2019秋七年级数学上册 第二章 整式的加减 2.1 整式 第1课时 用字母表示数教案 (新版)新人教版
七年级数学上册 第二章 整式的加减 2.1 整式(第1课时)课件

2.1 整式(zhěnɡ shì)(第一课时)
第一页,共二十四页。
1.用字母表示(biǎoshì)数的意义是用字母表示(biǎoshì)数能简明 表达数量关系.
第二页,共二十四页。
2.用字母表示数的书写规则: (1)字母与字母相乘时,“×”通常省略不写或写成“·”;
第二十四页,共二十四页。
则第n个图案中的“ ”的个数是 3n+1
.(用含
有n的代数式表示).
第十二页,共二十四页。
9.按图2-1-6所示的方式(fāngshì)用火柴摆图形.
(1)填写下表:
3 5 7 9 11 (2)要摆出n(n>1且n为整数)个三角形,需要多少(duōshǎo)
根火柴?
解:(2)需要(xūyào)(2n+1)根火柴;
解:(1)采用计时制应付(yìng fù)的费用为
0.05x×60+0.02x×60=4.2x(元),
采用包月制应付的费用为
69+0.02x×60=(69+1.2x)(元).
第十五页,共二十四页。
(2)若小明估计自家(zìjiā)一个月内上网的时间为20小时,你认 为采用哪种方式较为合算?
(2)若一个月内上网的时间为20小时,
6.有一种石棉瓦(如图2-1-2),每块宽60厘米,
用于铺盖屋顶时,每相邻两块重叠部分(bù fen)的宽都 为10厘米,那么n(n为正整数)块石棉瓦覆盖的宽度为
(50n+10)厘米.
第九页,共二十四页。
7.如图2-1-3是一长方形休闲广场,四角都设计一块半径相同 的四分之一圆的花坛,若圆形的半径为
(n-3m) 元;
七年级数学上册 第二章整式 课时练 2.1 第1课时 用字母表示数

第一章 整式的加减2.1 整式第1课时 用字母表示数(一)、判断题1.字母a 和数字1都不是单项式( )2.x 3可以看作x 1与3的乘积,因式x3是单项式( ) 3.单项式xyz 的次数是3( )4.-323y x 这个单项式系数是2,次数是4( ) (二)、填空题 1.整式3x ,-53ab ,t +1,0.12h +b 中,单项式有_________, 2.如图1,长方形的宽为a ,长为b ,则周长为_________,面积为_________.图1 3.非典时期,同学们积极做网页歌颂白衣战士,一班同学做了x 张,二班比一班的2倍少y 张,二班做了_________张,两个班共做了_________张.(三)、选择题1.下面说法中,正确的是( )A .x 的系数为0B .x 的次数为0C .3x 的系数为1 D .3x 的次数为1 2.下面说法中,正确的是( )A .xy +1是单项式B .xy 1是单项式 C .31 xy 是单项式 D .3xy 是单项式 3.单项式-ab 2c 3的系数和次数分别是( )A .系数为-1,次数为3B .系数为-1,次数为5C .系数为-1,次数为6D .以上说法都不对(四)、解答题如图2为园子一角,正方形边长为x ,里面有两个半圆型花池,阴影部分是草坪,求草坪的面积是多少?图2通过练习可以检测同学们对知识的理解、掌握情况,提高应试能力。
但对待考试,部分同学只关注自己的分数,而对试卷的分析和总结缺乏重视。
结果常常出现一些题在考试中屡次出现,但却一错再错的情况。
这样,学生们无法从考试中获益,考试也就失去了它的重要意义。
做好试卷分析和总结是十分有必要的。
那么,怎样做好试卷分析呢?新的高考更加注重对考生能力的要求,对试题的研究,很大程度上能提高考生的能力。
对每一道题要试图问如下几个问题:(1)怎样做出来的?——想解题方法;(2)为什么这样做?——思考解题原理;(3)怎样想到这种方法?——想解题的基本思路;(4)题目体现什么样的思想?——揭示本质,挖掘规律;(5)是否可将题目变化?——一题多变,拓宽思路;(6)题目是否有创新解法?——创新、求异思维。
人教版七年级上册数学教案:第二章 2.1整式

第二章 整式的加减2.1 整式第1课时 用字母表示数1.在现实情境中进一步理解用字母表示数的意义,让学生在探索现实世界数量关系的过程中,建立符号意识.(重点)2.领会用字母表示数时数量关系的一种抽象化,是代数的一个重要特点.(难点)阅读教材P 54~56,思考下列问题.如何用字母表示数.自学反馈1.我们常用字母 t 表示行驶的时间,在小学列方程解应用题时,用字母 x 表示未知数. 2.用字母表示:(1)有理数减法法则:a -b =a +(-b); (2)有理数除法法则:a÷b =a·1b(b ≠0). 3.客车每小时行v 千米,t 小时行的路程为vt 千米.4.一本名著有a 页,王红读了b 天,还剩c 页未读,王红平均每天读了a -c b页.活动1 小组讨论例1 用字母表示加法的结合律和乘法的分配律.解:加法结合律:(a +b)+c =a +(b +c);乘法分配律:(a +b)c =ac +bc.例2 为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼比赛”.如图所示:按照上面的规律,摆n 条“金鱼”需用火柴棒的根数为(A )A .2+6nB .8+6nC .4+4nD .8n活动2 跟踪训练1.今天中午气温为18 ℃,晚上下降了a ℃,则晚上气温为(18-a)℃.2.衬衫原价每件x 元,若按6折出售,则现在的售价为每件0.6x 元.3.七年级一班全班同学合影,第1排站b 个人,以后每排都比前一排多2人,那么第3排站(b +4)人,第n 排站b +2(n -1)人.4.一个两位数,十位数为m ,个位数为2,则这个两位数为10m +2 .5.如图,下面图形的周长是2a +2b .6.找规律,填一填.摆1个这样的三角形需要3根小棒,摆2个这样的三角形需要5根小棒,摆3个这样的三角形需要7跟小棒,摆4个这样的三角形需要9根小棒,……摆11个这样的三角形需要23根小棒, 摆n 个这样的三角形需要(2n +1)根小棒. 活动3 课堂小结 如何用字母表示数,用字母表示数时需要注意些什么. 第2课时 单项式1.理解单项式、单项式的系数、单项式的次数的概念,说出它们之间的区别和联系,并能指出一个单项式的系数和次数.2.初步学会观察、对比、归纳的方法;发展学生的观察能力、思维能力及分析能力.阅读教材P 56~57,思考下列问题.1.单项式、单项式的系数及单项式的次数的概念.2.区别单项式的系数和次数.知识探究1.由数与字母或字母与字母相乘组成的代数式叫单项式.2.单项式中的数字因数叫单项式的系数.3.单项式中所有字母的指数的和叫单项式的次数.自学反馈1.在式子1,a 2,a -b ,y ,15x ,1x 中,是单项式的有1,a 2,y ,15x . 2.(1)-a 的系数是-1,次数是1;(2)单项式-3x 2的系数是-3,次数是2;(3)2ab 3c 3的系数是23,次数是5. 3.下列说法正确的是(C )A .x 不是单项式B .x +2y 是单项式C .-x 的系数是-1D .0不是单项式(1)当一个单项式的系数是1或-1时,通常省略不写,如a 2bc ,-abc 等;(2)单项式的系数是带分数时,通常写成假分数,如134x 2y 写成74x 2y.活动1 小组讨论例1 用单项式表示下列各式.(1)边长为x 的正方形的周长为4x ;(2)一辆汽车的速度是v 千米∕时,行驶t 小时所走过的路程为vt 千米.(3)王洁同学买2本练习本花了n 元,那么买m 本练习本要mn 2元. (4)如图所示,边长为a 的正方体的表面积为6a 2,体积为a 3.例2 找出下列各式中的单项式,并写出各单项式的系数和次数. 23a ,5a +2b ,-y ,z 5x 7,a bc ,-18a 2b ,-x 2yz 2bc. 解:23a ,-y ,z 5x 7,-18a 2b. 其中23a 的系数为23,次数为1; -y 的系数为-1,次数为1;z 5x 7的系数为1,次数为12;-18a 2b 的系数为-18,次数为3.活动2 跟踪训练1.如果单项式-xy m z n 和5a 4b n 都是五次单项式,那么m 、n 的值分别为(D )A .2,3B .3,2C .4,1D .3,12.下列说法中正确的是(D )A .0不是单项式B .-3abc 2的系数是-3 C .-23x 2y 23的系数是-13 D .πab 2的次数是2 4.同时含有a 、b 、c 且系数为1的5次单项式是哪些?解:a 2b 2c ,a 2bc 2,ab 2c 2,a 3bc ,ab 3c ,abc 3.5.球的表面积等于π与球半径的平方的积的4倍;球的体积等于π与球半径的立方的积的43.(用单项式表示) 解:4πr 2,43πr 3. 3.下列各式:①123ab ;②x·2;③30%a ;④m -2;⑤3x 2-y 2.其中不符合代数式书写要求的有(D ) A .5个 B .4个 C .3个 D .2个活动3 课堂小结1.字母表示数.2.单项式的概念.3.单项式的系数及次数的概念.第3课时 多项式及整式1.使学生理解多项式、整式的概念,会准确确定一个多项式的项和次数.2.通过实例列整式,培养学生分析问题、解决问题的能力.3.培养学生积极思考的学习态度、合作交流的意识,了解整式的实际背景,进一步感受字母表示数的意义.阅读教材P 57~58,思考下列问题.1.多项式及有关概念.2.准确确定多项式的次数和项.知识探究1.几个单项式的和叫做多项式,每个单项式叫做多项式的项,次数最高项的次数叫做多项式的次数,不含字母的项叫做多项式的常数项.2.单项式和多项式统称为整式.自学反馈1.多项式3x 2y -4xy -1由单项式3x 2y ,-4xy ,-1组成,它是三次三项式,其中二次项是-4xy ,常数项是-1.2.多项式-m 2n 2+m 3-2n -3是四次四项式,最高次项的系数为-1,常数项是-3.3.多项式3a 3-14中,常数项是(D ) A .1 B .-1 C .14 D .-144.多项式13a 2b -16是(B ) A .二次二项式 B .三次二项式C .一次二项式D .三次三项式活动1 小组讨论例1 先填空,再分析写出的式子有什么特点?与你的同伴交流.(1)减肥后,体重由80千克下降了n 千克,是(80-n)千克;(2)买一本练习本需要x 元,买一支中性笔需要y 元,买一块橡皮需要z 元,买4本练习本,5支中性笔,2块橡皮共需要(4x +5y +2z)元.例2 指出下列多项式的次数与项:(1)23xy -14; (2)a 2+2a 2b +ab 2-b 2;(3)2m 3n 3-3m 2n 2+53mn. 解:(1)2次,23xy ,-14. (2)3次,a 2,2a 2b ,ab 2,-b 2.(3)6次,2m 3n 3,-3m 2n 2,53mn. 活动2 跟踪训练1.下列说法中正确的有(A )①单项式-12πx 2y 的系数是-12; ②多项式a +3b +ab 是一次多项式;③多项式3a 2b 3-4ab +2的第二项是4ab ;④2x 2+1x-3是多项式. A .0个 B .1个 C .2个 D .3个2.把下列各式填在相应的集合里.①0.②x 2;③-x 2-2x +5;④94;⑤xy.⑥8+b 7;⑦-5;⑧x +y 5. 整式:{①②③④⑤⑥⑦⑧…}多项式:{③⑥⑧…}单项式:{①②④⑤⑦…}3.指出下列多项式的项和次数.(1)a 3-a 2b +ab 2-b 3; (2)3n 4-2n 2+1.解:(1)a 3,-a 2b ,ab 2,-b 3,3次.(2)3n 4,-2n 2,1,4次.4.指出下列多项式是几次几项式:(1)x 3-x +1; (2)x 3-2x 2y 2+3y 2.解:(1)三次三项式.(2)四次三项式.活动3 课堂小结1.多项式的概念.2.项、常数项、多项式的次数.。
人教版七年级数学上册整式的加减《整式(第1课时)》示范教学设计

2.1整式(第1课时)教学目标1.进一步理解用字母表示数的意义,会用含有字母的式子表示实际问题中的数量关系.2.经历用含有字母的式子表示实际问题中的数量关系的过程,体会从具体到抽象的认识过程,发展符号意识.教学重点进一步理解用字母表示数的意义,正确分析实际问题中的数量关系,并用含有字母的式子表示数量关系.教学难点正确分析实际问题中的数量关系,用含有字母的式子表示数量关系.教学过程新课导入设a,b,c表示三个有理数,则新知探究一、探究学习【问题】青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段.列车在冻土地段的行驶速度是100 km/h.列车在冻土地段行驶时,2 h行驶的路程是多少?3 h呢?t h呢?【思考】在式子100×t=100t中,字母t表示什么?100t又表示什么?【师生活动】学生独立回答.教师引导学生归纳:用字母t表示时间,字母t可以像数一样参与运算,并且可以简明地表示列车行驶的路程与时间、速度的关系.【设计意图】让学生经历由数到式的过程,感受从特殊到一般的认识过程,体会用字母表示数的简捷性和必要性,为继续学习用含有字母的式子表示数量关系做好方法上的引导.二、新知精讲【例1】(1)苹果原价是每千克p元,按八折优惠出售,用式子表示现价:_________________;(2)某产品前年的产量是n件,去年的产量是前年产量的m倍,用式子表示去年的产量:_________________;(3)一个长方体包装盒的长和宽都是 a cm,高是h cm,用式子表示它的体积:_________________;(4)用式子表示数n的相反数:___________;(5)7人共同完成一项工作,若每人的工作效率相同,总工作量为m,用式子表示每人需要完成的工作量:__________.m 【答案】(1)0.8p元(2)mn件(3)a2h cm3(4)-n(5)7【师生活动】学生先独立列式,然后同桌交流,教师巡视指导.【设计意图】熟悉用含有字母的式子表示实际问题中的数量关系,理解字母可以像数一样参与运算,为后面的学习进行铺垫.【思考】含有字母的式子有什么书写特点?【师生活动】学生对写出的几个式子进行观察,教师引导学生从式子的字母和数字两方面进行回答.【设计意图】熟悉用字母表示数的书写要求,在答题中能正确写出式子.【例2】(1)一条河的水流速度是2.5 km/h,船在静水中的速度是v km/h,用式子表示船在这条河中顺水行驶和逆水行驶时的速度;(2)买一个篮球需要x元,买一个排球需要y元,买一个足球需要z元,用式子表示买3个篮球、5个排球、2个足球共需要的钱数;(3)如图(图中长度单位:cm),用式子表示三角尺的面积;(4)一所住宅的建筑平面图(图中长度单位:m)如图所示,用式子表示这所住宅的建筑面积.【思考】船在河流中行驶时,船的速度要分几种情况讨论?【师生活动】学生讨论之后,进行回答,教师根据学生回答的结果进行点评.【设计意图】让学生意识到,在特殊情形下用字母表示数时,可能会有多种情况存在.【答案】解:(1)船在这条河中顺水行驶的速度是(v+2.5) km/h,逆水行驶的速度是(v-2.5) km/h;(2)买3个篮球、5个排球、2个足球共需要(3x+5y+2z)元;(3)三角尺的面积(单位:cm2)是12ab-πr2;(4)这所住宅的建筑面积(单位:m2)是x2+2x+18.【师生活动】学生先独立列式,然后同桌交流,教师巡视指导.【设计意图】进一步熟悉用含有字母的式子表示实际问题中的数量关系,体会字母的含义,进一步理解字母可以像数一样参与运算,为形成多项式的概念进行铺垫.【思考】观察(1)(2)中写出的式子,总结特点.【师生活动】学生独立回答.【设计意图】让学生知道在书写后面带有单位的式子时,所写的式子要加括号.【思考】在(2)中,当x=70,y=50,z=80时,共需要多少钱?【师生活动】学生讨论之后,派代表在黑板上写出计算过程和答案,教师根据答题结果进行讲解.【设计意图】通过这一步,让学生知道,在字母的取值确定时,式子的取值是确定的.【思考】结合前面的例题,组内讨论:用字母表示数,有什么特点?【师生活动】学生分组讨论,教师展示课件上的总结,让学生对照学习.【设计意图】知道用字母表示数的必要性,为后续整式的相关学习做铺垫.【新知】讨论:如何分析题目,找数量关系?(1)抓关键词,明确它们的意义以及它们之间的关系,如:和、差、积、商;大、小;倍、分、比……提高/降低、顺水/逆水、打折等.(2)理清语句层次,明确运算顺序.(3)牢记概念和公式.【师生活动】学生小组讨论,如何找出数量关系,推举代表进行回答,教师根据回答结果进行点评,并给出正确的方法.【设计意图】通过对问题中的文字语言进行分析,转化成符号语言,进一步熟练列出式子,用字母表示数.【新知】用字母表示数的书写要求.【师生活动】教师在课件中给出表格,引导学生进行填空.【设计意图】检验学生是否准确掌握了用字母表示数的书写要求,进一步规范学生的式子写法.课堂小结板书设计一、字母可以表示任何数二、字母可以简明地表示数量关系三、用字母表示数的书写格式课后任务完成教材第56页练习1~4题.。
人教版七年级数学上册整式的加减(第一课时)课件

• 练习2 下列各组中的两项是不是同类项?说明理由。
1) ab与2ac
2)a2bc与ab2c 3)8xy2与 1 xy2; √
2
4)3ab与-ba ; √ 5) 0.5与9 √ 6)abm与abn
7)43 与 32 √
注:同类项与系数无关,与字母的排列顺序无关。
动脑想一想
• 化简多项式的一般步骤是什么呢?
③
3ab2 4ab2
解:①-152t ②5x2
③-ab2
交流与讨论
100t 252t 100t 252t 3x2 2x2 3ab2 4ab2
• 视察多项式 , , ,
(1)上述各多项式的项有什么共同特点? ①每个式子的项含有相同的字母; ②并且相同字母的指数也相同。
(2)上述多项式的运算有什么共同特点? 你能从中得出什么规律?
c
2-3a+
1
c
2
a -1
3
3
b 2 c -3
6
(1)解:化简多项式 2 x 2-5 x+x 2+4 x-3 x 2-2
当 x= 1 时, 2
原式
(2)解:化简多项式
3a+abc- 1 c2-3a+ 1 c2
3
3
先化简, 再代入!
当a -1 , b 2 , c -3 时,
6 原式
>>课堂小结
>>整式化简归纳步骤
• 找出同类项并做标记; • 运用交换律、结合律将多项式的同类项结合; • 合并同类项; • 按同一个字母的降幂(或升幂排列)。
动笔练一练
• 练习3 2x2-5x+x2+4x-3x2-2
(1)求多项式 (2)求多项式
x= 1
的值,其中 。 的值,其中 , ,
人教版七年级数学上册整式的加减(第1课时)课件(共28张)

(1)2x2y与-3x2y √
(2)2abc与2ab
3abc
(3)-3pq与3qp
x22y
(4)-4x2y与5xy
×
√
×
探究新知
归纳总结
同类项的判别方法:
(1)同类项只与字母及其指数有关,与系数无关,与
字母在单项式中的排列顺序无关;
(2)抓住“两个相同”,一是所含的字母要完全相同,
中到不同的括号内;
三并,将同一括号内的同类项相加即可.
探究新知
素养考点 2
合并同类项并且求值
例 2 ( 1 ) 求 多 项 式2
2x 5x x 4x 3x 2
2
2
的值,
其中x = .
分析:在多项式求值时,可以先将多项式中的同类项合并,
然后再代入求值,这样可以简化计算.
2
2
2
(5)3x2+2x3=5x5
√
(6)a+a-5a=-3a
注:(2)(4)(5)中的单项式不是同类项,不能合并.
(3)是同类项,但合并结果不对.
探究新知
素养考点 1 合并同类项
用不同
的标记把同
类项标出来!
例1 合并下式中的同类项.
4a 2 3b 2 2ab 3a 2 b 2 .
解: 4a 2 3b 2 2ab 3a 2 b 2
解:(1) 2 x 5 x x 4 x 3 x 2 x 2.
当x = 时,原式=− .
探究新知
(2)求多项式 3a abc 1 c 2 3a 1 c 2
人教版七年级数学上册同步备课2.1整式(第1课时)用字母表示数(教学设计)

2.1 整式(第1课时)教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第二章“整式的加减”2.1整式第1课时,内容包括用含有字母的式子表示数量关系.2.内容解析本节课内容属于“数与代数”领域,是在学习了用字母表示数、简单的列式表示实际问题中的数量关系和简易方程的基础上,进一步研究用含有字母的式子(整式)表示实际问题中的数量关系.整式是初中数学的重要概念,是今后学习分式、二次根式、方程以及函数等知识的基础.理解字母表示数的意义,正确分析实际问题中的数量关系,并用整式表示数量关系,是学习一元一次方程的直接基础.用含有字母的式子表示数量关系,体现了由特殊(具体)到一般(抽象)的数学思想,对发展符号意识具有重要意义.本节课的核心内容是进一步理解用字母表示数的意义,正确分析实际问题中的数量关系并列式表示,由于字母表示数,因而字母可以和数一样参与运算,这正是理解用整式表示数量关系的核心.用含有字母的式子表示数量关系时,需要结合具体情境,分析问题中的数量,寻找数量之间的关系,并依据数量关系用运算符号把数和表示数的字母连接起来.基于以上分析,确定本节课的教学重点为:进一步理解用字母表示数的意义,正确分析实际问题中的数量关系并用含有字母的式子表示数量关系,感受其中“抽象”的数学思想.二、目标和目标解析1.目标(1)进一步理解用字母表示数的意义,会用含有字母的式子表示实际问题中的数量关系(2)经历用含有字母的式子表示实际问题数量关系的过程,体会从具体到抽象的认识过程,发展符号意识.2.目标解析达成目标(1)的标志是:学生会用字母表示数,认识字母和数一样可以参与运算,能正确分析实际问题中的数量关系,将字母看成数参与运算,列出含有字母的式子.目标(2)是“内容所蕴含的思想方法”,学生需要结合大量的具体问题,分析数量关系并用式子表示,从中体会由实际问题抽象出数学问题,用数学符号表示数量关系的思想,感受式子中的字母表示数,含有字母的式子可以表示实际问题中的数量关系,式子更具有一般性.三、教学问题诊断分析在前面的学习中,主要学习的是数的有关概念和运算,学生习惯用数的相关知识解决实际问题.由“数”到“式”的过程,是一个抽象的过程.虽然学生小学学过用字母表示数,对含有字母的数学式子不会感到生疏,但七年级学生符号意识较弱,分析问题能力有待逐步提高,在具体的问题情境中,对于如何分析问题、寻找相关数量、确定数量之间的关系、用数学符号表达数量关系,学生会感到困难.教学中要通过大量的学生熟悉的实际问题,有针对性地进行引导,充分展示分析数量关系并列式的过程,积累感性认识,丰富学习体验,培养学生解决实际问题的能力.基于以上分析,确定本节课的教学难点为:正确分析实际问题中的数量关系,用式子表示数量关系.四、教学过程设计(一)创设情境,引入课题教师:青藏铁路是世界上海拔最高、线路最长的高原铁路.(展示图片,并结合图片说明.)【设计意图】通过展示图片,吸引学生注意力,激发学生的民族自豪感,引出下面的问题.问题1:青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段. 列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度是120千米/时,请根据这些数据回答:列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?t小时呢?追问1:字母t表示时间有什么意义?如果用v表示速度,列车行驶的路程是多少?追问2:回顾以前所学的知识,你还能举出用字母表示数或数量关系的例子吗?师生活动:学生独立回答.教师引导学生归纳:用字母t表示时间,字母t可以像数一样参与运算,并且可以简明表示列车行驶的路程与时间、速度的关系,数与字母相乘或字母与字母相乘,通常将乘号写作“·”或省略不写.【设计意图】让学生经历由数到式的过程,感受从特殊(具体)到一般(抽象)的认识过程,体会用字母表示数的简洁性和必要性,为下面继续学习用含有字母的式子表示数量关系做好方法上的引导.(二)探究关系,解决问题问题2:怎样分析数量关系,并用含有字母的式子表示数量关系呢?例1:(1)苹果原价为每千克p元,按8折优惠出售,用式子表示现价;(2)某产品前年的产量是n件,去年的产量是前年产量的m倍,用式子表示去年的产量;(3)一个长方体包装盒的长和宽都是a cm,高是h cm,用式子表示它的体积;(4)用式子表示数n的相反数;(5)全校学生总数是 x ,其中女生占总数的 48%,则女生人数是____,男生人数是____;(6)一辆长途汽车从杨柳村出发,3h 后到达距出发地 s km 的溪河镇,这辆长途汽车的平均速度是_____km/h ;(7)产量由 m kg 增长 10%,就达到_________kg.师生活动:学生先独立列式,然后同桌交流,学生代表板演展示,教师巡视指导.解:(1)现价是每千克0.8p 元;(2)去年的产量是mn 件,(3)长方体包装盒的体积是a ·a ·h cm ,即a 2h cm 2;(4)数n 的相反数是-n .(5)0.48x ;x -0.48x ;(6)3s ; (7)(m +0.1m ).教师根据学生回答情况进行评价,可以适时追问下面的问题:(1)苹果现价比原价降低了多少元?你能再赋予0.8p 一个含义吗?(2)前年与去年产量的和是多少?去年的产量比前年多多少?你能再赋予mn 一个含义吗?(3)这里数n 一定是正数吗?【设计意图】熟悉用含有字母的式子表示实际问题中的数量关系,理解字母可以像数一样参与运算,为形成单项式的概念进行铺垫,在用数学符号表示数量关系中,感受其中“抽象”的数学思想.针对训练:1.下列含有字母的式子,符合书写规范要求的是( C )A .-1aB .5bC .0.5xyD .(x +y )÷z2.下列表述中,不能表示式子“4a ”的意义的是( D )A .4的a 倍B .a 的4倍C .4个a 相加D .4个a 相乘3.下列用字母表示数所列的式子中,书写规范的是( B )A .m ×12B .4x 3yz ²C . z ÷3D .273mn 例2:(1)一条河的水流速度为2.5 km/h ,船在静水中的速度为v km/h ,用式子表示船在这条河中顺水行驶和逆水行驶时的速度;(2)买一个篮球需要x 元,买一个排球需要y 元,买一个足球需要z 元,用式子表示买3个篮球、5个排球,2个足球共需要的钱数;(3)如下图(图中长度单位:cm ),用式子表示三角尺的面积;(4)如下图是一所住宅的建筑平面图(图中长度单位:m ),用式子表示这所住宅的建筑面积.师生活动:学生先独立列式,然后同桌交流,学生代表板演展示,教师巡视指导.解:(1)顺水行驶和逆水行驶时的速度分别是(v +2.5) km/h ,(v -2.5) km/h ;(2)买3个篮球、5个排球、2个足球共需要(3x +5y +2z )元;(3)三角尺的面积(单位:cm )为212ab r π-; (4)这所住宅的建筑面积(单位:㎡)为x 2+2x +18.教师根据学生回答情况可以适时追问下面的问题:(1)如果船在河中顺水行驶,3h 行驶多少千米?(2)当x =70,y =50,z =80 时,式子 3x +5y +2z 的值是多少?你能再赋予3x +5y +2z 一个含义吗?(3)列式时书写应注意什么?教师归纳:船在河流中行驶时,船的速度需要分两种情况讨论:①顺水行驶时,船的速度=船在静水中的速度+水流速度;②逆水行驶时,船的速度=船在静水中的速度-水流速度.1. 字母与字母相乘时省略乘号,例如:a ×b 可以写成ab ;2. 数字与字母相乘时,数字在前,字母在后,例如:100×t 可以写成100t 、 0.8×m 可以写成0.8m ;3. 1或-1与字母相乘时,1通常省略不写,例如1×a 可以写成a ,-1×a 可以写成-a ;4. 带分数与字母相乘时,把带分数化成假分数,例如312×y 必须写成32y ; 5. 相同字母相乘时应写成幂的形式,例如a ×a 可以写成a ²;6. 出现多个字母时,字母一般按照26个英文字母顺序排列;7. 数与字母相除时,写成分数形式,例如n ÷2可以写成2n ;8. 含有字母的式子表示数量关系时,若结果是加、减关系,有单位的必须把式子用括号括起来,再写单位,例如(2x+1.5y)元.问题3:上面的问题中,既有已知数,又有用字母表示的未知数,字母表示数有什么意义?用含有字母的式子表示数量关系有什么意义?教师归纳:用字母表示数,字母和数一样可以参与运算,可以用式子把数量关系简明地表示出来.列式就是把实际问题中与数量有关的语句,用含有数、字母和运算符号的式子表示出来,也就是把文字语言转化为符号语言,在形式上更简单,使用上更方便(也把它称为代数式).①要抓住关键词语,明确它们的意义以及它们之间的关系,如和、差、积、商及大、小、多、少、倍、分、倒数、相反数等;②理清语句层次明确运算顺序;③牢记一些概念和公式.【设计意图】进一步熟悉用含有字母的式子表示实际问题中的数量关系,体会字母的含义,进一步理解字母可以像数一样参与运算,为形成多项式的概念进行铺垫,在用数学符号表示数量关系中,感受其中“抽象”的数学思想.针对训练:1. 某种商品每袋4.8元,在一个月内的销售量是m 袋,用式子表示在这个月内销售这种商品的收入.2. 圆柱体的底面半径、高分别是r,h,用式子表示圆柱体的体积.3. 有两片棉田,一片有p hm2 (公顷,1 hm2 =104 m2 ),平均每公顷产棉花a kg;另一片有q hm2 ,平均每公顷产棉花b kg,用式子表示两片棉田上棉花的总产量.4. 在一个大正方形铁片中挖去一个小正方形铁片,大正方形的边长是a mm,小正方形的边长是b mm,用式子表示剩余部分的面积.1. 4.8m元;2.πr2h;3.ap+bq(kg);4.a2-b2(mm2).【设计意图】进一步理解字母表示数的意义,理解用含有字母的数学式子表示实际问题中数量关系的简洁性、必要性和一般性.例3:如图所示,搭一个正方形需要4根火柴棒.(1)按上面的方式,搭2个正方形需要根火柴,搭3个正方形需要根火柴.(2)搭7个这样的正方形需要根火柴.(3)搭100个这样的正方形需要多少根火柴?(4)如果用x 表示所搭正方形的个数,那么搭x 个这样的正方形需要多少根火柴?(5)根据你的计算方法,搭200个这样的正方形需要根火柴棒;搭2022个这样的正方形需要根火柴棒.解:(1)7;10;(2)22;(3)1+3×100;(4)4+3×(x-1);(5)601;6067.师生活动:学生先独立思考,然后小组合作讨论,学生小组代表尝试解答.对于(1),学生应能轻松解决.对于(4),引导学生尝试解释:搭第1个正方形,需要火柴4根;搭第2个正方形,需要火柴4+3×(2-1)根;搭第3个正方形,需要火柴4+3×(3-1)根;搭第4个正方形,需要火柴4+3×(4-1)根;……数量关系是:需要火柴的根数=4+3×(正方形的个数-1);所以搭第x个正方形,需要火柴4+3×(x-1)根;此环节教师应关注:①学生能否通过观察和分析,从中发现规律;②学生得出规律的不同方法;③学生能否将发现的规律用含字母x的式子表示出来教师引导学生妇纳:用整式表示实际问题中的数量关系和变化规律,可以从特殊值入手,借助表格分析,由特殊到一般,由个体到整体地观察、分析问题,发现规律,并用含有字母的式子表示一般的结论,这体现了由特殊(具体)到一般(抽象)的认识规律.【设计意图】借助具体的式子或表格,通过观察、分析、归纳发现规律,并用式子表示数量关系和变化规律,经历由特殊到一般的过程,使学生进一步感受从特殊(具体)到一般(抽象)的认规律,体会用字母便于探索和表达一些规律,字母比数字更具有一般性.(三)当堂巩固1. 用式子表示下列数量(1)5箱苹果重m kg ,每箱重 kg ;(2)一个数比a 的2倍小5,则这个数为 ;(3)全校学生总数是x ,其中女生占总数52%,则女生人数是 ,男生人数是 ;(4)某班有a 名学生,现把一批图书分给全班学生阅读,如果每人分4本,还缺25本,则这批图书共 本;(5)在一个大正方形铁片中挖去一个小正方形铁片,大正方形的边长是a mm ,小正方形的边长是b mm ,则剩余部分的面积为 .2. 用火柴棒按下面方式搭图,填写表格1. (1)5m ;(2)2a -5;(3)0.52x ;0.48x ;(4)(4a -25);(5)(a 2-b 2)mm 2. 2. 7;12;17;22;……;5n +2.【设计意图】进一步提高用含有字母的式子表示实际问题中的数量关系的能力.(四)感受中考1.(2022•吉林)篮球队要购买10个篮球,每个篮球m 元,一共需要 元.(用含m 的代数式表示)【解答】解:篮球队要买10个篮球,每个篮球m 元,一共需要10m 元,故答案为:10m .2.(2022•长沙)为落实“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动.现需购买甲,乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x 本,则购买乙种读本的费用为( )A.8x元B.10(100-x)元C.8(100-x)元D.(100-8x)元【解答】解:设购买甲种读本x本,则购买乙种读本的费用为:8(100-x)元.故选:C.3.(2022•杭州)某体育比赛的门票分A票和B票两种,A票每张x元,B票每张y元.已知10张A 票的总价与19张B票的总价相差320元,则()A.10||32019xy=B.10||32019yx=C.|10x-19y|=320D.|19x-10y|=320【解答】解:由题意可得:|10x-19y|=320.故选:C.【设计意图】通过对最近几年的中考试题的训练,使学生提前感受到中考考什么,进一步了解考点.(五)课堂小结教师与学生一起回顾本节课所学主要内容,并请学生回答以下问题:1. 本节课学了哪些主要内容?2. 用字母表示数有什么意义?用含有字母的式子表示数量关系有什么意义?3. 用含有字母的式子表示数量关系时要注意什么?列式时:①数与字母、字母与字母相乘省略乘号;②数与字母相乘时数字在前;③式子中出现除法运算时,一般按分数形式来写;④带分数与字母相乘时,把带分数化成假分数;⑤带单位时,适当加括号.【设计意图】通过小结,进一步巩固、梳理本节课所学用字母表示数的知识,使学生所学知识系统化,形成一个完整的知识体系.(六)布置作业P59:习题2.1:第1题,第2题;P60:习题2.1:第7题.五、教学反思“用字母表示数”这节课,是人教版版七年级上册第二章整式的加减的章节起始课,知识看似浅显,平淡,却在小学数学与初中代数之间起着承上启下的过渡作用.从具体的数到用字母表示数,是由具体的数和运算符号组成的式子过渡到含有字母的式子,是学生学习数学的一个转折点,也是认识过程上的一次飞跃,将为后继学习代数式、方程、函数等相关知识起到铺垫作用,将使学生进一步感受到符号化的数学思想.英国著名哲学家、数学家罗素说过,什么是数学?数学就是符号加逻辑.在教学设计中也注重了符号化思想的渗透,本着由简单到复杂,由具体到抽象的原则,采用了观察思考,合作探究,动手操作等不同的学习方式,同时注重区分“用字母表示数”与下一节课的内容“代数式”的不同要求,重点使学生认识到用字母表示数的优越性,感受到字母以它浓缩的形式,表达大量信息的优点.通过实例了解简单的用字母表示数的方法. 同时关注学生发展,激发学习兴趣,在感受知识价值的同时.融合师生关系,以新的教学理念指导教学行为,做学生学习的引导者,合作者,促进者,坚持“授之以鱼,不如授之以渔”的方针,适时鼓励学生,达到了预期的课堂教学效果.体会用字母能代表一大批具体的数,含有字母的式子能概括地表示数量关系.在提出的问题以后,提示学生想一想,比如题目里的a、b可以表示哪些数.学生最先想到的是如果继续,a、b可以表示任何数,让学生想一想、说一说.多次进行这样的从部分到全体的联想,学生就能体会到字母表示数具有概括性的特征.在学习用字母表示数的书写格式时,先让学生自己写出例题的答案,再与正确答案对照,在认知差异与冲突中形成了新知识,建立了一种符号意识;在规律题的解答中,教师结合多媒体的演示较直观的使学生形成了“一看二猜三验证”的模型思想. 对于规律题的探究是七年级学生的难点,借助多媒体的演示非常直观,适合学生抽象思维较弱的特点,浸润式的详细点拨讲解,使学生慢慢形成了一个解决规律题的模型,在设计时突出“模型思想”的渗透,同时也让学生体会到了从特殊到一般的数学思想.。
人教版初中数学七年级上册精品教学课件 第2章 整式的加减 2.1 第1课时 单项式

解析:2π的系数为2π,-x的系数为-1,x的系数为1.
2.下列含字母的式子符合书写规范的是( D )
A.x7
4
3
2
3.在式子 2a+b,3xy
A.2
10%
B.1 a
C.
3
2
D.- a
-
, ,n,-5,
, 中,单项式的个数是(
2 3
B.3
4.单项式-x2yz2的系数是
C.4
-1
D.5
.
快乐预习感知
7.用单项式填空,并指出它们的系数和次数:
(1)若圆的半径为R cm,则它的面积为 πR2
系数是
,次数是
.
π
2
cm2;
(2)实验中学七年级12个班中共有团员a人,且每班团员人数相等,则
12
b个班有团员
是
2
.
1
人,系数是
12
,次数
第1课时 单项式
快乐预习感知
1.用 数 或 字母 的积表示的式子叫做单项式.单独的一个
数 或一个 字母 也是单项式.
2.下列式子中,单项式的个数是( B )
3
2
a+b,-2,x-1, ,- ,3ab,
-1
.
2
A.2 B.3
C.4 D.5
3.单项式中的 数字因数
叫做这个单项式的系数,所有字母
的 指数的和 叫做这个单项式的次数.
32
4.单项式- 5 的系数是
3
-
5
,次数是
3
.
互动课堂理解
1.单项式的识别
【例 1】 下列式子中,单项式的个数是(
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1 整式
第1课时用字母表示数
教学目标:
1.认识用字母表示数.
2.会用含字母的式子表示数量关系.
教学重难点:会用字母表示数量关系.
教学过程:
一、创设问题情境,引入新课
1.阅读课本P53,本章引言中的问题:
问题1:用s表示路程,v表示速度,t表示行驶时间,这三个量之间存在什么样的关系式?
问题2:用S表示圆的面积,C表示圆的周长,r表示圆的半径,用含r的式子表示S和C.
问题3:a和b表示两个有理数,用字母表示加法交换律.
问题4:全班共有学生x人,其中女生人数占54%,女生人数和男生人数分别是多少?用含x 的式子表示.
2.合作交流以上问题、思考:
(1)字母可以表示什么?
(2)用字母表示数的作用.
3.总结归纳:用字母表示数,字母和数一样可以参与运算,可以用式子把数量关系简明地表示出来.
4.课本P54例1、P55例2.
(1)学生独立完成.
(2)交流,有困难的学生组内讨论帮助.
二、反馈练习
1.课本P56练习第1~4题.
2.能力提升练习.
(1)一段水渠的横截面是梯形,上口宽a m,下底宽b m,渠深0.8 m,若这段水渠长为l m,修这条水渠需要挖土石方.
用含字母x的式子表示售价c是.。