ba+∞); 当0a <时,不等式ax b >,(0b ≠)的解集是(,b a-∞). ∴不等式ax b >,(0b ≠)的解集不可能是(,b a-∞-). 故选:D 【点睛】本题主要考查了一元一次不等式的解法,属于中档题.解题时要认真审题,仔细解答.6.D解析:D 【分析】化简得到()214222x xf x x ⎛⎫=-++ ⎪⎝⎭,再利用均值不等式计算得到答案.【详解】()2211544422222x x f x x x x ⎛⎫=--=-++≤-= ⎪⎝⎭当21222x x x==即1x =时等号成立 故选:D 【点睛】本题考查了利用均值不等式求函数最值,意在考查学生对于均值不等式的灵活运用.7.A解析:A 【分析】由作差法可判断出A 、B 选项中不等式的正误;由对数换底公式以及对数函数的单调性可判断出C 选项中不等式的正误;利用指数函数的单调性可判断出D 选项中不等式的正误. 【详解】对于A 选项中的不等式,()()()a b c b cb ac a a b a c --=++++,01a <<,01c b <<<,()0a b c ∴->,0a b +>,0a c +>,b cb ac a∴>++,A 选项正确; 对于B 选项中的不等式,()()a cbc c a b b a b b a -+-=++,01a <<,01c b <<<, ()0a c b ∴-<,0a b +>,c c ab b a+∴<+,B 选项错误; 对于C 选项中的不等式,01c b <<<,ln ln 0c b ∴<<,110ln ln b c∴<<, 01a <<,ln 0a ∴<,ln ln ln ln a ab c∴>,即log log b c a a >,C 选项错误; 对于D 选项中的不等式,01a <<,∴函数x y a =是递减函数,又c b <,所以c b a a >,D 选项错误.故选A. 【点睛】本题考查不等式正误的判断,常见的比较大小的方法有:(1)比较法;(2)中间值法;(3)函数单调性法;(4)不等式的性质.在比较大小时,可以结合不等式的结构选择合适的方法来比较,考查推理能力,属于中等题.8.C解析:C 【分析】主要利用排除法求出结果. 【详解】 对于选项A :当0a b >>时,不成立;对于选项B :当10a b >>>时,()lg 0a b -<,所以不成立; 对于选项D :当0a b >>时,不成立; 故选C . 【点睛】本题考查的知识要点:不等式的基本性质的应用,排除法的应用,主要考查学生的运算能力和转化能力,属于基础题型.9.D解析:D 【分析】本道题结合不等式的基本性质,加上减去或者乘以大于0的数,不等式依然成立. 【详解】A,B 选项,不等式左右两边同时加上或减去相同的数,不等号不改变方向,故正确;C 选项,不等式左右两边同时乘以一个大于0的数,不等号不改变方向,故正确,而D 选项,关系应该为c ca b<,故不正确.本道题考查了不等式的基本性质,关键抓住不等号成立满足的条件,难度中等.10.C解析:C 【解析】 【分析】由不等式性质及举反例逐个分析各个选项可判断正误。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一上数学不等式等综合测试题
一、单项选择题
1.已知b<0<a,则下列不等式正确的是( )
A.b2<a2
B.1b >1a
C.-b<-a
D.a -b>a+b
2.已知有理数a ,b ,c 在数轴上的位置如图所示,则下列式子正确的是( )
A.cb>ab
B.ac>ab
C.cb<ab
D.c +b>a +b
3.若点P 21,23a a ⎛⎫+-- ⎪⎝⎭在第三象限内,则a 的取值范围是( )
A.⎝ ⎛⎭
⎪⎫-12,6 B.(-∞,-6)∪1,2⎛⎫+∞
⎪⎝⎭
C.⎝ ⎛⎭
⎪⎫-12,-6 D.⎝ ⎛⎭⎪⎫-6,-12 4.若A =(-2,5],B =[-6,3],则A∪B 等于( )
A.[-6,5)
B.[-2,3]
C.(-2,3]
D.[-6,5]
5.不等式|1-3x|<2的解集是( ) A.1
1,1133⎛⎫⎛⎫
- ⎪⎪⎝⎭⎝⎭ B.11,3⎛⎫
- ⎪⎝⎭
C.()-∞,-1∪1,3⎛⎫
+∞ ⎪⎝⎭ D.1,3⎛⎫
-∞- ⎪⎝⎭∪()1,+∞
6.设集合A ={x|2(x +3)>6},B ={x|x2-3x +2≥0},则A∪B 等于(
) A.R
B.{x|x ≥2}
C.{x|x<1或x≥2}
D.{x|x>0}
7.如图所示,在数轴上表示的区间是下列哪个不等式的解集?(

A.x2-x -6≤0
B.x2-x -6≥0
C.⎪⎪⎪⎪⎪⎪x -12≥52
D.x -3
x +2≥0
8.已知log2x =-1,则x -2等于( )
A.4
B.2
C.14
D.12
9.若x∪R ,下列不等式一定成立的是(
) A.x 5<x 2
B.5-x >2-x
C.x2>0
D.(x +1)2>x2+x +1
10.已知x >0,则x +x -1的( )
A.最小值为2
B.最大值为2
C.最小值为1
D.最大值为1
11.|3-2x |<1的解集是( )
A.(-1,1)
B.(-1,2)
C.(1,2)
D.(-2,1)
12.若3x2-2=1,则x 的值是( )
A.±2
B.±3
C.12
D.13
13.区间[-3,0)∪(1,+∞)在数轴上表示正确的是( )
14.已知a -b>0,则下列不等式正确的是( )
A.a2>b2
B.1a <1b
C.a -2>b -3
D.|a|>|b|
15.已知a -b<0,a>0,那么a ,b ,-a ,-b 的大小关系是(
) A.a>b>-b>-a
B.b>a>-a>-b
C.a>-b>-a>b
D.a>-b>b>-a
16.已知x>0,则x 2+12x 有( )
A.最大值1
B.最小值1
C.最大值12
D.最小值12
17.不等式|x|+1<0的解集是( )
A.∅
B.R
C.(-1,1)
D.(-∞,-1)∪(1,+∞)
18.已知三角形的三边分别为a,b,c,则下列不等式关系错误的是(
) A.a+b>c
B.a<b+c
C.c -b<a
D.(a+b -c )(b+c -a )<0
19.集合A={x|x<2或x ≥5}用区间表示为( )
A.(-∞,2)∪[5,+∞)
B.(2,5]
C.(-∞,2]∪[5,+α)
D.(2,5)
20.不等式组340,
30x x ->⎧⎨-≥⎩的解集是( ) A.4,33⎡⎫
⎪⎢⎣⎭ B.4
,3⎛⎫+∞ ⎪⎝⎭
C.(,3]-∞
D.4,33⎛⎤
⎥⎝⎦
二、填空题
21.若x∪(-4,3],则-2x +1的取值范围是 .
22.比较大小:(x +5)(x +7) (x +6)2.
23.结合二次函数性质,可得不等式x2+4x +5<0的解集
是 .
24.当x∪ 时,代数式x -53的值与代数式2x -72的值之差不
小于2.
25.已知x>1,则y =4x +x +3的最低点坐标为 .
26.抗洪救灾,志愿小队向灾区运送物资,共有120 km 路程,需要1小时内送达,前半小时已经走了50 km 后,为保证及时送达,后半小时的平均速度至少为 km/h.
27.比较大小:87 1211 .(用最恰当的不等号填空)
28.已知xy=2,则x2+4y2的最小值是 .
三、解答题
29.问:当x 取何值时,12(1-5x )-23x 的值为非负数?
30.已知关于x 的不等式{x|mx2+nx +5≤0}的解集是512x x ⎧⎫≤≤⎨⎬⎩⎭
,求m 和n 的值.
31.解不等式:
(1)|2x -3|≤4; (2)|4-3x|>2.
32.比较2x2+4x +9和(x +3)2+(x -1)2的大小.
33.解不等式.
(1)(x-1)2-9<0;
(2)x2+2x+3≥0.
答案
一、单项选择题
1.B
2.A
3.D
4.D
5.A
6.A
7.D
8.A
9.B
10.A【提示】利用均值定理变形公式a+b≥2ab.
11.C【分析】|3-2x|<1,∴-1<3-2x<1,-4<-2x<-2,1<x<2.
12.A【提示】由22
3x =1得x2-2=0,x=± 2.
13.C【提示】选项的区别在于端点是否是空心.
14.C
15.B
16.B【提示】∪x>0,∴x
2+
1
2x≥2
1
4=1.(当
x
2=
1
2x,即x=1时,“=”
成立)
17.A 【提示】∪|x|≥0,∪不等式|x|+1<0的解集为∅.
18.D 【解析】根据三角形三边中“两边之和大于第三边”可得.
19.A
20.D
二、填空题
21.[-5,9)【提示】根据区间的两个端点,当x =-4时,取值9,显然9是取不到的;当x =3时,取值-5,所以答案是半开半闭区间.
22.<
23.∅
24.{x|x ≤-14}【提示】x -53-2x -72≥2⇒2(x -5)-3(2x -7)≥12
⇒2x -10-6x +21≥12⇒-4x≥1⇒x ≤-14.
25.(2,7)
26.140【提示】设后半小时的平均速度为x km/h ,根据题意得50+(1-0.5)x≥120,解得x≥140.
27.>【提示】用作差比较法
28.8
三、解答题 29.319x x ⎧⎫≤⎨⎬⎩⎭
30.解:由题意得⎩⎪⎨⎪⎧1×52=5m ,
1+52=-n m ,
解得⎩⎪⎨⎪⎧m =2,n =-7. 31.解:(1)原不等式等价于-4≤2x -3≤4,
∴-1≤2x≤7,解得-12≤x≤72, ∴原不等式的解集是1722x x ⎧⎫≤≤⎨⎬⎩⎭
. (2)原不等式等价于4-3x>2或4-3x<-2,
解得x<23或x>2, ∴原不等式的解集是223x x x ⎧⎫<>⎨⎬⎩⎭
或. 32.解:∪2x2+4x +9-[(x +3)2+(x -1)2]=-1<0, ∴2x2+4x +9<[(x +3)2+(x -1)2].
33.解:(1)移项得(x -1)2<9,解得-2<x<4,
故原不等式的解集为{x|-2<x<4}.
(2)令x2+2x +3=0,易知
Δ<0,方程没有实数根,
故原不等式的解集为R.。

相关文档
最新文档