⑶2012-2013年昌平区初一数学期末试题与答案

合集下载

北京市昌平区2013-2014年七年级上数学期末数学试题及答案

北京市昌平区2013-2014年七年级上数学期末数学试题及答案

昌平区2013-2014学年第一学期初一年级期末质量抽测数学试卷 2014.1考生须知 1.本试卷共4页,共五道大题,满分120分。

考试时间120分钟。

2.在答题卡上认真填写学校、班级、姓名和考试编号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.考试结束,请将答题卡交回。

一、选择题(共8个小题,每小题4分,共32分)下面各题均有四个选项,其中只有一个是符合题意的 1.5-的相反数是 A .15 B .15- C .5 D .-52.中共十八届三中全会于2013年11月9日到11月12日在北京召开.截止到2013年11月28日,某网站关于此次会议热点问题讨论的相关微博约1090000条. 请将1090000用科学记数法表示为 A . 0.109×106B . 1.09×106C . 1.09×105D . 10.9×1043. 下列各式中结果为负数的是A . (3)--B .2(3)-C .3--D . 23-4.如果x =-1是关于x 的方程5x +2m -7=0的解,则m 的值是A . -1B . 1C . 6D . -65.下列运算正确的是A . 43m m -=B . 33323a a a -=-C . 220a b ab -=D . 2yx xy xy -= 6.若23(2)0m n ++-=,则n m 的值为A . 6B . 6-C . 9D . 9- 7.已知数a ,b 在数轴上表示的点的位置如图所示,则下列结论正确的是①a <b <0 ;② |b |>|a | ;③ a ·b <0 ;④ b -a >a +b .A .①②B .①④C .②③D .③④8.如图,一个正方体的顶点分别为:A ,B ,C ,D ,E ,F ,G ,H ,点P 是边DH 的中点.一只蚂蚁从正方体的一个顶点A 沿表面爬行到顶点G 处,最短路线为A . A →B →G B . A →F →GC . A →P →GD . A →D →C →G 二、填空题(共4个小题,每小题4分,共16分)0 9.比较大小:-21 0.10.如果3=x ,y =2,那么x +y = .11.如图,直线AB ,CD 相交于点O ,∠AOC = 60°,∠1= 2∠2,0aH G FE D CBAP ABDE12OC则∠2= °,∠AOE = °.12. 如图,已知边长为4的正方形ABCD ,点E 在AB 上,点F 在BC 的延长线上,EF 与AC 交于点H ,且AE =CF = m ,则四边形EBFD 的面积为 ; △AHE 与△CHF 的面积的和为 (用含m 的式子表示). 三、解答题(共6个小题,每小题5分,共30分) 13.计算: 8-(-15)+(-2)×3. 14.计算:()131486412⎛⎫-+⨯-⎪⎝⎭. 15.计算: ()()32215279-+-⨯--÷ .16.解方程: ()32143x x -=+. 17.解方程:2135234x x --=+. 18.如图,已知∠AOB . (1)画出∠AOB 的平分线OC ;(2)在OC 上取一点P ,画PD ⊥OA , PE ⊥OB ,垂足分别为D ,E ; (3)写出所画图中的一对相等的线段.四、解答题(共 4 道小题,每小题5分,共 20 分)19.先化简,再求值: (2a 2-5a )-2 (a 2+3a -5),其中a =-1.∴ ∠BOC =80°.∴ ∠BOD = ∠BOC -∠ = °.21.列方程解应用题某校七年级学生从学校出发步行去博物馆参观,他们出发半小时后,张老师骑自行车按相同路线用15分钟赶上学生队伍.已知张老师骑自行车的速度比学生队伍步行的速度每小时多8千米,求学生队伍步行的速度?ABOC O A BCDFE H22.现场学习:观察一列数:1,2,4,8,16,…,这一列数按规律排列,我们把它叫做一个数列,其中的每个数,叫做这个数列中的项,从第二项起,每一项与它的前一项的比都等于2,我们把这个数列叫做等比数列,这个常数2叫做这个等比数列的公比.一般地,如果一列数从第二项起,每一项与它的前一项的比都等于同一个常数,这一列数就叫做等比数列,这个常数就叫做等比数列的公比.解决问题:(1)已知等比数列5,-15,45,…,那么它的第六项是.(2)已知一个等比数列的各项都是正数,且第2项是10,第4项是40,则它的公比为.(3)如果等比数列a1,a2,a3,a4,…,公比为q ,那么有:a2 = a1q ,a3 = a2q =(a1q)q =a1q2,…,a n=.(用a1与q的式子表示,其中n为大于1的自然数)五、解答题(23题7分,24题7分,25题8分,共3道小题,共 22 分)23.如图,已知AB=2,点D是AB的中点,点C在直线AB上,且2BC=3AB.(1)补全图形;(2)求CD的长.备用图24.某公园为了吸引更多游客,推出了“个人年票”的售票方式(从购买日起,可供持票者使用一年),年票分A、B二类:A类年票每张49元,持票者每次进入公园时,再购买3元的门票;B类年票每张64元,持票者每次进入公园时,再购买2元的门票.(1)一游客计划在一年中用100元游该公园(只含年票和每次进入公园的门票),请你通过计算比较购买A、B两种年票方式中,进入该公园次数较多的购票方式;(2)求一年内游客进入该公园多少次,购买A类、B类年票花钱一样多?25.如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC :∠BOC = 2:1,将一直角三角板的直角顶点放在点O处,一边ON在射线OA上,另一边OM在直线AB的下方.(1)将图1中的三角板绕点O按顺时针方向旋转至图2的位置,使得OM落在射线OA上,此时ON 旋转的角度为°;(2)继续将图2中的三角板绕点O按顺时针方向旋转至图3的位置,使得OM在∠BOC的内部,则∠BON-∠COM = °;(3)在上述直角三角板从图1旋转到图3的位置的过程中,若三角板绕点O按每秒钟15°的速度旋转,当OM恰为∠BOC的平分线时,此时,三角板绕点O的运动时间为秒,简要说明理由.图1CBA ONNOA BC图2图3MCBA ONO BC备用图昌平区2013-2014学年第一学期初一年级期末质量抽测数学试卷参考答案及评分标准 2014.1一、选择题(共8个小题,每小题4分,共32分)二、填空题(共4个小题,每小题4分,共16分)三、解答题(共6个小题,每小题5分,共30分)13.解:原式=8+15-6 ……………………………… 3分=23-6 ……………………………… 4分=17 ………………………………… 5分 14.解:原式=()()()1314848486412⨯--⨯-+⨯- ……………………………… 1分 =-8+36-4 ……………………………… 3分= 24 ……………………………… 5分 15.解:原式=-4-5+3 ……………………………… 3分 =-6 ……………………………… 5分 16.解:去括号,得 6x -3=4x +3. ……………………………… 1分 移项、合并同类项,得 2 x =6. ……………………………… 4分 系数化为1,得 x = 3. ……………………………… 5分 17.解:去分母,得 4(2x -1)=3(3x -5)+24. ……………………………… 2分 去括号,得 8x -4=9x -15+24. ……………………………… 3分 移项、合并同类项,得 -x =13. ……………………………… 4分 系数化为1,得 x =-13. ……………………………… 5分 18.(1)如图. ………………………………1分 (2)如图. ……………………………… 4分 (3)图中的相等线段:PD =PE ,或OD =OE . ……………… 5分 四、解答题(共 4 道小题,每小题5分,共 20 分) 19.解:(2a 2-5a ) -2 (a 2+3a -5)=2a 2-5a -2a 2-6a +10 ……………………………… 2分 =-11a +10 ……………………………… 4分 ∵ a =-1,∴ 原式=-11×(-1)+10=21. ……………………………… 5分 20. AOC ,60,AOB ,DOC ,20. ……………………………… 5分 21.解:设学生队伍步行的速度为每小时x 千米,则张老师骑自行车的速度为每小时(x +8)千米.……………………………… 1分根据题意,得43x =41(x +8). ……………………………… 3分 解这个方程,得 x =4. ……………………………… 4分 答:学生队伍步行的速度为每小时4千米. ……………………………… 5分 22.(1)-1215. ……………………………… 1分 (2)2. ……………………………… 3分 (3)a 1q n -1. ……………………………… 5分 五、解答题(23题7分,24题7分,25题8分,共3道小题,共 22 分) 23.(1)如图:图2图1D C BA A BC D ……………………………… 2分(2)解:∵ AB =2 ,D 是AB 的中点,∴ AD =DB =21AB =1. ∵ 2BC =3AB ,∴ BC =3. ……………………………… 5分 当点C 在线段AB 的延长线上时(如图1), CD =DB +BC =4.当点C 在线段BA 的延长线上时(如图2),CD =CB -DB =2. ……………………………… 7分24.解:(1)设用100元购买A 类年票可进入该公园的次数为x 次,购买B 类年票可进入该公园的次数为y 次,据题意,得 49+3x =100.解得 x =17. ……………………………… 1分 64+2y =100.解得 y =18. ……………………………… 2分 答:进入该公园次数较多的是B 类年票. ……………………………… 3分 (2)设进入该公园z 次,购买A 类、B 类年票花钱一样多.据题意,得49+3z =64+2z . ……………………………… 5分 解得 z =15. ……………………………… 6分 答:进入该公园15次,购买A 类、B 类年票花钱一样多. …………… 7分 25.解:(1)90; ……………………………… 1分M'NO A B CM(2)30; ……………………………… 3分 (3)16秒. ……………………………… 5分 理由:如图.∵ 点O 为直线AB 上一点,∠AOC :∠BOC = 2:1, ∴ ∠AOC =120°,∠BOC =60°. ∵ OM 恰为∠BOC 的平分线, ∴ ∠COM ’=30°.∴ ∠AOM +∠AOC +∠COM ’=240°. ………… 7分 ∵ 三角板绕点O 按每秒钟15°的速度旋转, ∴ 三角板绕点O 的运动时间为15240=16(秒). … 8分。

07.2012-2013年北京市昌平区初三数学第一学期期末试题及答案

07.2012-2013年北京市昌平区初三数学第一学期期末试题及答案

昌平区2012—2013年第一学期初三年级期末质量抽测数学 试 卷 2013.1一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.在Rt △ABC 中,90C=∠,3AC=,4BC=,则sin A 的值为A .43B .45C .34D .352.如图,⊙O 是△ABC 的外接圆,∠A = 50°,则∠BOC 的度数为A .40°B .50°C .80°D .100°3.在不透明的布袋中装有1个红球,2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是红.球.的概率是 A .16B.14 C. 13D. 124.⊙O 1和⊙O 2的半径分别为3cm 和5cm ,若O 1O 2= 8cm ,则⊙O 1和⊙O 2的位置关系是 A .外切 B. 相交 C. 内切D. 内含5.若一个三角形三边之比为3:5:7,与它相似的三角形的最长边的长为21,则最短边的长为 A. 15 B. 10 C. 9 D. 36.将二次函数241y x x =--化为2()y x h k =-+的形式,结果为 A .2(2)5y x =++ B .2(2)5y x =+-CBA2C .2(2)5y x =-+D .2(2)5y x =--7.如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射到圆桌后在地面上形成圆形的示意图. 已知桌面直径为1.2m ,桌面离地面1m. 若灯泡离地面3m ,则地面上阴影部分的面积为 A .0.36πm 2 B .0.81πm 2 C .2πm 2 D .3.24πm 28.如图,在边长为2的等边三角形ABC 中,以B 为圆心,AB 为半径作AC , 在扇形BAC 内作⊙O 与AB 、BC 、AC 都相切,则⊙O 的周长等于A. 49π B.23π C. 43π D. π二、填空题(共4道小题,每小题4分,共16分)9.已知圆锥的底面半径为3,母线长为4,则圆锥的侧面积为 .10.当x = 时,二次函数222y x x =+-有最小值.11.如图,在△ABC 中,∠ACB =∠ADC= 90°,若sin A =35,则cos ∠BCD的值为 .12.如图,已知正方形ABCD 的边长为8cm ,点E 、F 分别在边BC 、CD 上,∠EAF =45°. 当EF =8cm 时,△AEF 的面积是 cm 2; 当EF =7cm 时,△EFC 的面积是 cm 2.三、解答题(共6道小题,第13、14题各4分,第15 -18题各5分,共28分) 13.计算:︒-︒+︒60tan 45sin 230cos 2.DCBAFED CBA数学试卷答案第3页(共14页)14.如图,小聪用一块有一个锐角为30︒的直角三角板测量树高,已知小聪和树都与地面垂直,且相距米,小聪身高AB 为1.7米,求这棵树的高度.15.已知二次函数2(+1)63y k x x =-+的图象与x 轴有交点,求k 的取值范围.16. 如图,△ABC 的顶点在格点上,且点A (-5,-1),点C (-1,-2).(1)以原点O 为旋转中心,将△ABC 绕点O 逆时针旋转90°得到△A B C '''. 请在图中画出△A B C ''',并写出点A 的对称点A '的坐标;(2)以原点O 为位似中心,位似比为2,在第一象限内将△ABC 放大,画出放大后的图形△A B C ''''''.17.如图,甲、乙用4张扑克牌玩游戏,他俩将扑克牌洗匀后背面朝上,放置在桌面上,每人抽一张,甲先抽,乙后抽,抽出的牌不放回....甲、乙约定:只有..甲抽到的牌面数字比乙大时甲胜;否则乙胜. 请你用树状图或列表法说明甲、乙获胜的机会是否相同 .18. 二次函数22y x x m =-++的图象与x 轴的一个交点为A ()3,0,另一个交点为B ,与y 轴交于点C.A BCDE4(1)求m 的值及点B 、点C 的坐标; (2)直接写出当0y >时,x 的取值范围; (3)直接写出当12x -≤≤时,y 的取值范围.四、解答题(共4道小题,每小题5分,共20分)19. 如图,AB 为⊙O 的直径,直线DT 切⊙O 于T ,AD ⊥DT 于D ,交⊙O 于点C , AC =2,DT∠ABT 的度数.20. 如图,在Rt △ABC 中,∠CAB =90°,AD 是∠CAB 的平分线,tan B =21,求CDBD的值.21. 在矩形ABCD 中,点O 在对角线BD 上,以OD 为半径的⊙O 与AD 、BD 分别交于点E 、F ,且∠ABE =∠DBC . (1)求证:BE 与⊙O 相切; (2)若13sin ABE ∠=,CD =2,求⊙O 的半径.22. 阅读下面材料:小伟遇到这样一个问题:如图1,在正三角形ABC 内有一点P ,且P A =3 ,PB =4,PC =5,求∠APB 的度数.小伟是这样思考的:如图2,利用旋转和全等的知识构造△AP C ',连接PP ',得到两个特殊的三角形,从而将问题解决.ABCD数学试卷答案第5页(共14页)图1 图2 图3 图4PCBAABC PP 'D P ACBABC DPFE请你回答:图1中∠APB 的度数等于 . 参考小伟同学思考问题的方法,解决下列问题:(1)如图3,在正方形ABCD 内有一点P ,且P A=PB =1,PD,则∠APB 的度数等于 ,正方形的边长为 ;(2)如图4,在正六边形ABCDEF 内有一点P ,且P A =2,PB =1,PF则∠APB 的度数等于 ,正六边形的边长为 .五、解答题(共3道小题,第23题7分,第24题8分,第25题9分,共24分)23. 如图,小明在一次高尔夫球训练中,从山坡下P 点打出一球向球洞A 点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大高度BD 为12米时,球移动的水平距离PD 为9米 .已知山坡P A 与水平方向PC 的夹角为30o ,AC ⊥PC 于点C , P 、A两点相距请你建立适当的平面直角坐标系解决下列问题.(1)求水平距离PC 的长;(2)求出球的飞行路线所在抛物线的解析式;(3)判断小明这一杆能否把高尔夫球从P 点直接打入球洞A .24.如图,菱形ABCD的边长为48cm,∠A=60°,动点P从点A出发,沿着线路AB—BD做匀速运动,动点Q从点D同时出发,沿着线路DC—CB—BA做匀速运动.(1)求BD的长;(2)已知动点P、Q运动的速度分别为8cm/s、10cm/s. 经过12秒后,P、Q分别到达M、N两点,若按角的大小进行分类,请问△AMN是哪一类三角形,并说明理由;(3)设问题(2)中的动点P、Q分别从M、N同时沿原路返回,动点P的速度不变,动点Q的速度改变为a cm/s,经过3秒后,P、Q分别到达E、F两点,若△BEF与问题(2)中的△AMN相似,试求a的值.25.如图,在平面直角坐标系xOy中,二次函数图象的顶点坐标为C(- 4,且在x轴上截得的线段AB的长为6.(1)求二次函数的解析式;(2)在y轴上确定一点M,使MA+MC的值最小,求出点M的坐标;(3)在x轴下方的抛物线上,是否存在点N,使得以N、A、B三点为顶点的三角形与△ABC相似?如果存在,求出点N的坐标;如果不存在,请说明理由.6数学试卷答案第7页(共14页)昌平区2012—2013学年第一学期初三年级期末质量抽测数学试卷参考答案及评分标准 2013.1一、选择题(共8个小题,每小题4分,共32分)二、填空题(共4个小题,每小题4分,共16分)三、解答题(共6道小题,第13、14题各4分,第15-18题各5分,共28分) 13.解:原式=2…………………………………………………………… 3分 =1. ………………………………………………………………………… 4分 14.解:由题意,易知30,90,CAD CDA ∠=︒∠=︒,, 1.7AD CE BE DE AB =⊥==. ………………………… 1分∴tan CD CAD AD∠=, ……………………………………………………………… 2分∴33CD ==. ……………………………………………………………… 3分∴3 1.7 4.7CE =+=. ……………………………………………………………… 4分答:这棵树的高度为4.7米.15.解:依题意,得210,(6)43(1)0.k k +≠⎧⎨∆=--⨯+≥⎩ …………………………………………………… 2分 解之,得 1,2.k k ≠-⎧⎨≤⎩………………………………………………………………………… 4分∴ 2k ≤且1k ≠-. ………………………………………………………………………… 5分 16.解:(1)点A '坐标为 (1,-5) . ……………………………………………………………… 1分如图所示. ………………………………………………………………………………3分 (2)如图所示. ………………………………………………………………………………………5分817.解:2 4 52 4 52 5 5554甲乙 4 5 52. ………………………………… 3分∴57,1212P P ==(甲胜)(乙胜). …………………………………………………………… 4分 ∴甲、乙获胜的机会不相同. ………………………………………………………… 5分 18.解:(1)依题意得:0 = - 9 + 6 + m ,∴m = 3. …………………………………………………………………………… 1分 ∴223y x x =-++.∴ 抛物线与x 轴的另一交点B (-1,0), ………………………………………… 2分 与y 轴交点C (0,3). ……………………………………………………………… 3分(2)当y ﹥0 时,-1 < x < 3. ………………………………………………………………… 4分 (3)当-1≤x ≤2时,0≤y ≤4. ………………………………………………………………5分 四、解答题(共4道小题,每小题5分,共20分) 19. 解:连接OT 、BC ,相交于点E .∵直线DT 切⊙O 于T ,∴∠OTD = 90°.………………………………………… 1分 ∵AD ⊥DT 于D , ∴∠ADT = 90°. ∵AB 为⊙O 的直径,∴∠ACB = 90°. ………………………………………………………………………… 2分 ∴∠DCB = 90°.∴四边形CDTE 是矩形. …………………………………………………………………… 3分 ∴∠CET = 90°,CE DT ==数学试卷答案第9页(共14页)∴2BC CE ==∵tan ABC AC BC ∠==, ∴∠ABC = 30°. ………………………………………………………………………… 4分 ∴∠BOT = 60°. ∵OB = OT ,∴△OBT 为等边三角形.∴∠ABT = 60°. ………………………………………………………………………… 5分20.解:过点D 作DE AB E ⊥于点.∵∠BAC =90°,AD 平分∠CAB ,∴∠1=12∠CAB=45°.∵DE AB ⊥,∴DE ∥AC ,∠2=45° . ∴DE=AE , AE CD BEBD=. ………………………………………………………………… 2分∵1tan 2B =,∴12DE BE=. ……………………………………………………………………………… 3分∴12AE BE= . ……………………………………………………………………………… 4分 ∴12CD BD=. ……………………………………………………………………………… 5分21. (1)证明:连接OE . ………………………………………………………………………… 1分∵四边形ABC D 是矩形, ∴AD ∥BC , ∠C =∠A = 90°. ∴∠3 =∠DBC ,∠A BE +∠1 = 90°. ∵OD =OE ,∠ABE =∠DBC, ∴∠2=∠3=∠ABE . ∴∠2 +∠1 = 90°. ∴∠BEO =90° . ∵点E 在⊙O 上,∴BE 与⊙O 相切. ………………………………………………………………………… 2分(2)解:∵∠ABE =∠DBC , ∴13sin sin DBC ABE ∠=∠=.21EABCD10∵DC =2 ,∠C = 90°,∴DB = 6. ……………………………………………………………………………… 3分 ∵∠A = 90°, ∴BE =3AE . ∵AB = CD =2 ,利用勾股定理,得2AE =,AD =∴2DE =.连接EF . ∵DF 是⊙O 的直径, ∴∠DEF =∠A = 90°. ∴AB ∥EF .∴DEF ∆∽DAB ∆. …………………………………………………………………………… 4分∴DE DFAD BD = .6DF =. ∴214DF =. ∴⊙O 的半径为218. …………………………………………………………………………5分 22.解:150︒ . ……………………………………………………………………………………… 1分 (1)135……………………………………………………………………………… 3分 (2)120………………………………………………………………………………… 5分 五、解答题(共3道小题,第23题7分,第24题8分,第25题各9分,共24分) 23.解:(1)依题意得:90,30,ACP APC PA ∠=︒∠=︒=∵cos OCAPC OA∠=, ………………………………………………………………… 1分∴cos3012PC =︒= . …………………………………………………………… 2分 ∴PC 的长为12m .(2)以P 为原点,PC 所在直线为x 轴建立如图所示的平面直角坐标系,可知:顶点B (9,12), 抛物线经过原点. …………………… 3分 ∴设抛物线的解析式为2(9)12y a x =-+. ………… 4分 ∴20(09)12a =-+,求得427a =-.∴24= 9+1227y x -(-). ……………………………… 5分(3)由(1)知C (12 , 0) ,易求得AC =∴12A (. ……………………………………………………………………… 6分 当x =12时,2432(129)12=273y =--+≠ ………………………………… 7分∴小明不能一杆把高尔夫球从P 点直接打入球洞A .24.解:(1)∵ 四边形ABCD 是菱形,∴AB =BC =CD =AD =48 . …………………………………………………………… 1分 又∵60A ∠=, ∴△ABD 是等边三角形. ∴BD =AB =48.∴BD 的长为48cm . …………………………………………………………… 2分(2)如图1,12秒后,点P 走过的路程为8×12=96,∴12秒后点P 到达点D (M ).又∵ 12秒后,点Q 走过的路程为10×12=120,∴12秒后点Q 到达AB 的中点N . …………………………………………………… 3分 连结MN ,由(1)知△ABD (M )是等边三角形, ∴MN ⊥AB 于点N . ∴90ANM ∠=︒.∴△AMN 是直角三角形. ………………………………………………………………4分 (3)依题意得,3秒时点P 走过的路程为24cm ,点Q 走过的路程为3a cm.∴ 点E 是BD 的中点.∴ DE = BE = 24. …………………………………………………………………………5分① 当点Q 在NB 上时(如图1),13N F a =, ∴1243BF a =-.∵点E 是BD 的中点,若EF 1⊥DB ,则点F 1与点A 重合,这种情况不成立. ∴EF 1⊥AB 时,∠EF 1B =∠ANM = 90°. 由(1)知∠ABD =∠A = 60°, ∴△EF 1B ∽△MAN. ∴1BF BE ANAM =. ∴243242448a -=.∴4a =,112BF =. ……………………………………………………………… 6分 ② 如图2,由菱形的轴对称性,当点Q 在BC 上时,212BF =. ∴点Q 走过的路程为36cm . ∴36123a ==. ………………………………… 7分③ 如图3,当点Q 与点C 重合时,即点F 与点C 重合. 由(1)知,△BCD 是等边三角形, ∴EF 3⊥BD 于点E ,∠E B F 3 =∠A = 60°. ∴△F 3EB ∽△MNA . 此时,BF 3 = 48,∴点Q 走过的路程为72cm . ∴ 72243a ==. ……………………………………………………………………… 8分综上所述,若△BEF ∽△ANM ,则a 的值为4cm/s 或12cm /s 或24cm /s.25.解:(1)∵抛物线的顶点坐标为4C -(,∴抛物线的对称轴为直线4x =-.∵抛物线在x 轴上截得的线段AB 的长为6,∴ A (-1 , 0 ),B ( -7 , 0 ) . …………………………………………………1分图1图23)图3设抛物线解析式为()24y a x=++∴()2014a=-++解得,a=.∴ 二次函数的解析式为)24y x=++……………………………2分(2)作点A关于y轴的对称点A',可得A'(1.0).连接A'C交y轴于一点即点M,此时MC + MA的值最小.由作法可知,MA = M A'.∴MC + MA = MC + M A'=A'C.∴当点M在线段A'C上时,MA + MC取得最小值. …………………………………3分∴线段A'C与y轴的交点即为所求点M.设直线C A'的解析式为y kx b=+(k≠0),∴4k b,k b.=-+=+⎪⎩∴k b==. …………………………4分∴直线C A'的解析式为55y x=+.∴点M的坐标为( 0,5).………………………………………………………………5分(3)由(1)可知,C(-4,,设对称轴交x轴于点D,∴AD = 3.∴在Rt△ADC中,3 tan CAD∠=∴∠CAD = 30o,∵AC = BC,∴∠ABC = ∠CAB = 30o.∴∠ACB = 120°. …………………………………………………………………………6分①如果AB = A N1= 6,过N1作E N1⊥x轴于E.由△ABC∽△BA N1得∠BA N1= 120o,则∠EA N1= 60o .∴N1E = 33,AE =3.∵A(-1 , 0 ),∴OE = 2.∵点N在x轴下方,∴点N2(2,-…………………………………………………………………………7分②如果AB = B N2,由对称性可知N2(-10,-…………………………………………8分③如果N3A = N3B,那么点N必在线段AB的中垂线即抛物线的对称轴上,在x轴下方的抛物线上不存在这样的点N.经检验,点N1 (2,-)与N2 (-10,-都在抛物线上 . ……………………………9分综上所述,存在这样的点N,使△NAB∽△ABC,点N的坐标为(2,-或(-10,-。

北京市昌平区七年级数学上册期末质量试题有答案

北京市昌平区七年级数学上册期末质量试题有答案

昌平区第一学期初一年级期末质量抽测数学试卷(120分钟 满分100分)下面各题均有四个选项,其中只有一个是符合题意的. 1. -4的倒数是A. 41- B .41C .4D .-42. 中新社北京11月10日电,中组部负责人近日就做好中共十九大代表选举工作有关问题答记者问时介绍称,十九大代表名额共2300名,将2300用科学记数法表示应为 A .23×102 B .23×103C .2.3×103D .0.23×1043. 右图是某个几何体的三视图,该几何体是 A .圆柱 B .圆锥C .球D .棱柱4. 质检员抽查4袋方便面,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重 的角度看,最接近标准的产品是A .-3B .-1C .2D .4 5. 有理数a ,b 在数轴上的点的位置如图所示,则正确的结论是A.4a <-B. 0a b +>C. a b >D. 0ab >6. 如图,已知直线AB ,CD 相交于点O ,OE 平分∠COB ,如果∠EOB =55°,那么∠BOD 的度数是A .35°B .55°C .70°D .110° 7. 用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆b =ab 2 + a.如:1☆3=1×32+1=10. 则(-2)☆3的值为A .10B .-15C . -16D .-20123–1–2–3–40b O EDCBA8. 下列图案是用长度相同的小木棒按一定规律拼搭而成,图案①需8根小木棒,图案②需15根小木棒,……,按此规律,图案⑦需小木棒的根数是① ② ③……A .49B .50C .55D .56二、填空题(本题共8道小题,每小题2分,共16分) 9. 234x y -的系数是 ,次数是 .10. 如右图,想在河堤两岸搭建一座桥,图中四种搭建方式P A ,PB ,PC ,PD 中,最短的是 . 11. 计算:23.5°+ 12°30′= °. 12. 写出32m n - 的一个同类项 .13. 如果21(2018)0m n ++-=,那么nm 的值为 .14. 已知(1)20mm x --=是关于的一元一次方程,则m 的值为 .15. 已知a 与b 互为相反数,c 与d 互为倒数,的绝对值等于2,则a+b cdx -的值为 .16. 右图是商场优惠活动宣传单的一部分:两个品牌分别标有“满100减40元”和“打6折”. 请你比较以上两种 优惠方案的异同(可举例说明) .三、解答题(本题共12道小题,第17-22题,每小题5分,第23-26题,每小题6分,第27、28题,每小题7分,共68分) 17. 计算:-3- 2 +(-4)-(-1).18. 计算:(-3)×6÷(-2)×12.19. 计算:153(24)368-+-⨯-⎛⎫ ⎪⎝⎭.A B C DPEDCBA20. 计算:213(12)6(1)2-+-⨯--÷-.21. 解方程:-6 - 3 = 2 (5-).22. 解方程: 531142x x +-=-.23.如图,平面上有五个点A ,B ,C ,D ,E .按下列要求画出图形. (1)连接BD ;(2)画直线AC 交BD 于点M ; (3)过点A 作线段AP ⊥BD 于点P ;(4)请在直线AC 上确定一点N ,使B ,E 两点到点N 的距离之和最小(保留作图痕迹).24. 化简求值: 22(2)33(31)(93)x x x x -⨯+---+,其中13x =-.25. 补全解题过程.如图所示,点C 是线段AB 的中点,点D 在线段AB 上,且AD =12DB . 若AC =3,求线段DC 的长. 解:∵ 点C 是线段AB 的中点,(已知)∴ AB =2 AC .( ) ∵AC =3,(已知) ∴ AB = . ∵点D 在线段AB 上,AD =12DB ,(已知) ∴ AD = AB .DCBA12345–1–2–3–4–50OM N ∴ AD = .∴DC = - AD = .26. 列方程解应用题.程大位,明代商人,珠算发明家,被称为珠算之父、卷尺之父. 少年时,读书极为广博,对数学颇感兴趣,60岁时完成其杰作《直指算法统宗》(简称《算法统宗》). 在《算法统宗》里记载了一道趣题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完.试问大、小和尚各多少人?27. 已知数轴上三点M ,O ,N 对应的数分别为-1,0,3,点P 为数轴上任意一点,其对应的数为.(1)MN 的长为 ;(2)如果点P 到点M 、点N 的距离相等,那么的值是 ;(3)数轴上是否存在点P ,使点P 到点M 、点N 的距离之和是8?若存在,直接写出的值;若不存在,请说明理由.(4)如果点P 以每分钟1个单位长度的速度从点O 向左运动,同时点M 和点N 分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动. 设t 分钟时点P 到点M 、点N 的距离相等,求t 的值.28. 十九大报告中提出“广泛开展全民健身活动,加快推进体育强国建设”.为了响应号召,提升学生训练兴趣,某中学自编“功夫扇”课间操.若设最外侧两根大扇骨形成的角为∠COD ,当“功夫扇”完全展开时∠COD =160°. 在扇子舞动过程中,扇钉O 始终在水平线AB 上.图3小华是个爱思考的孩子,不但将以上实际问题抽象为数学问题,而且还在抽象出的图中画出了∠BOC 的平分线OE ,以便继续探究.(1)当扇子完全展开且一侧扇骨OD 呈水平状态时,如图1所示. 请在抽象出的图2中画出∠BOC的平分线OE ,此时∠DOE 的度数为 ;图1图2(2)“功夫扇”课间操有一个动作是把扇子由图1旋转到图3所示位置,即将图2中的∠COD 绕点O 旋转至图4所示位置,其他条件不变,小华尝试用如下两种方案探究了∠AOC 和∠DOE 度数之间的关系.方案一:设∠BOE 的度数为.可得出1802AOC=x -∠︒,则111809022x=AOC =AOC --︒∠︒∠().160DOE=x -∠︒,则160x=DOE -︒∠.进而可得∠AOC 和∠DOE 度数之间的关系. 方案二:如图5,过点O 作∠AOC 的平分线OF .易得90EOF=∠︒,即1902AOC+COE=∠∠︒. 由160COD=∠︒,可得160DOE+COE=∠∠︒.进而可得∠AOC 和∠DOE 度数之间的关系.参考小华的思路可得∠AOC 和∠DOE 度数之间的关系为 ;(3)继续将扇子旋转至图6所示位置,即将∠COD 绕点O 旋转至如图7所示的位置,其他条件不变,请问(2)中结论是否依然成立?说明理由.ABCDEO图4F图5OEDCBA图6图7OEDCBA昌平区第一学期初一年级期末质量抽测数学试卷参考答案及评分标准一、选择题(本题共8道小题,每小题2分,共16分)三、解答题(本题共12道小题,第17-22题,每小题5分,第23-26题,每小题6分,第27、28题,每小题7分,共68分)17.解原式= - 3 -2 - 4 + 1 ………………………… 2分 = -5 - 4 + 1 ………………………… 3分 = -9 + 1 ………………………… 4分 = -8 . ………………………… 5分 18. 解:原式= ()11822-÷-⨯() ………………………… 2分=192⨯ ………………………… 4分 =92. ………………………… 5分19.解:原式=()()()153242424368-⨯-+⨯--⨯-⎛⎫ ⎪⎝⎭………………………… 1分= 8 – 20 + 9 ………………………… 4分 = - 3 . ………………………… 5分20.解:原式= ()()19+12+62--⨯ ………………………… 3分= - 9- 6 + 6 ………………………… 4分 = - 9 . ………………………… 5分21.解:-6 - 3 = 10 - 2. ………………………… 1分 -3 + 2 = 10 + 6. ………………………… 2分- = 16. ………………………… 4分 = -16. ………………………… 5分22.解: 5 + 3= 4 - 2( - 1).………………………… 2分5 + 3 = 4 - 2 + 2. ………………………… 3分 5 + 2 = 4 + 2 - 3.7 = 3. ………………………… 4分37x =.………………………… 5分23. 解:(1)如图,连接线段BD . …………1分(2)如图,作直线AC 交BD 于点M . (3)分(3)如图,过点A 作线段AP ⊥BD 于点P . ………5分(4)如图,连接BE 交AC 于点N . ………………6分 24.解:原式= -6 + 92 - 3 - 92 + - 3…………………… 3分= -5 - 6. ………………………… 4分当13x =-时,原式=15()63-⨯--………………………… 5分=133-.………………………… 6分 25. 解:线段中点定义, 6 , 13, 2 , AC , 1 . …………………6分(每空一分)26. 解:设小和尚有人,则大和尚有(100 - )人. …………… 1分根据题意列方程,得()13100+=1003x x -. ……………3分解方程得: = 75. ……………………… 4分 则100 – = 100–75 = 25. ……………………… 5分 答:大和尚有25人,小和尚有75人. ……………… 6分27. 解:(1)MN 的长为 4 . ……………………………1分 (2)的值是 1 . ……………………………2分 (3)的值是-3或5. ……………………………4分 (4)设运动t 分钟时,点P 到点M ,点N 的距离相等,即PM = PN .图1点P 对应的数是-t ,点M 对应的数是-1 - 2t ,点N 对应的数是3 - 3t . …………5分 ①当点M 和点N 在点P 同侧时,点M 和点N 重合,所以-1 - 2t = 3 - 3t ,解得t = 4,符合题意. ……………………………6分②当点M 和点N 在点P 异侧时, 点M 位于点P 的左侧,点N 位于点P 的右侧(因为三个点都向左运动,出发时点M 在点P 左侧,且点M 运动的速度大于点P 的速度,所以点M 永远位于点P 的左侧),故PM = -t -(-1 - 2t )= t + 1.PN =(3 - 3t )-(-t )= 3 - 2t . 所以t + 1 = 3 - 2t ,解得t =23,符合题意. ……………………………7分综上所述,t 的值为23或4. 28. 解:(1)如图1. …………………………………………1分∠DOE 的度数为 80° . ……………………2分 (2)1702DOE AOC=-∠∠︒ . ………………………4分(3)不成立. 理由如下:方法一: 设∠BOE 的度数为.可得出1802AOC=x -∠︒,则111809022x=AOC =AOC --︒∠︒∠(). ……………5分160DOE=+x ∠︒,则160x=DOE -∠︒. …………………………………6分所以12502DOE+AOC=∠∠︒. ………………………………………………7分方法二:如图2,过点O 作∠AOC 的平分线OF . 易得90EOF=∠︒,即1902AOC+COE=∠∠︒. (5)分由160COD=∠︒,可得160DOE COE=-∠∠︒. ……6分F 图2O E DCB A所以12502DOE+AOC=∠∠︒. …………………7分。

2021_2012北京市昌平区七年级上期末数学试题分类——一元一次方程(学生版)

2021_2012北京市昌平区七年级上期末数学试题分类——一元一次方程(学生版)

10.已知 x=﹣1 是方程 x﹣m=4 的解,那么 m 的值是

11.若(m﹣1)x|m|﹣2m=0 是关于 x 的一元一次方程,则 m 的值是

12.请写出解方程

=1 的思路为

13.解为 x=2 的一元一次方程是
.(写出一个即可)
14 . 若 方 程 2x3 ﹣ 2m+5 ( m ﹣ 2 ) = 0 是 关于 x 的 一 元 一 次方 程 , 则 这 个 方 程的 解
A.﹣1
B.1
C.2
D.﹣2
3.已知 x=2 是 2x+a=5 的解,则 a 的值为( )
A.1
B.
C.﹣1
D.
4.下列变形正确的是( ) ①由﹣3+2x=5,得 2x=5﹣3; ②由 3y=﹣4,得 y=﹣ ; ③由 x﹣3=y﹣3,得 x﹣y
=0; ④由 3=x+2,得 x=3﹣2.
A.①②
B.①④
8.【问题】将 0. 化为分数形式.
【探求】步骤①设 x=0. .
步骤②10x=10×0. .
步骤③10x=1. ,则 10x=1+0. . 步骤④10x=1+x,解得:x= .
【回答】(1)0. 化为分数形式得

(2)0.1 化为分数形式得

第1页(共12页)
9.如果 x=2 是关于 x 的方程 x+m=3 的解,那么 m 的值是 .

③若|a﹣1|+|a+2|=5,则有理数 a=

第12页(共12页)


15.若关于 x 的一元一次方程 ax+3x=2 的解是 x=1,则 a=

学年市昌平区初一第二学期期末数学试卷含答案

学年市昌平区初一第二学期期末数学试卷含答案

学年市昌平区初一第二学期期末数学试卷含答案TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】l 21ba 昌平区2016-2017学年第二学期初一年级期末质量抽测数 学 试 卷2017.7考 生 须 知1.本试卷共6页,三道大题,29个小题,满分100分。

考试时间120分钟。

2. 请在试卷上准确填写学校名称、姓名和考试编号。

3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4. 在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5. 考试结束后,请交回答题卡、试卷和草稿纸。

一、选择题(共10道小题,每小题3分,共30分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.每年四月北京很多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其扰. 据测定,杨絮纤维的直径约为 010 5米,将 010 5用科学记数法可表示为 A. ×105 B. ×10-5 C. ×10-4 D. ×10-6 2.下列计算正确的是A. 23x x x += B. 236·x x x = C. 933x x x ÷= D. ()236x x = 3.若a <b ,则下列各式中不正确的是A. 33a b +<+B. 33a b -<-C. 33a b -<-D.33a b<4. 一个布袋里装有6个只有颜色不同的球,其中2个红球,4个白球.从布袋里任意摸出1个球,则摸出的球是白球的可能性大小为A .32B .21C .31D .615.如图,直线l 与直线a ,b 相交,且a ∥b ,∠1=110o ,则∠2的度数是 A .20° B .70° C .90° D .110° 6.下列事件是必然事件的是A. 经过不断的努力,每个人都能获得“星光大道”年度总冠军B. 小冉打开电视,正在播放“奔跑吧,兄弟”C. 火车开到月球上D. 在十三名中国学生中,必有属相相同的7.鸡兔同笼问题是我国古代着名趣题之一. 大约在1500年前,《》中就记载了这个有趣的问题. 书中是这样叙述的:“今有雉兔同笼,上鸡兔同笼有三十五头,下有九十四足,问雉兔各几何”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?经计算可得 A . 鸡23只,兔12只 B . 鸡12只,兔23只 C . 鸡15只,兔20只 D. 鸡20只,兔15只8成绩(分)678910人数则这40名同学投掷实心球的成绩的众数是 A .14 B .9C .D .89.已知23m n x x ==,,则m n x +的值是 A .5 B .6C .8D . 9 10. 将三角形、菱形、正方形、圆四种图形(大小不计)组合如下图,观察并思考最后一图对应的数为 A .13 B .24C .31D .42二、填空题(共6道小题,每小题3分,共18分) 11.分解因式:29m - = .12.北京市今年5月份最后六天的最高气温分别为31,34,36,27,25,33(单位:℃). 这组数据的中位数是 . 13.计算:(x -1)(x +2)= .14.如图14-1,将边长为a 的大正方形剪去一个边长为b 的小正方形,并沿图中的虚线剪开, 拼接后得到图14-2,这种变化可以用含字母 a ,b 的等式表示为 .15.在一个六面体模型的六个面上,分别标了“观察、实验、归纳、类比、猜想、证明”六个词,下图是从三个不同的方向看到的几个词,观察它们的特点,推出“类比”相对面上的词是 . 16. 阅读下面材料:在数学课上,老师提出如下问题:ba14-214-1 作图:过直线外一点作已知直线的平行线. A小凡利用两块形状相同的三角尺进行如下操作:171819解:解不等式①得:;解不等式②得:;把不等式①和②的解集在数轴上表示出来:所以,这个不等式组的解集是 .20.(3分)解不等式5x-12≤2(4x-3),并求出负整数解.21.(5分)先化简,再求值:2()(2)+()a b a a b a b a b---+-(),其中a =-3,b=1.22.(4分)已知28xy=-⎧⎨=-⎩,和37xy=⎧⎨=⎩,是关于x,y的二元一次方程y = kx+b的解,求k,b的值.23.(4分)已知:如图,BE求证:∠C=∠E .24.(4(1)若m⊕n=1,m⊕2n=-2,分别求出m和n的值;(2)若m满足m⊕2≤0,且3m⊕(-8)>0,求m25.(4分)阅读下列材料:新京报讯(记者沙璐摄影彭子洋)农业嘉年华圆满闭幕.历时58中4月3本届北京农业嘉年华共打造了180种、130余项先进农业技术,开展了210馆两园一带一谷”的基础上,增设了“一线”,即京北旅游黄金线,并在草莓博览园作为主会场的同时,首设乐多港、延寿两大分会场.销售草莓 m %其它19.3%民俗旅游32%MFEDCB A321据统计,本届嘉年华期间共有600余家展商参展,设置了1700处科普展板,近6万人参与“草莓票香”体验活动,周边各草莓采摘园接待游客达267万人次,销售草莓万公斤,实现收入亿元.同时,还有效带动延寿、兴寿、小汤山、崔村、百善、南邵6个镇的民俗旅游,实现收入亿元,较上届增长%.根据以上材料回答下列问题:(1)举办农业嘉年华以来单日游客人数的最高纪录是 ;(2)如右图,用扇形统计图表示民俗旅游、销售草莓及其它方面收入的分布情况,则m = ;(3)选择统计表或.统计图,将本届嘉年华的创意景观、农业优新特品种、展商参展、科普展板的数量表示出来.26.(3分)如图所示,已知前两个天平两端保持平衡.要使第三个天平两端保持平衡,天平的右边应放几个圆形?请写出你的思路.27. (5分)2017年5月31日,昌平区举办了首届初二年级学生“数学古文化阅读展示”活动,为表彰在本次活动中表现优秀的学生,老师决定在6月1日购买笔袋或彩色铅笔作为奖品. 已知1个笔袋、2筒彩色铅笔原价共需44元;2个笔袋、3筒彩色铅笔原价共需73元.(1)每个笔袋、每筒彩色铅笔原价各多少元?(2)时逢“儿童节”,商店举行“优惠促销”活动,具体办法如下:笔袋“九折”优惠;彩色铅笔不超过10筒不优惠,超出10筒的部分“八折”优惠. 若买x 个笔袋需要y 1元,买x 筒彩色铅笔需要y 2元. 请用含x 的代数式表示y 1、y 2; (3)若在(2)的条件下购买同一种奖品95件,请你分析买哪种奖品省钱. 28. (5分)如图,在三角形ABC 中, D ,E ,F 三点分别在AB ,AC ,BC 上,过点D的直线与线段EF 的交点为点M ,已知2∠1-∠2=150°,2∠ 2-∠1=30°.(1)求证:DM ∥AC ;(2)若DE ∥BC ,∠C =50°,求∠3的度数.29.(5分) 已知:如下图, AB ∥CD ,点E ,F 分别为AB ,CD 上一点.(1) 在AB ,CD 之间有一点M (点M 不在线段EF 上),连接ME ,MF ,试探究○ ▲▲▲▲□□ □ ▲▲▲ ▲▲ ▲ ▲ ○○ ○ △ △ □□ △∠AEM,∠EMF,∠MFC之间有怎样的数量关系. 请补全图形,并在图形下面写出相应的数量关系,选其中一个..进行证明.(2)如下图,在AB,CD之间有两点M,N,连接ME,MN,NF,请选择一个..图形写出∠AEM,∠EMN,∠MNF,∠NFC 存在的数量关系(不需证明).昌平区2016-2017学年第二学期初一年级期末质量抽测数学试卷参考答案及评分标准2017.7一、选择题(共10个小题,每小题3分,共30分)二、填空题(共6个小题,每小题3分,共18分)三、解答题(共13个小题,共52分)17.解:原式= a(x2-2x+1) ………………………………………………………………………1分= a(x-1)2 . …………………………………………………………………………3分18.解:原式= 3a4b2÷6ab…………………………………………………………………………1分= 12ab2÷6ab…………………………………………………………………………2分= 2b. ……………………………………………………………………………………3分19.解:x<3 ……………………………………………………………………………………………1分x≥-2. ……………………………………………………………………………………………2分…………………………………………3分-2≤x<3. ………………………………………………………………………………………4分20.解:5x-12≤2(4x-3)EDCBA15x -8x ≤12-6-3x ≤6x ≥-2. ……………………………………………………………………………………2分所以负整数解为-2,-1. ……………………………………………………………………3分21.解:(a -b )2-a (2a -b )+(a +b )(a +b )= a 2-2ab +b 2- 2a 2+ ab +a 2-b 2 …………………………………………………………3分 =-ab . ………………………………………………………………………………………4分 当a =-3,b =1时原式=-(-3)×1=3. …………………………………………………………………………5分 22.解:根据题意,得28,37.k b k b -+=-⎧⎨+=⎩………………………………………………………………………………2分 解得: 3,2.k b =⎧⎨=-⎩…………………………………………………………………………………4分23.证明:∵∠A =∠1,∴DE ……………………………………1分 ∴∠E =∠EBA .∵BE …………………………………3分 ∴∠C =∠E . ………………………………………………………………………………4分 24.解:(1)根据题意,得431,432 2.m n m n -=⎧⎨-⨯=-⎩……………………………………………………………… 1分 解得: 1,1.m n =⎧⎨=⎩ …………………………………………………………………… 2分(2)根据题意,得()4320,43380.m m -⨯≤⎧⎨⨯-⨯->⎩…………………………………………………………… 3分 解得:232≤<-m .……………………………………………………………… 4分(2)m =. ……………………………………………………………………………………2分(3)本届嘉年华的创意景观、农业优新特品种、展商参展、科普展板的数量列表如下:注:写出两个1分,共2分. (2)分26.(1)由第一个天平可得3○=□+3▲ ①;……………………………………………………… 1分(2)由第二个天平可得2□=○+4▲ ②; …………………………………………………… 2分(3)3×②-4×①可消去▲,从而等到□与○的等量关系,进而求出第三个天平右边应放圆形的个数为3个 . …………………………………………………………………………………… 3分27.解:(1)设每个笔袋原价x 元,每筒彩色铅笔原价y 元,根据题意,得:2442373.x y x y +=⎧⎨+=⎩,……………………………………………………………………… 1分解得:1415.x y =⎧⎨=⎩,…………………………………………………………… 2分所以每个笔袋原价14元,每筒彩色铅笔原价15元. (2)y 1=14×=. ………………………………………………………………… 3分当不超过10筒时:y 2=15x ;当超过10筒时:y 2=12x +30. ……………………………………………………… 4分 (3)方法1: ∵95>10,∴将95分别代入y 1=和y 2=12x +30中,得y 1> y 2.∴买彩色铅笔省钱. ………………………………………………………………… 5分方法2:当y1<y2时,有<12x+30,解得x<50,因此当购买同一种奖品的数量少于50件时,买笔袋省钱.当y1=y2时,有=12x+30,解得x=50,因此当购买同一种奖品的数量为50件时,两者费用一样.当y1>y2时,有>12x+30,解得x>50,因此当购买同一种奖品的数量大于50件时,买彩色铅笔省钱.∵奖品的数量为95件,95>50,∴买彩色铅笔省钱. …………………………………………………………………5分28.(1)证明:∵ 2∠1-∠2=150°,2∠2-∠1=30°,∴∠1+∠2=180°. …………………………………………………………1分∵∠1+∠DME=180°,∴∠2=∠DME .∴DM∥AC .……………………………………………………………2分(2)解:∵DM∥AC,∴∠3=∠AED .……………………………………………………………3分∵DE∥BC,∴∠AED=∠C .……………………………………………………………4分∴∠3=∠C .∵∠C=50°,∴∠3=50°.………………………………………………………………5分29.解:(1)∠EMF=∠AEM+∠MFC. ∠AEM+∠EMF+∠MFC=360°.注:画图及数量关系对两个1分,共2分.………………………………………………2分证明:过点M作MP∥AB. 证明:过点M作MQ∥AB.∵AB∥CD,∵AB∥CD,∴MP∥CD. ∴MQ∥CD.∴∠4=∠3. ∴∠CFM+∠1=180°. ………………3分∵MP∥AB,∵MQ∥AB,∴∠1=∠2. ∴∠AEM+∠2=180°.∵∠EMF=∠2+∠3,∴∠CFM+∠1+∠AEM+∠2=360°.∴∠EMF=∠1+∠4. ∵∠EMF=∠1+∠2,∴∠EMF=∠AEM+∠MFC. ∴∠AEM+∠EMF+∠MFC=360°.…4分(2)第一图数量关系:∠EMN+∠MNF-∠AEM-∠NFC=180°.第二图数量关系:∠EMN-∠MNF+∠AEM+∠NFC=180°.………………………5分。

北京市昌平区2012-2013学年第一学期初一年级期末数学试题与答案

北京市昌平区2012-2013学年第一学期初一年级期末数学试题与答案

∴ AD = 1 2
=
cm.
∴ BD = AD -
=
cm.
六、列方程解应用题(共 2 个小题,每小题 5 分,共 10 分) 22.如图所示,长方形的长是宽的 2 倍多 1 厘米,周长为 14 厘米,求该长方形的宽和长各是多少厘米?
23.小明周六去昌平图书馆查阅资料,他家距昌平图书馆 35 千米.小明从家出发先步行 20 分钟到车站, 紧接着坐上一辆公交车,公交车行驶 40 分钟后到达图书馆.已知公交车的平均速度是步行的平均速度的 7 倍,求公交车平均每小时行驶多少千米?
图1
B
31°
O
A
图2
C
B
31°
31°
O
A
图3
E
D
C
F
31° 31° 31° 31°
B
31°
O
A
图4
D
E
C
F
31° 31°
B
31° 31°
G 25°
31°
A
O
3
25. 如图,OM 是∠AOC 的平分线,ON 是∠BOC 的平分线.
(1)如图 1,当∠AOB 是直角, ∠BOC=60°时,∠MON 的度数是多少?
(2)如图 2,当∠AOB= ,∠BOC= 60°时,猜想∠MON 与 的数量关系; (3)如图 3,当∠AOB= ,∠BOC= 时,猜想∠MON 与 、 有数量关系吗?如果有,指出结论并
说明理由.
A
A
A
M
O
B
N C
图1
M
O
B
N C
图2
M
O
B
N
C
图3

2012-2013昌平区初三数学期末试题与答案(完美编辑word版本)

2012-2013昌平区初三数学期末试题与答案(完美编辑word版本)

昌平区2012—2013年第一学期初三年级期末质量抽测数学 试 卷 2013.1一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.在Rt △ABC 中,90C=∠,3AC=,4BC=,则sin A 的值为A .43B .45C .34D .352.如图,⊙O 是△ABC 的外接圆,∠A = 50°,则∠BOC 的度数为A .40°B .50°C .80°D .100°3.在不透明的布袋中装有1个红球,2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是红.球.的概率是 A .16B.14 C. 13D. 124.⊙O 1和⊙O 2的半径分别为3cm 和5cm ,若O 1O 2= 8cm ,则⊙O 1和⊙O 2的位置关系是 A .外切 B. 相交 C. 内切 D. 内含5.若一个三角形三边之比为3:5:7,与它相似的三角形的最长边的长为21,则最短边的长为 A. 15 B. 10 C. 9 D. 36.将二次函数241y x x =--化为2()y x h k =-+的形式,结果为 A .2(2)5y x =++ B .2(2)5y x =+- C .2(2)5y x =-+ D .2(2)5y x =--CBA7.如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射到圆桌后在地面上形成圆形的示意图. 已知桌面直径为1.2m ,桌面离地面1m. 若灯泡离地面3m ,则地面上阴影部分的面积为 A .0.36πm 2 B .0.81πm 2 C .2πm 2 D .3.24πm 28.如图,在边长为2的等边三角形ABC 中,以B 为圆心,AB 为半径作AC , 在扇形BAC 内作⊙O 与AB 、BC 、 AC都相切,则⊙O 的周长等于 A. 49π B.23π C. 43π D. π二、填空题(共4道小题,每小题4分,共16分)9.已知圆锥的底面半径为3,母线长为4,则圆锥的侧面积为 .10.当x = 时,二次函数222y x x =+-有最小值.11.如图,在△ABC 中,∠ACB =∠ADC= 90°,若sin A =35,则cos ∠BCD 的值为 .12.如图,已知正方形ABCD 的边长为8cm ,点E 、F 分别在边BC 、CD 上,∠EAF =45°. 当EF =8cm 时,△AEF 的面积是 cm 2; 当EF =7cm 时,△EFC 的面积是 cm 2.三、解答题(共6道小题,第13、14题各4分,第15 -18题各5分,共28分) 13.计算:︒-︒+︒60tan 45sin 230cos 2.14.如图,小聪用一块有一个锐角为30︒的直角三角板测量树高,已知小聪和树都与地面垂直,且相距米,小聪身高AB 为1.7米,求这棵树的高度.DCBAFE D CB AA CD E15.已知二次函数2(+1)63y k x x =-+的图象与x 轴有交点,求k 的取值范围.16. 如图,△ABC 的顶点在格点上,且点A (-5,-1),点C (-1,-2).(1)以原点O 为旋转中心,将△ABC 绕点O 逆时针旋转90°得到△A B C '''. 请在图中画出△A B C ''',并写出点A 的对称点A '的坐标;(2)以原点O 为位似中心,位似比为2,在第一象限内将△ABC 放大,画出放大后的图形△A B C ''''''.17.如图,甲、乙用4张扑克牌玩游戏,他俩将扑克牌洗匀后背面朝上,放置在桌面上,每人抽一张,甲先抽,乙后抽,抽出的牌不.放回...甲、乙约定:只有..甲抽到的牌面数字比乙大时甲胜;否则乙胜. 请你用树状图或列表法说明甲、乙获胜的机会是否相同 .18. 二次函数22y x x m =-++的图象与x 轴的一个交点为A ()3,0,另一个交点为B ,与y 轴交于点C . (1)求m 的值及点B 、点C 的坐标; (2)直接写出当0y >时,x 的取值范围; (3)直接写出当12x -≤≤时,y 的取值范围.四、解答题(共4道小题,每小题5分,共20分)19. 如图,AB 为⊙O 的直径,直线DT 切⊙O 于T ,AD ⊥DT 于D ,交⊙O 于点C , AC =2,DT,求∠ABT 的度数.图1 图2 图3 图420. 如图,在Rt △ABC 中,∠CAB =90°,AD 是∠CAB 的平分线,tan B =21,求CD BD的值.21. 在矩形ABCD 中,点O 在对角线BD 上,以OD 为半径的⊙O 与AD 、BD 分别交于点E 、F ,且∠ABE =∠DBC . (1)求证:BE 与⊙O 相切; (2)若13sin ABE ∠=,CD =2,求⊙O 的半径.22. 阅读下面材料:小伟遇到这样一个问题:如图1,在正三角形ABC 内有一点P ,且P A =3 ,PB =4,PC =5,求∠APB 的度数.小伟是这样思考的:如图2,利用旋转和全等的知识构造△AP C ',连接PP ',得到两个特殊的三角形,从而将问题解决.PCBAABC PP 'D PACBABC DPFE请你回答:图1中∠APB 的度数等于 . 参考小伟同学思考问题的方法,解决下列问题:(1)如图3,在正方形ABCD 内有一点P ,且P A=PB =1,PD则∠APB 的度数等于 ,正方形的边长为 ;(2)如图4,在正六边形ABCDEF 内有一点P ,且P A =2,PB =1,PF则∠APB 的度数等于 ,正六边形的边长为 .ABCD五、解答题(共3道小题,第23题7分,第24题8分,第25题9分,共24分)23. 如图,小明在一次高尔夫球训练中,从山坡下P 点打出一球向球洞A 点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大高度BD 为12米时,球移动的水平距离PD 为9米 .已知山坡P A 与水平方向PC 的夹角为30o ,AC ⊥PC 于点C , P 、A两点相距 请你建立适当的平面直角坐标系解决下列问题. (1)求水平距离PC 的长;(2)求出球的飞行路线所在抛物线的解析式;(3)判断小明这一杆能否把高尔夫球从P 点直接打入球洞A .24.如图,菱形ABCD 的边长为48cm ,∠A =60°,动点P 从点A 出发,沿着线路AB —BD 做匀速运动,动点Q 从点D 同时出发,沿着线路DC —CB —BA 做匀速运动. (1)求BD 的长;(2)已知动点P 、Q 运动的速度分别为8cm/s 、10cm/s. 经过12秒后,P 、Q 分别到达M 、N 两点,若按角的大小进行分类,请问△AMN 是哪一类三角形,并说明理由;(3)设问题(2)中的动点P 、Q 分别从M 、N 同时沿原路返回,动点P的速度不变,动点Q 的速度改变为a cm/s ,经过3秒后,P 、Q 分别到达E 、F 两点,若△BEF 与问题(2)中的△AMN 相似,试求a 的值.25. 如图,在平面直角坐标系xOy 中,二次函数图象的顶点坐标为C (- 4),且在x 轴上截得的线段AB 的长为6.(1)求二次函数的解析式;(2)在y 轴上确定一点M ,使MA +MC 的值最小,求出点M 的坐标;(3)在x 轴下方的抛物线上,是否存在点N ,使得以N 、A 、B 三点为顶点的三角形与△ABC 相似?如果存在,求出点N 的坐标;如果不存在,请说明理由.昌平区2012—2013学年第一学期初三年级期末质量抽测数学试卷参考答案及评分标准 2013.1一、选择题(共8个小题,每小题4分,共32分)二、填空题(共4个小题,每小题4分,共16分)三、解答题(共6道小题,第13、14题各4分,第15-18题各5分,共28分)13.解:原式=2…………………………………………………………… 3分 =1. ………………………………………………………………………… 4分 14.解:由题意,易知30,90,CAD CDA ∠=︒∠=︒,, 1.7AD CE BE DE AB =⊥==. ………………………… 1分∴tan CD CAD AD∠=, ……………………………………………………………… 2分∴33CD ==. ……………………………………………………………… 3分∴3 1.7 4.7CE =+=. ……………………………………………………………… 4分答:这棵树的高度为4.7米.15.解:依题意,得210,(6)43(1)0.k k +≠⎧⎨∆=--⨯+≥⎩ …………………………………………………… 2分 解之,得 1,2.k k ≠-⎧⎨≤⎩………………………………………………………………………… 4分∴ 2k ≤且1k ≠-. ………………………………………………………………………… 5分 16.解:(1)点A '坐标为 (1,-5) . ……………………………………………………………… 1分如图所示. ………………………………………………………………………………3分 (2)如图所示. ………………………………………………………………………………………5分17.解:2 5 5554甲乙 4 5 52. ………………………………… 3分∴57,1212P P ==(甲胜)(乙胜). …………………………………………………………… 4分 ∴甲、乙获胜的机会不相同. ………………………………………………………… 5分 18.解:(1)依题意得:0 = - 9 + 6 + m ,∴m = 3. …………………………………………………………………………… 1分 ∴223y x x =-++.∴ 抛物线与x 轴的另一交点B (-1,0), ………………………………………… 2分 与y 轴交点C (0,3). ……………………………………………………………… 3分(2)当y ﹥0 时,-1 < x < 3. ………………………………………………………………… 4分 (3)当-1≤x ≤2时,0≤y ≤4. ………………………………………………………………5分 四、解答题(共4道小题,每小题5分,共20分) 19. 解:连接OT 、BC ,相交于点E .∵直线DT 切⊙O 于T ,∴∠OTD = 90°.………………………………………… 1分 ∵AD ⊥DT 于D , ∴∠ADT = 90°. ∵AB 为⊙O 的直径,∴∠ACB = 90°. ………………………………………………………………………… 2分 ∴∠DCB = 90°.∴四边形CDTE 是矩形. …………………………………………………………………… 3分 ∴∠CET = 90°,CE DT ==∴2BC CE ==∵tan 3ABC AC BC ∠==, ∴∠ABC = 30°. ………………………………………………………………………… 4分 ∴∠BOT = 60°. ∵OB = OT ,∴△OBT 为等边三角形.∴∠ABT = 60°. ………………………………………………………………………… 5分20.解:过点D 作DE AB E ⊥于点.∵∠BAC =90°,AD 平分∠CAB ,∴∠1=12∠CAB=45°.∵DE AB ⊥,∴DE ∥AC ,∠2=45° . ∴DE=AE , AE CD BEBD=. ………………………………………………………………… 2分∵1tan 2B =,∴12DE BE=. ……………………………………………………………………………… 3分∴12AE BE= . ……………………………………………………………………………… 4分 ∴12CD BD=. ……………………………………………………………………………… 5分21. (1)证明:连接OE . ………………………………………………………………………… 1分∵四边形ABC D 是矩形, ∴AD ∥BC , ∠C =∠A = 90°. ∴∠3 =∠DBC ,∠A BE +∠1 = 90°. ∵OD =OE ,∠ABE =∠DBC, ∴∠2=∠3=∠ABE . ∴∠2 +∠1 = 90°. ∴∠BEO =90° . ∵点E 在⊙O 上,∴BE 与⊙O 相切. ………………………………………………………………………… 2分(2)解:∵∠ABE =∠DBC , ∴13sin sin DBC ABE ∠=∠=.∵DC =2 ,∠C = 90°,∴DB = 6. ……………………………………………………………………………… 3分 ∵∠A = 90°,21EABCD∴BE =3AE . ∵AB = CD =2 ,利用勾股定理,得2AE =,AD =∴2DE =连接EF . ∵DF 是⊙O 的直径, ∴∠DEF =∠A = 90°. ∴AB ∥EF .∴DEF ∆∽DAB ∆. …………………………………………………………………………… 4分∴DE DFAD BD = .6DF =. ∴214DF =. ∴⊙O 的半径为218. …………………………………………………………………………5分 22.解:150︒ . ……………………………………………………………………………………… 1分 (1)135. ……………………………………………………………………………… 3分 (2)120………………………………………………………………………………… 5分 五、解答题(共3道小题,第23题7分,第24题8分,第25题各9分,共24分) 23.解:(1)依题意得:90,30,ACP APC PA ∠=︒∠=︒=∵cos OCAPC OA∠=, ………………………………………………………………… 1分∴cos3012PC =︒= . …………………………………………………………… 2分 ∴PC 的长为12m .(2)以P 为原点,PC 所在直线为x 轴建立如图所示的平面直角坐标系,可知:顶点B (9,12), 抛物线经过原点. …………………… 3分 ∴设抛物线的解析式为2(9)12y a x =-+. ………… 4分 ∴20(09)12a =-+,求得427a =-.∴24= 9+1227y x -(-). ……………………………… 5分(3)由(1)知C (12 , 0) ,易求得AC =∴12A (. ……………………………………………………………………… 6分 当x =12时,2432(129)12=273y =--+≠ ………………………………… 7分∴小明不能一杆把高尔夫球从P 点直接打入球洞A .24.解:(1)∵ 四边形ABCD 是菱形,∴AB =BC =CD =AD =48 . …………………………………………………………… 1分 又∵60A ∠=, ∴△ABD 是等边三角形. ∴BD =AB =48.∴BD 的长为48cm . …………………………………………………………… 2分(2)如图1,12秒后,点P 走过的路程为8×12=96,∴12秒后点P 到达点D (M ).又∵ 12秒后,点Q 走过的路程为10×12=120,∴12秒后点Q 到达AB 的中点N . …………………………………………………… 3分 连结MN ,由(1)知△ABD (M )是等边三角形, ∴MN ⊥AB 于点N . ∴90ANM ∠=︒.∴△AMN 是直角三角形. ………………………………………………………………4分 (3)依题意得,3秒时点P 走过的路程为24cm ,点Q 走过的路程为3a cm.∴ 点E 是BD 的中点.∴ DE = BE = 24. …………………………………………………………………………5分 ① 当点Q 在NB 上时(如图1),13N F a =, ∴1243BF a =-.∵点E 是BD 的中点,图1若EF 1⊥DB ,则点F 1与点A 重合,这种情况不成立. ∴EF 1⊥AB 时,∠EF 1B =∠ANM = 90°. 由(1)知∠ABD =∠A = 60°, ∴△EF 1B ∽△MAN. ∴1BF BE ANAM =. ∴243242448a -=.∴4a =,112BF =. ……………………………………………………………… 6分 ② 如图2,由菱形的轴对称性,当点Q 在BC 上时,212BF =. ∴点Q 走过的路程为36cm . ∴36123a ==. ………………………………… 7分③ 如图3,当点Q 与点C 重合时,即点F 与点C 重合. 由(1)知,△BCD 是等边三角形, ∴EF 3⊥BD 于点E ,∠E B F 3 =∠A = 60°. ∴△F 3EB ∽△MNA . 此时,BF 3 = 48,∴点Q 走过的路程为72cm . ∴ 72243a ==. ……………………………………………………………………… 8分综上所述,若△BEF ∽△ANM ,则a 的值为4cm/s 或12cm /s 或24cm /s.25.解:(1)∵抛物线的顶点坐标为4C -(,∴抛物线的对称轴为直线4x =-.∵抛物线在x 轴上截得的线段AB 的长为6,∴ A (-1 , 0 ),B ( -7 , 0 ) . …………………………………………………1分 设抛物线解析式为()24y a x =++ ∴()2014a =-++解得,a =. 图23)图3∴ 二次函数的解析式为)249y x =-++……………………………2分 (2)作点A 关于y 轴的对称点A ',可得 A '(1.0).连接A 'C 交y 轴于一点即点M ,此时MC + MA 的值最小.由作法可知,MA = M A '. ∴MC + MA = MC + M A '=A 'C .∴当点M 在线段A 'C 上时,MA + MC 取得最小值. …………………………………3分 ∴线段A 'C 与y 轴的交点即为所求点M .设直线C A '的解析式为y kx b =+(k ≠0),∴40k b,k b.=-+=+⎪⎩∴k b ==. …………………………4分 ∴直线C A '的解析式为55y x =-+. ∴点M 的坐标为( 0). ………………………………………………………………5分 (3)由(1)可知,C (-4,设对称轴交x 轴于点D ,∴AD = 3.∴在Rt△ADC中,3tan CAD ∠= ∴∠CAD = 30o,∵AC = BC ,∴∠ABC = ∠CAB = 30o.∴∠ACB = 120°. …………………………………………………………………………6分 ①如果AB = A N 1= 6,过N 1作E N 1⊥x 轴于E . 由△ABC ∽△BA N 1得∠BA N 1 = 120o, 则∠EA N 1 = 60o. ∴N 1E = 33,AE =3.∵A(-1 , 0 ),∴OE = 2.∵点N在x轴下方,∴点N2(2,-). …………………………………………………………………………7分②如果AB = B N2,由对称性可知N2(-10,-…………………………………………8分③如果N3A = N3B,那么点N必在线段AB的中垂线即抛物线的对称轴上,在x轴下方的抛物线上不存在这样的点N.经检验,点N1 (2,-与N2 (-10,-都在抛物线上 . ……………………………9分综上所述,存在这样的点N,使△NAB∽△ABC,点N的坐标为(2,-)或(-10,-。

学年北京市昌平区初一第二学期期末数学试卷含答案

学年北京市昌平区初一第二学期期末数学试卷含答案

l 21ba 昌平区2016-2017学年第二学期初一年级期末质量抽测数 学 试 卷考 生须 知1.本试卷共6页,三道大题,29个小题,满分100分。

考试时间120分钟。

2. 请在试卷上准确填写学校名称、姓名和考试编号。

3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4. 在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5. 考试结束后,请交回答题卡、试卷和草稿纸。

一、选择题(共10道小题,每小题3分,共30分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.每年四月北京很多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其扰. 据测定,杨絮纤维的直径约为010 5米,将 010 5用科学记数法可表示为A. ×105B. ×10-5C. ×10-4D. ×10-6 2.下列计算正确的是A.23x x x += B. 236·x x x = C. 933x x x ÷= D. ()236x x =3.若a <b ,则下列各式中不正确的是A.33a b +<+? B. 33a b -<- C. 33a b -<- D.33a b<4. 一个布袋里装有6个只有颜色不同的球,其中2个红球,4个白球.从布袋里任意摸出1个球,则摸出的球是白球的可能性大小为 A .32B .21C .31 D .61 5.如图,直线l 与直线a ,b 相交,且a ∥b ,∠1=110o ,则∠2的度数是 A .20° B .70° C .90° D .110°6.下列事件是必然事件的是A. 经过不断的努力,每个人都能获得“星光大道”年度总冠军B. 小冉打开电视,正在播放“奔跑吧,兄弟”C. 火车开到月球上D. 在十三名中国学生中,必有属相相同的7.鸡兔同笼问题是我国古代着名趣题之一. 大约在1500年前,《》中就记载了这个有趣的问题. 书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?经计算可得鸡兔同笼A . 鸡23只,兔12只B . 鸡12只,兔23只C . 鸡15只,兔20只 D. 鸡20只,兔15只8成绩(分)678910人数则这40名同学投掷实心球的成绩的众数是 A .14 B .9 C . D .89.已知23mn xx ==,,则m n x +的值是A .5B .6C .8D . 910. 将三角形、菱形、正方形、圆四种图形(大小不计)组合如下图,观察并思考最后一图对应的数为A .13B .24C .31D .42 二、填空题(共6道小题,每小题3分,共18分) 11.分解因式:29m - = .12.北京市今年5月份最后六天的最高气温分别为31,34,36,27,25,33(单位:℃). 这组数据的中位数是 .13.计算:(x -1)(x +2)= . 14.如图14-1,将边长为a 的大正方形剪去一个边长为b 的小正方形,并沿图中的虚线剪开, 拼接后得到图14-2,这种变化可以用含字母 a ,b 的等式表示为 .15.在一个六面体模型的六个面上,分别标了“观察、实验、归纳、类比、猜想、证明”六个词,下图是从三个不同的方向看到的几个词,观察它们的特点,推出“类比”相对面上的词是 . 16. 阅读下面材料:在数学课上,老师提出如下问题:请回答:小凡的作图依据是 .17ba14-214-1 )将第二块三角尺沿第一块三角尺移动,使其另一边经过点销售草莓 m %其它19.3%民俗旅游32%18.(3分)计算: 3a ?(-2b )2÷6ab . 19.(4分)解不等式组523433 1.x x x x -<+⎧⎨+-⎩≥,①② 解:解不等式①得: ; 解不等式②得: ;把不等式①和②的解集在数轴上表示出来: 所以,这个不等式组的解集是 .20.(3分)解不等式5x -12≤2(4x -3),并求出负整数解.21.(5分)先化简,再求值: 2()(2)+()a b a a b a b a b ---+-(),其中a =-3,b =1. 22.(4分)已知28x y =-⎧⎨=-⎩,和37x y =⎧⎨=⎩,是关于x ,y 的二元一次方程y = kx +b 的解,求k ,b 的值.23.(4分)已知:如图,BE求证:∠C =∠E .24.(4分)请你根据右框内所给的内容,完成下列各小题.(1)若m ⊕n =1,m ⊕2n =-2,分别求出m 和n 的值;(2)若m 满足m ⊕2≤0,且3m ⊕(-8)>0,求m 的取值范围.25.(4分)阅读下列材料:新京报讯?(记者沙璐摄影彭子洋)5月7日,第五届北京农业嘉年华圆满闭幕.历时58天的会期,共接待游客万人次,累计实现总收入亿元.其中4月3日的接待量为万人次,创下了五届农业嘉年华以来单日游客人数的最高纪录.本届北京农业嘉年华共打造了180余个创意景观,汇集了680余个农业优新特品种、130余项先进农业技术,开展了210余项娱乐游艺和互动体验活动. 在去年“三馆两园一带一谷”的基础上,增设了“一线”,即京北旅游黄金线,并在草莓博览园作为主会场的同时,首设乐多港、延寿两大分会场.据统计,本届嘉年华期间共有600余家展商参展,设置了1700处科普展板,近6万人参与“草莓票香”体验活动,周边各草莓采摘园接待游客达267万人次,销售草莓万公斤,实现收入亿元.同时,还有效带动延寿、兴寿、小汤山、崔村、百善、南邵6个镇的民俗旅游,实现收入亿元,较上届增长%.根据以上材料回答下列问题:(1)举办农业嘉年华以来单日游客人数的最高纪录是 ; (2)如右图,用扇形统计图表示民俗旅游、销售草莓及其它方面收入的分布情况,则m = ;(3)选择统计表或.统计图,将本届嘉年华的创意景观、农业优新特品种、展商参展、科普展板的数量表示出来.MFEDCBA321ABCD EFA BCDEF26.(3分)如图所示,已知前两个天平两端保持平衡.要使第三个天平两端保持平衡,天平的右边应放几个圆形?请写出你的思路.27. (5分)2017年5月31日,昌平区举办了首届初二年级学生“数学古文化阅读展示”活动,为表彰在本次活动中表现优秀的学生,老师决定在6月1日购买笔袋或彩色铅笔作为奖品. 已知1个笔袋、2筒彩色铅笔原价共需44元;2个笔袋、3筒彩色铅笔原价共需73元. (1)每个笔袋、每筒彩色铅笔原价各多少元?(2)时逢“儿童节”,商店举行“优惠促销”活动,具体办法如下:笔袋“九折”优惠;彩色铅笔不超过10筒不优惠,超出10筒的部分“八折”优惠. 若买x 个笔袋需要y 1元,买x 筒彩色铅笔需要y 2元. 请用含x 的代数式表示y 1、y 2;(3)若在(2)的条件下购买同一种奖品95件,请你分析买哪种奖品省钱.28. (5分)如图,在三角形ABC 中, D ,E ,F 三点分别在AB ,AC ,BC 上,过点D 的直线与线段EF的交点为点M ,已知2∠1-∠2=150°,2∠ 2-∠1=30°. (1)求证:DM ∥AC ;(2)若DE ∥BC ,∠C =50°,求∠3的度数.29.(5分) 已知:如下图, AB ∥CD ,点E ,F 分别为AB ,CD 上一点.(1) 在AB ,CD 之间有一点M (点M 不在线段EF 上),连接ME ,MF ,试探究∠AEM ,∠EMF ,∠MFC 之间有怎样的数量关系. 请补全图形,并在图形下面写出相应的数量关系,选其中一个..进行证明. (2)如下图,在AB ,CD 之间有两点M ,N ,连接ME ,MN ,NF ,请选择一个..图形写出∠AEM ,∠EMN ,∠MNF ,∠NFC 存在的数量关系(不需证明).昌平区2016-2017学年第二学期初一年级期末质量抽测数学试卷参考答案及评分标准 2017.7一、选择题(共10个小题,每小题3分,共30分)12345678910B DC A BD A B B C○ ▲▲ ▲▲□□□ ▲▲▲ ▲▲ ▲ ▲ ○○ ○ △△□□ △二、填空题(共6个小题,每小题3分,共18分)三、解答题(共13个小题,共52分)17.解:原式= a (x 2-2x +1) ……………………………………………………………………… 1分= a (x -1)2 . ………………………………………………………………………… 3分18.解:原式= 3a ?4b 2÷6ab …………………………………………………………………………1分 = 12ab 2÷6ab …………………………………………………………………………2分 = 2b . …………………………………………………………………………………… 3分 19.解:x <3 …………………………………………………………………………………………… 1分x ≥-2. …………………………………………………………………………………………… 2分………………………………………… 3分-2≤x <3. ……………………………………………………………………………………… 4分20.解:5x -12≤2(4x -3)5x -12≤8x -6 …………………………………………………………………………………1分 5x -8x ≤12-6-3x ≤6x ≥-2. ……………………………………………………………………………………2分所以负整数解为-2,-1. ……………………………………………………………………3分21.解:(a -b )2-a (2a -b )+(a +b )(a +b )= a 2-2ab +b 2- 2a 2+ ab +a 2-b 2 …………………………………………………………3分 =-ab . ………………………………………………………………………………………4分 当a =-3,b =1时原式=-(-3)×1=3. …………………………………………………………………………5分 22.解:根据题意,得28,37.k b k b -+=-⎧⎨+=⎩ ………………………………………………………………………………2分 解得: 3,2.k b =⎧⎨=-⎩…………………………………………………………………………………4分EDCBA123.证明:∵∠A =∠1,∴DE ……………………………………1分 ∴∠E =∠EBA .∵BE …………………………………3分 ∴∠C =∠E . ………………………………………………………………………………4分 24.解:(1)根据题意,得431,432 2.m n m n -=⎧⎨-⨯=-⎩……………………………………………………………… 1分 解得: 1,1.m n =⎧⎨=⎩…………………………………………………………………… 2分(2)根据题意,得()4320,43380.m m -⨯≤⎧⎨⨯-⨯->⎩…………………………………………………………… 3分 解得:232≤<-m .……………………………………………………………… 4分 25.(1)万人次. ……………………………………………………………………………… 1分 (2)m =. ……………………………………………………………………………………2分(3)本届嘉年华的创意景观、农业优新特品种、展商参展、科普展板的数量列表如下:注:写出两个1分,共2分. ………………………………………………………… 2分26.(1)由第一个天平可得3○=□+3▲ ①;……………………………………………………… 1分(2)由第二个天平可得2□=○+4▲ ②; …………………………………………………… 2分 (3)3×②-4×①可消去▲,从而等到□与○的等量关系,进而求出第三个天平右边应放圆形的个数为3个 . …………………………………………………………………………………… 3分27.解:(1)设每个笔袋原价x 元,每筒彩色铅笔原价y 元,根据题意,得:2442373.x y x y +=⎧⎨+=⎩,……………………………………………………………………… 1分解得:1415.xy=⎧⎨=⎩,……………………………………………………………2分所以每个笔袋原价14元,每筒彩色铅笔原价15元.(2)y1=14×=.…………………………………………………………………3分当不超过10筒时:y2=15x;当超过10筒时:y2=12x+30. ………………………………………………………4分(3)方法1:∵95>10,∴将95分别代入y1=和y2=12x+30中,得y1>y2.∴买彩色铅笔省钱. …………………………………………………………………5分方法2:当y1<y2时,有<12x+30,解得x<50,因此当购买同一种奖品的数量少于50件时,买笔袋省钱.当y1=y2时,有=12x+30,解得x=50,因此当购买同一种奖品的数量为50件时,两者费用一样.当y1>y2时,有>12x+30,解得x>50,因此当购买同一种奖品的数量大于50件时,买彩色铅笔省钱.∵奖品的数量为95件,95>50,∴买彩色铅笔省钱. …………………………………………………………………5分28.(1)证明:∵2∠1-∠2=150°,2∠2-∠1=30°,∴∠1+∠2=180°. …………………………………………………………1分∵∠1+∠DME=180°,∴∠2=∠DME .∴DM∥AC .……………………………………………………………2分(2)解:∵DM∥AC,∴∠3=∠AED .……………………………………………………………3分∵DE∥BC,∴∠AED=∠C .……………………………………………………………4分∴∠3=∠C .∵∠C=50°,∴∠3=50°.………………………………………………………………5分29.解:(1)∠EMF=∠AEM+∠MFC. ∠AEM+∠EMF+∠MFC=360°.注:画图及数量关系对两个1分,共2分 (2)分证明:过点M作MP∥AB. 证明:过点M作MQ∥AB.∵AB∥CD,∵AB∥CD,∴MP∥CD. ∴MQ∥CD.∴∠4=∠3. ∴∠CFM+∠1=180°. ………………3分∵MP∥AB,∵MQ∥AB,∴∠1=∠2. ∴∠AEM+∠2=180°.∵∠EMF=∠2+∠3,∴∠CFM+∠1+∠AEM+∠2=360°.∴∠EMF=∠1+∠4. ∵∠EMF=∠1+∠2,∴∠EMF=∠AEM+∠MFC. ∴∠AEM+∠EMF+∠MFC=360°.…4分(2)第一图数量关系:∠EMN+∠MNF-∠AEM-∠NFC=180°.第二图数量关系:∠EMN-∠MNF+∠AEM+∠NFC=180°.………………………5分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

昌平区2012-2013学年第一学期初一年级期末质量抽测数 学 试 卷 2013.1一、选择题(共8个小题,每小题4分,共32分) 1.21-的相反数是 A .21 B .21-C .2D .2-2.下列各式中结果为负数的是 A .(3)--B .2(3)-C .3-D . 3--3.在中国共产党第十八次全国代表大会期间,新民网发起了有关发生的调查,截至2012年11月15日13时30分,共吸引了约262900人次参与.数据显示,社会民生问题位列网友最关心的问题首位.请将262900用科学记数法表示为A . 0.2629×106B . 2.629×106C . 2.629×105D . 26.29×1044. 某市4月某天的最高气温是5℃,最低气温是-3℃,那么这天的温差(最高气温减最低气温)是 A . -8℃ B . 8℃ C . -2℃ D . 2℃ 5.一个角的度数比它的余角的度数大20°,则这个角的度数是A . 20°B . 35°C . 45°D . 55°6.若23(2)0m n -++=,则2m n +的值为A . -1B . 1C . 4D . 7 7.已知数a ,b 在数轴上表示的点的位置如图所示,则下列结论正确的是 A .a +b >0 B .a -b >0 C .a ·b <0 D .1+b <08.右图是一个三棱柱纸盒的示意图,这个纸盒的展开图是DC B A 0a二、填空题(共4个小题,每小题4分,共16分) 9.比较大小:-23 -7.10.若关于x 的一元一次方程23=+x ax 的解是1=x ,则a = . 11.若3=x ,y 的倒数为21,则x +y = .12.古希腊著名的毕达哥拉斯学派把1,3,6,10,… 这样的数称为“三角数”;把1,4,9,16,…这样的数称为 “正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以写成两个相邻的“三角形数”之和,“正方形数”36可以写成两个相邻的“三角形数”与 之和;“正方形数”2n 可以写成两个相邻的“三角形数” 与 之 和,其中n 为大于1的正整数.三、解答题(共7个小题,每小题5分,共35分) 13.计算: 23-17-(-7)+(-16). 14.计算:⎪⎭⎫⎝⎛-⨯÷-41855.2. 15.计算:()23131427-÷⎪⎭⎫ ⎝⎛-⨯. 16.解方程:5443-=+x x .17.解方程:131273=+--x x .18.求222233()(6)3x x x x x x ++--+的值,其中6x =-.19.已知x y -=2,求344-+y x 的值.四、画图题(共5分)20.如图,已知平面上有四个点A ,B ,C ,D . (1)连接AB ,并画出AB 的中点P ; (2)作射线AD ;(3)作直线BC 与射线AD 交于点E .五、补全下面解题过程(共6分)DA16=6+109=3+64=1+321.如图所示,点C 在线段AB 的延长线上,且BC =2AB , D 是AC 的中点,若AB =2cm ,求BD 的长.∴ AD =21 = cm .∴ BD = AD - = cm .六、列方程解应用题(共2个小题,每小题5分,共10分)22.如图所示,长方形的长是宽的2倍多1厘米,周长为14厘米,求该长方形的宽和长各是多少厘米?23.小明周六去昌平图书馆查阅资料,他家距昌平图书馆35千米.小明从家出发先步行20分钟到车站,紧接着坐上一辆公交车,公交车行驶40分钟后到达图书馆.已知公交车的平均速度是步行的平均速度的7倍,求公交车平均每小时行驶多少千米?七、解答题(共2个小题,共16分,其中,第24小题7分,第25小题9分)24.【现场学习】现有一个只能直接画31°角的模板,小英同学用这个模板画出了25°的角,他的画法是这样的:(1)如图1,用模板画出∠AOB =31°; (2)如图2,再继续画出∠BOC =31°; (3)如图3,再继续依次画出3个31°的角;(4)如图4,画出射线OA 的反向延长线OG ,则∠FOG 就是所画的25°的角. 【尝试实践】请你也用这个模板画出6°的角,并标明相关角度,指明结果.【实践探究】利用这个模板可以画出12°的角吗?如果不可以,说出结论即可;如果可以,请你画出这个角,并说明理由.31°31°31°31°31°25°31°31°31°31°31°31°31°31°AOBBAOCCB OAD EF OAB CD EF G图1图2图3图425. 如图,OM 是∠AOC 的平分线,ON 是∠BOC 的平分线.(1)如图1,当∠AOB 是直角, ∠BOC =60°时,∠MON 的度数是多少?(2)如图2,当∠AOB =α,∠BOC = 60°时,猜想∠MON 与α的数量关系;(3)如图3,当∠AOB =α,∠BOC =β时,猜想∠MON 与α、β有数量关系吗?如果有,指出结论并说明理由.ON AB CM M CB A N O图1图2图3O N AB CM昌平区2012-2013学年第一学期初一年级期末质量抽测数学试卷参考答案及评分标准2013.1一、选择题(共8个小题,每小题4分,共32分)二、填空题(共4个小题,每小题4分,共16分)三、解答题(共7个小题,每小题5分,共35分)13.解:原式=6+7-16 ……………………………… 3分=13-16 ……………………………… 4分=-3………………………………… 5分14.解:原式=52-×85×(14-) ……………………………… 3分=1 ……………………………… 5分15.解:原式=2721439骣÷ç?÷ç÷ç桫……………………………… 3分=-12……………………………… 5分16.解:移项,得3x-4 x =-5-4.……………………………… 2分合并同类项,得- x =-9.……………………………… 4分系数化为1,得x = 9.……………………………… 5分17.解:去分母,得 3(3x-7)-2(1+x)=6. ……………………………… 2分去括号,得 9x-21-2-2x=6. ……………………………… 3分移项、合并同类项,得 7x=29. ……………………………… 4分系数化为1,得x=297. ……………………………… 5分18.解:原式=2223326x x x x x x++---……………………………… 2分=2x-. ……………………………… 3分当6x =-时,原式=2-×(-6)=12. ……………………………… 5分 19.解:由x y -=2,得2x y +=. ……………………………… 1分 所以 原式=4(x +y )-3 ……………………………… 2分 =4×2-3 ……………………………… 4分 =5. ……………………………… 5分 四、画图题(共5分) 20.如图……………………………… 5分五、补全下面解题过程(共6分)21. 解:BC ,6,AC ,3,AB ,1. ……………………………… 6分 六、列方程解应用题(共2个小题,每小题5分,共10分)22.解:设长方形的宽为x 厘米,则长为(2x +1)厘米. ……………………… 1分根据题意,得 x+(2x +1)=7. ……………………………… 3分 解这个方程,得 x =2. ……………………………… 4分 此时 2x +1=5.答:长方形的宽和长分别为2厘米和5厘米. ……………………………… 5分23.解:设步行的平均速度为每小时x 千米,则公交车的平均速度为每小时7x 千米. …… 1分根据题意,得13x+23×7x =35. ……………………………… 3分解这个方程,得 x =7. ……………………………… 4分 此时 7x =49.答:公交车的平均速度为每小时49千米. ……………………………… 5分 七、解答题(共2个小题,共16分,其中,第24小题7分,第25小题9分) 24.解:【尝试实践】如图. ……… 3分【实践探究】如图. ……… 5分 理由:从∠AOB =31°开始,顺次画 ∠BOC =31°, …, ∠MON =31°, 共12个31°角,合计372°. 而 372°-360°=12°,所以 ∠AON =12°. ……… 7分25. 解:G F E DCBAO25°31°31°31°31°31°∠FOH =31°H∠GOH =6°N ∠MON =31°∠AON =12°31°31°31°31°31°NM LKJ I∠GOH =6°H ∠FOH =31°31°31°31°31°31°25°O A B C D E F GON AB CM M CB A N O图1图2图3O N AB CM(1)如图1,∠ MON=45°. …………………………………………………… 2分 (2)如图2,∠ MON=12α. …………………………………………………… 3分 (3)如图3,∠MON=12α,与β的大小无关. ……………………………… 4分理由:∵∠AOB =α,∠BOC =β,∴ ∠AOC =α+β. ………………………………………………… 5分 ∵ OM 是∠AOC 的平分线,ON 是∠BOC 的平分线, ∴ ∠AOM =12∠AOC =12(α+β). ………………………………… 6分∠NOC =12∠BOC =12β. ………………………………… 7分∴ ∠AON =∠AOC -∠NOC =α+β-12β=α+12β. …………… 8分∴ ∠MON=∠AON -∠AOM=α+12β-12(α+β)=12α. ……………………………………………… 9分 即 ∠MON=12α.。

相关文档
最新文档