微积分复习题1
(微积分)第一章

第一章习题1-11. 用区间表示下列不等式的解.⑴ x%9; (2) x — 1 1;(3) (x-1)(x 2) :0; (4) 0 . x 1:: 0.01解(1)原不等式可化为(x —3)(x+3)苴0 ,其解为—3苴x<3,用区间表示是[-3,3].(2) 原不等式可化为x—1》1或x—1<—1 ,其解为x》2或x<0 ,用区间表示是(-8 ,0^(2,+ 8 ).(3) 原不等式的解为—2 e x <1,用区间表示是(-2,1).-0.01 :x 1 :0.01 口-1.0 V: x :-0.99(4) 原不等式可化为4 即/x 1=0 x=1用区间表示是(-1.01,-1) U (-1,-0.99).2. 用区间表示下列函数的定义域:(1) y =[ - .1 -x2;(2) y = arcsin(1 - x) ig(ig x);x(3) y = . 6 -5x -x2 ---------- - --- .ln(2 -x)a - x=0 r x = 0解⑴要使函数有意义,必须{… 即41-x2-0 -1%&1所以函数的定义域为[-1,0) U (0,1].(2)要使函数有意义,必须J lg x A 0 即< x A1x 0 x 0所以函数的定义域是1<x s ;2,用区间表示就是(1,2].6 —5x —x 2 _0—6 壬 X&1(3)要使函数有意义,必须<ln(2 - x) #0 即<x #1 所以函数的定义域是-6孑<1,用区间表示就是[-6,1).3. 确定下列函数的定义域及求函数值 f(0),f( J2),f(a)(a 为实数),并作出图形r 1 八一,x <0, x (1)y=<2x,0 5<1‘ 1,1 :x&2解(1)函数的定义域D(f) ={x|x ::: 0}IJ{x|0 £x :"J{x|1 ::: x £2}= {x|x ::1 或 1,: x 三 2}=(-二,1)U(1,2]1一 a < 0f (o )=2 °=。
浙江大学《微积分(1)》历年期末考试试题

13、 求 lim(sin 2 x + cos x) x .
2
x→0
2 + cos x x2 14、 求 lim( ) . x→0 3
1
第 2 页 共 10 页
1 − 1 − x2 1 15、 若 lim = , 求: a 的值. x→0 xa 2 1 2 n n 16、 设 un = ( 1 + ( ) 1 + ) L ( 1 + ) ,求: lim un . n →∞ n n n
】
1 ( f (a ) + f (b)) . 2
三、
1、 求 2、 求
不定积分
∫x
2
2x + 1 dx . + 2x + 2 1
2
∫ ( x + 1)( x
1
2
+ 1)
dx
3、 求
∫ x ( x + 1) dx . ∫
3
4、 求
1 dx . x+5x
5、 求
arcsin e x ∫ e x dx . arctan e x ∫ e2 x dx .
x 24、 设 x > 0, 证明 f ( x) = ( x − 4) e 2 − ( x − 2)e + 2 < 0 . 2 2 25、 证明:若 e < a < b < e 2, 则 ln b − ln a > x
4 (b − a ). e2
第 4 页 共 10 页
e x sin x 26、 已知 F ( x ) = x a
5、 设 y = x ln(1 + x ) ,求: y 对 x 的 10 阶导数 y (10) ( x) .
微积分1(含答案)

第 1 页 共 8 页1、在二元函数的极限中,(,)P x y 趋于点000(,)P x y 的方式是任意的; ( √ )2、若(,)z f xy =在00(,)x y 处存在一阶偏导数,则(,)z f x y =在00(,)x y 处可微( × )3、“对二元函数),(y x f z =,求其在条件0),(=y x ϕ下的极值”问题的拉格朗日函数为:),(),(),,(y x y x f y x F λϕλ+=; ( √ )4、设22:14D x y ≤+≤,则3D d x d y π=⎰⎰;( √ ) 5、若级数1nn a∞=∑收敛,级数1nn b∞=∑发散,则级数1()nn n ab ∞=+∑必发散; ( √ )6、级数1nn ∞= ( × )7、级数21n n x n ∞=∑的收敛半径是2; ( × )8、2()20x y y x ''-+=是一阶微分方程. ( √ ) 1、若函数(,)f x y 点00(,)x y 处连续,则0000(,)(,)lim(,)(,)x y x y f x y f x y →=; ( √ )2、若(,)z f xy=在00(,)x y 处可微,则(,)z f x y =在00(,)x y 处存在连续偏导数( √ )3、若在驻点00(,)x y 处00(,)xx f x y ''和00(,)yy f x y ''异号,则00(,)f x y 是函数极值;( × )4、设22(,)1f x y x y =--,则(0,)是函数的极大值点; ( √ )5、(,)(cos ,sin )DDf x y d f r r drd σθθθ=⎰⎰⎰⎰;( × ) 6、若级数1nn u∞=∑收敛,则级数12nn u∞=+∑也收敛; ( √ )7、级数1(1)2nnn ∞=-∑是条件收敛; ( × ) 8、2()20y y ''-=是二阶微分方程. ( × )第 2 页 共 8 页二、填空题 1、设x z y =,则zx∂=∂ ln x y y ; 2、设22xy z e +=,则dz = 222()xy e xdx ydy ++ ;3、在极坐标系下计算二重积分有公式(,)Df x y dxdy =⎰⎰(cos ,sin )Df r r rdrd θθθ⎰⎰ ;4、设0a ≠,则当q 满足:q 1> 时,几何级数1n n aq ∞=∑收敛; 5、对任意级数1nn u∞=∑,如果1nn u∞=∑收敛,则称级数1nn u∞=∑为 绝对 收敛级数;6、1()1f x x =-展开成x 的幂级数是_______0(11)nn x x ∞=-<<∑______。
微积分复习题(1)(1)

《微积分》期末考试复习题第一章 函数与极限2. 求下列函数的定义域211(1)arctan ;(2);lg(1)(3); (4)arccos(2sin ).1y y x x xy y x x ==-==-6. 求下列极限:24213423(2)lim ;31(4)lim ;31(1)(2)(3)(6)lim ;5x x n x xx x x xx x n n n n →→∞→∞+-+--++++ 7若211lim 221x x ax b x →∞⎛⎫+=-- ⎪+⎝⎭,求a 和b . 9. 通过恒等变形求下列极限:2243222231016811(2)lim ;(4)lim ;15422 (5)lim log (1)113 (12)lim ;(13)lim ; (11)lim ; (1)11(1n n x x x a x x x x x x x xx x x x x x x →∞→→+∞→→→→-+⎛⎫+++ ⎪-+⎝⎭+-+⎛⎫- ⎪---⎝⎭3sin 0001sin 4)lim ; (15)lim(12); (16)lim ln .x xx x x a x x x x→→→-+11. 利用重要极限1lim(1)e uu u →+=,求下列极限:2221232cot 013(1)lim ;(2)lim ;12(3)lim(13tan );(4)lim(cos 2);xx x x xx x x x x x x x +→∞→∞→→+⎛⎫⎛⎫+ ⎪ ⎪-⎝⎭⎝⎭+12. 利用取对数的方法求下列幂指函数的极限:()1201(1)lim ;(4)lim .1e xx xx x x x →→∞⎛⎫++ ⎪⎝⎭14. 利用0sin lim1x xx→=或等价无穷小量求下列极限:000sin 1cos 2(1)lim;(3)lim ;sin sin arctan 3(5)lim ;(6)lim 2sin ;2x x n n x n mx xnx x xx x x →→→→∞-16、若0→x 时,1)1(412--ax 与x x sin 是等价无穷小,求a 的值。
微积分下册期末试卷(1-4缺2答案)及答案

安徽财经大学微积分(下)期末总复习练习卷(1)及参考答案二、填空题(每小题3分,共15分)1、已知22(,)yf x y x y x +=-,则=),(y x f _____________.2、已知π=⎰∞+∞--dx e x 2,则=⎰∞+--dx e x x0 21___________.3、函数22(,)1f x y x xy y y =++-+在__________点取得极值. 4、已知y y x x y x f arctan )arctan (),(++=,则=')0,1(x f ________.5、以xe x C C y 321)(+=(21,C C 为任意常数)为通解的微分方程是_________________. 二、选择题(每小题3分,共15分)6 知dx e x p ⎰∞+- 0 )1(与⎰-e p xx dx 1 1ln 均收敛,则常数p 的取值范围是( ). (A) 1p > (B) 1p < (C) 12p << (D) 2p >7 二元函数⎪⎩⎪⎨⎧=+≠++=0 ,0 0 ,4),(222222y x y x y x x y x f 在原点间断,是因为该函数( ). (A) 在原点无定义 (B) 在原点二重极限不存在 (C) 在原点有二重极限,但无定义(D) 在原点二重极限存在,但不等于函数值8、若2211x y I +≤=⎰⎰,22212x y I ≤+≤=⎰⎰,22324x y I ≤+≤=⎰⎰, 则下列关系式成立的是( ).(A) 123I I I >> (B) 213I I I>>(C) 123I I I << (D) 213I I I<<9、方程xe x y y y 3)1(596+=+'-''具有特解( ).(A) b ax y += (B) xe b ax y 3)(+=(C) x e bx ax y 32)(+= (D) xe bx ax y 323)(+=10、设∑∞=12n na收敛,则∑∞=-1)1(n nn a ( ).(A) 绝对收敛 (B) 条件收敛 (C) 发散 (D) 不定三、计算题(每小题6分,共60分)11、求由23x y =,4=x ,0=y 所围图形绕y 轴旋转的旋转体的体积.12、求二重极限 11lim 22220-+++→→y x y x y x .13、),(y x z z =由xy e z z=+确定,求y x z∂∂∂2.14、用拉格朗日乘数法求221z x y =++在条件1=+y x 下的极值.15、计算⎰⎰1 212dxe dy yyyx .16、计算二重积分22()Dx y dxdy +⎰⎰,其中D 是由y 轴及圆周221x y +=所围成的在第一象限内的区域.17、解微分方程x y y +'=''.18、判别级数)11(133∑∞=--+n n n 的敛散性.19、将函数x -31展开成x 的幂级数,并求展开式成立的区间. 20、某公司可通过电台及报纸两种方式做销售某商品的广告.根据统计资料,销售收入R (万元)与电台广告费用1x (万元)的及报纸广告费用2x (万元)之间的关系有如下的经验公式:222121211028321415x x x x x x R ---++=,求最优广告策略.四、证明题(每小题5分,共10分)21、设1133ln()z x y =+,证明:13z z x y x y ∂∂+=∂∂. 22、若∑∞=12n nu与∑∞=12n nv都收敛,则∑∞=+12)(n n nv u收敛.练习卷(1)答案一、填空题(每小题3分,共15分)1、2(1)1x y y -+. 23、)32,31(-. 4、1. 5、"6'0y y y -+=. 二、选择题(每小题3分,共15分)6、(C ).7、 (B).8、(A ) .9、(D). 10、(D). 三、计算题(每小题6分,共60分)11、求由23x y =,4=x ,0=y 所围图形绕y 轴旋转的旋转体的体积. 解:32y x =的反函数为23,0x y y =>。
微积分综合练习题及参考答案1

综合练习题1(函数、极限与连续部分)1.填空题 (1)函数)2ln(1)(-=x x f 的定义域是 . 答案:2>x 且3≠x .(2)函数24)2ln(1)(x x x f -++=的定义域是 .答案:]2,1()1,2(-⋃--(3)函数74)2(2++=+x x x f ,则=)(x f. 答案:3)(2+=x x f(4)若函数⎪⎩⎪⎨⎧≥<+=0,0,13sin )(x k x xx x f 在0=x 处连续,则=k .答案:1=k(5)函数x x x f 2)1(2-=-,则=)(x f .答案:1)(2-=x x f(6)函数1322+--=x x x y 的间断点是 .答案:1-=x(7)=∞→xx x 1sinlim .答案:1(8)若2sin 4sin lim 0=→kxxx ,则=k .答案:2=k2.单项选择题(1)设函数2e e xx y +=-,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数 答案:B(2)下列函数中为奇函数是().A .x x sinB .2e e xx +- C .)1ln(2x x ++ D .2x x +答案:C(3)函数)5ln(4+++=x x xy 的定义域为( ).A .5->xB .4-≠xC .5->x 且0≠xD .5->x 且4-≠x 答案:D(4)设1)1(2-=+x x f ,则=)(x f ( ) A .)1(+x x B .2x C .)2(-x x D .)1)(2(-+x x 答案:C(5)当=k ( )时,函数⎩⎨⎧=≠+=0,,2)(x k x e x f x 在0=x 处连续.A .0B .1C .2D .3 答案:D(6)当=k ( )时,函数⎩⎨⎧=≠+=0,,1)(2x k x x x f ,在0=x 处连续.A .0B .1C .2D .1- 答案:B(7)函数233)(2+--=x x x x f 的间断点是( ) A .2,1==x xB .3=xC .3,2,1===x x xD .无间断点 答案:A 3.计算题(1)423lim 222-+-→x x x x .解:4121lim )2)(2()1)(2(lim 423lim22222=+-=+---=-+-→→→x x x x x x x x x x x x (2)329lim 223---→x x x x解:234613lim )1)(3()3)(3(lim 329lim 33223==++=+-+-=---→→→x x x x x x x x x x x x (3)4586lim 224+-+-→x x x x x解:3212lim )1)(4()2)(4(lim 4586lim 44224=--=----=+-+-→→→x x x x x x x x x x x x x综合练习题2(导数与微分部分)1.填空题(1)曲线1)(+=x x f 在)2,1(点的切斜率是 . 答案:21(2)曲线x x f e )(=在)1,0(点的切线方程是 . 答案:1+=x y(3)已知x x x f 3)(3+=,则)3(f '= . 答案:3ln 33)(2x x x f +=')3(f '=27()3ln 1+(4)已知x x f ln )(=,则)(x f ''= . 答案:x x f 1)(=',)(x f ''=21x- (5)若x x x f -=e )(,则='')0(f .答案:x x x x f --+-=''e e 2)(='')0(f 2-2.单项选择题(1)若x x f x cos e )(-=,则)0(f '=( ).A. 2B. 1C. -1D. -2 因)(cos e cos )e ()cos e ()('+'='='---x x x x f x x x)sin (cos e sin e cos e x x x x x x x +-=--=---所以)0(f '1)0sin 0(cos e 0-=+-=- 答案:C(2)设y x =lg2,则d y =( ). A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 答案:B(3)设)(x f y =是可微函数,则=)2(cos d x f ( ). A .x x f d )2(cos 2' B .x x x f d22sin )2(cos ' C .x x x f d 2sin )2(cos 2' D .x x x f d22sin )2(cos '- 答案:D(4)若3sin )(a x x f +=,其中a 是常数,则='')(x f ( ).A .23cos a x +B .a x 6sin +C .x sin -D .x cos 答案:C3.计算题(1)设xx y 12e =,求y '.解: )1(e e 22121xx x y xx -+=')12(e 1-=x x(2)设x x y 3cos 4sin +=,求y '.解:)sin (cos 34cos 42x x x y -+='x x x 2cos sin 34cos 4-=(3)设xy x 2e 1+=+,求y '. 解:2121(21ex x y x -+='+ (4)设x x x y cos ln +=,求y '.解:)sin (cos 12321x x x y -+=' x x tan 2321-= 综合练习题3(导数应用部分)1.填空题(1)函数y x =-312()的单调增加区间是 . 答案:),1(+∞(2)函数1)(2+=ax x f 在区间),0(∞+内单调增加,则a 应满足 .答案:0>a2.单项选择题(1)函数2)1(+=x y 在区间)2,2(-是( ) A .单调增加 B .单调减少 C .先增后减 D .先减后增 答案:D(2)满足方程0)(='x f 的点一定是函数)(x f y =的( ). A .极值点 B .最值点 C .驻点 D . 间断点 答案:C(3)下列结论中( )不正确. A .)(x f 在0x x =处连续,则一定在0x 处可微.B .)(x f 在0x x =处不连续,则一定在0x 处不可导.C .可导函数的极值点一定发生在其驻点上.D .函数的极值点一定发生在不可导点上. 答案: B(4)下列函数在指定区间(,)-∞+∞上单调增加的是( ). A .x sin B .x e C .2x D .x -3答案:B3.应用题(以几何应用为主)(1)欲做一个底为正方形,容积为108m 3的长方体开口容器,怎样做法用料最省?解:设底边的边长为x m ,高为h m ,容器的表面积为y m 2。
微积分第一章详细答案

第一章习题1-11.用区间表示下列不等式的解2(1)9;(2)1;1(3)(1)(2)0;(4)00.011 x x x x x ≤>--+<<<+解 (1)原不等式可化为(3)(3)0x x -+≤,其解为33x -≤≤,用区间表示是[-3,3].(2)原不等式可化为11x ->或11x -<-,其解为2x >或0x <,用区间表示是(-∞,0)∪(2,+ ∞).(3)原不等式的解为21x -<<,用区间表示是(-2,1). (4)原不等式可化为0.0110.0110x x -<+<⎧⎨+≠⎩即 1.010.991x x -<<-⎧⎨≠⎩用区间表示是(-1.01,-1)∪(-1,-0.99). 2.用区间表示下列函数的定义域: 1(1)(2)arcsin(1)lg(lg );1(3).ln(2)y y x x xy x =-=-+=-解 (1)要使函数有意义,必须2010x x ≠⎧⎨-≥⎩即011x x ≠⎧⎨-≤≤⎩所以函数的定义域为[-1,0)∪(0,1].(2)要使函数有意义,必须111lg 00x x x -≤-≤⎧⎪>⎨⎪>⎩即0210x x x ≤≤⎧⎪>⎨⎪>⎩所以函数的定义域是12x <≤,用区间表示就是(1,2].(3)要使函数有意义,必须2650ln(2)020x x x x ⎧--≥⎪-≠⎨⎪->⎩即6112x x x -≤≤⎧⎪≠⎨⎪<⎩所以函数的定义域是-6≤x <1,用区间表示就是[-6,1).3.确定下列函数的定义域及求函数值f (0),ff (a )(a 为实数),并作出图形(1)1,0,2,011,12x x y x x x ⎧<⎪⎪=⎨≤<⎪⎪<≤⎩; (2)y=211,12x x x ⎧≤⎪⎨-<<⎪⎩解 (1)函数的定义域(){|0}{|01}{|12}{|112}(,1)(1,2]或D f x x x x x x x x x =<≤<<≤=<<≤=-∞10(0)200,1,()201112a a f ff a aa a ⎧<⎪⎪=⨯===⎨≤<⎪⎪<≤⎩,图1-1 图1-2(2)函数的定义域(){|1}{|12}{|2}(2,2)D f x x x x x x =≤<<=<=-221(0)1,11,()112a f ff a a a ≤===-==-<<⎪⎩4.设1,1()1,1x f x x ⎧≤⎪=⎨->⎪⎩,求f (f (x )).解 当|x |≤1时, f (x )=1, f (f (x ))= f (1)=1;当|x |>1时, f (x )=-1, f (f (x ))= f (-1)=1, 综上所述f (f (x ))=1(x ∈R ).5.判定下列函数的奇偶性: (1) f (x )=21cos xx-; (2)f (x )=(x 2+x )sin x ;(3)f (x )=1e ,0e 1,0x x x x -⎧-≤⎨->⎩解 (1) ∵221()1()()cos()cos x xf x f x x x----===-∴f (x )是偶函数.(2)∵222()[()()]sin()()(sin )()sin ()f x x x x x x x x x x f x -=-+--=--=--≠ 且()()f x f x -≠-, ∴f (x )是非奇非偶函数.(3)当x <0时,-x >0, ()1(1)()e e x x f x f x ---=-=--=-; 当x ≥0时,-x ≤0, ()()11(1)()e e e x x x f x f x ---=-=-=--=-,综上所述, x ∀∈R ,有f (-x )=-f (x ),所以f (x )是奇函数.6.设f (x )在区间(-l ,l )内有定义,试证明:(1) f (-x )+f (x )为偶函数; (2) f (-x ) -f (x )为奇函数. 证 (1)令()()()F x f x f x =-+(,)x l l ∀∈-有()[()]()()()()F x f x f x f x f x F x -=--+-=+-=所以()()()F x f x f x =-+是偶函数;(2)令()()()F x f x f x =--,(,)x l l ∀∈-有()[()]()()()[()()]()F x f x f x f x f x f x f x F x -=----=--=---=-所以()()()F x f x f x =--是奇函数.7. 试证:(1) 两个偶函数的代数和仍为偶函数; (2) 奇函数与偶函数的积是奇函数. 证 (1)设f (x ),g (x )均为偶函数,令()()()F x f x g x =± 则 ()()()()()(F x f x g x f x g x F x-=-±-=±=, 所以()()f x g x ±是偶函数,即两个偶函数的代数和仍为偶函数.(2)设f (x )为奇函数,g (x )为偶函数,令()()()F x f x g x =⋅, 则 ()()()()()(F x f x g x f x g x F x -=-⋅-=-=-, 所以()()f x g x ⋅是奇函数,即奇函数与偶函数之积是奇函数. 8. 求下列函数的反函数:22(1)2sin 3;(2);212101,(3)()2(2)1 2. xxy x y x x f x x x ==+-≤≤⎧=⎨--<≤⎩解 (1)由2sin 3y x =得1arcsin 32y x =所以函数2sin 3y x =的反函数为1arcsin(22)32x y x =-≤≤.(2)由221xxy =+得21x y y=-,即2log 1y x y=-.所以函数221xx y =+的反函数为2log (01)1x y x x =<<-.(3)当01x ≤≤时,由21y x =-得1,112y x y +=-≤≤;当12x <≤时,由22(2)y x =--得22x y =-<≤;于是有1112212y y x y +⎧-≤≤⎪=⎨⎪-<≤⎩,所以函数22101()2(2)12x x f x x x -≤≤⎧=⎨--<≤⎩的反函数是1112()212x x f x x +⎧-≤≤⎪=⎨⎪-<≤⎩.9. 将y 表示成x 的函数,并求定义域:222(1)10,1;(2)ln ,2,sin ;(3)arctan ,().为实数u vy u x y u u v x y u u v a x a ==+======+解 (1)211010u x y +==,定义域为(-∞,+∞);(2) sin ln ln 2ln 2sin ln 2vxy u x ====⋅定义域为(-∞,+∞);(3) arctan arctan arctan y u ===(a 为实数),定义域为(-∞,+∞).习题1-21.下列初等函数是由哪些基本初等函数复合而成的? (1) y=(2) y =sin 3ln x ;(3) y = tan 2xa; (4) y =ln [ln 2(ln 3x )].解 (1)令arcsin x u a =,则y =再令xv a =,则arcsin u v =,因此y =是由基本初等函数arcsin ,xy u v v a ===复合而成的.(2)令sin ln u x =,则3y u =,再令ln v x =,则sin u v =.因此3sin ln y x =是由基本初等函数3,sin ,ln y u u v v x ===复合而成.(3)令2tan u x =,则u y a =,再令2v x =,则tan u v =,因此2t a n x y a =是由基本初等函数2,tan ,uy a u v v x ===复合而成.(4)令23ln (ln )u x =,则ln y u =,再令3ln(ln )v x =则2u v =,再令3ln w x =,则ln v w =,再令ln t x =,则3w t =,因此23ln[ln (ln )]y x =是由基本初等函数2ln ,,ln ,y u u v v w ===3,ln w t t x ==复合而成.2.设f (x )的定义域为[0,1],分别求下列函数的定义域: (1) f (x 2); (2) f (sin x ); (3) f (x +a ),(a >0); (4) f (e x +1).解 (1)由f (x )的定义域为[0,1]得0≤x 2≤1,于是-1≤x ≤1,所以f (x 2)的定义域为[-1,1].(2)由f (x )的定义域为[0,1]得0≤sin x ≤1,于是2k π≤x ≤(2k +1)π,k ∈z ,所以f (sin x )的定义域为[2k π,(2k +1) π], k ∈Z .(3)由f (x )的定义域为[0,1]得0≤x+a ≤1即-a ≤x ≤1-a 所以f (x+a )的定义域为[-a ,1-a ]. (4)由f (x )的定义域为[0,1]得0≤e x +1≤1,解此不等式得x ≤-1,所以f (e x +1)的定义域为(-∞,-1]. 3. 求下列函数的表达式:(1) 设ϕ(sin x )=cos 2x +sin x +5,求ϕ(x ); (2) 设g (x -1)=x 2+x +1,求g (x ); (3) 设1()f x x +=x 2+21x,求f (x ).解 (1)法一:令sin t x =,则222cos 1sin 1x x t =-=-,代入函数式,得:22()156t t t t t ϕ=-++=+-,即 2()6x x x ϕ=++.法二:将函数的表达式变形得:22(sin )(1sin )sin 56sin sin x x x x x ϕ=-++=+-令sin t x =,得 2()6t t t ϕ=+-,即 2()6x x x ϕ=+-.(2)法一:令1t x =-,则1x t =+,将其代入函数式,得22()(1)(1)133g t t t t t =++++=++即 2()33g x x x =++.法二:将函数表达式变形,得22(1)(21)(33)3(1)3(1)3g x x x x x x -=-++-+=-+-+令1x t -=,得 2()33g t t t =++, 即 2()33g x x x =++.(3)法一:令1x t x+=,两边平方得22212x t x++=即22212x t x+=-,将其代入函数式,得2()2f t t =-,即2()2f x x =-.法二:将函数表达式变形,得222111222f x x x x x x ⎛⎫⎛⎫⎛⎫=-=-++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭令1x t x+=,得2()2f t t =-,即2()2f x x =-.4.设f (x )为奇函数,证明:若f (x )在x =0有定义,则f (0)=0.证 ∵f (x )为奇函数,且f (x )在x =0处有定义,∴ (0)(0)f f -=-又(0)(0)f f -=于是(0)(0)f f =- 即2(0)0,(0)0f f =∴=.5.证明:狄利克雷函数是周期函数,任何一个正有理数均是它的周期,但无最小正周期. 证 狄利克雷函数1,,()0,当为有理数时当为无理数时.x D x x ⎧=⎨⎩设T 是任一正有理数, x ∀∈R ,当x 为有理数时,x+T 为有理数,于是()1D x T +=,又()1D x =,所以()()D x T D x +=; 当x 为无理数时,x+T 为无理数,于是()0D x T +=,又()0D x =,所以()()D x T D x +=. 综上所述, x ∀∈R 有()()D x T D x +=,所以()D x 是周期函数,任何一个正有理数均是它的周期,又设P 是任一无理数, x P ∃=-∈R ,使()(0)1D x P P +==,而()0D x =,故()()D x P D x +≠,即无理数不是()D x 的周期;因为不存在最小的正有理数,所以()D x 无最小正周期.习题1-31.设销售商品的总收入是销售量x 的二次函数,已知x =0,2,4时,总收入分别是0,6,8,试确定总收入函数TR(x ).解 设2()TR x ax bx c =++,由已知(0)0,(2)6,(4)8TR TR TR === 即 04261648c a b c a b c =⎧⎪++=⎨⎪++=⎩ 解得 1240a b c ⎧=-⎪⎪⎨=⎪⎪=⎩所以总收入函数21()42TR x x x =-+.2.设某厂生产某种产品1000吨,定价为130元/吨,当一次售出700吨以内时,按原价出售;若一次成交超过700吨时,超过700吨的部分按原价的9折出售,试将总收入表示成销售量的函数.解 设销售量为x ,实际每吨售价为P 元,由题设可得P 与x 间函数关系为1307001177001000x P x ≤⎧=⎨<≤⎩,总收入 130700()130700(700)1177001000TR x x x x x ≤⎧=⎨⨯+-⨯<≤⎩,即 130700()91001177001000TR x x x xx ≤⎧=⎨+<≤⎩.3. 已知需求函数为105Q P =-,成本函数为C =50+2Q ,P 、Q 分别表示价格和销售量.写出利润L 与销售量Q 的关系,并求平均利润.解 由题设知总收入2()105QR Q PQ Q ==-,则总利润 ()221()()()8505021055Q L Q R Q C Q Q Q Q Q ⎛⎫=-=-=--+- ⎪⎝⎭, 平均利润 ()150()85L Q AL Q Q QQ==--.4. 已知需求函数Q d 和供给函数Q s ,分别为Q d =100233P -,Q s =-20+10P ,求相应的市场均衡价格.解 当d s Q Q =时供需平衡,由d s Q Q =得1002201033P P -=-+,解得5P =所以市场均衡价格5P =.。
01一元函数微积分复习与进阶习题(1)

1 2⎨(1)⎪d t(2)⎪d x201 一元函数微积分复习与进阶习题【题 1】验证下列函数是相应的微分方程的解,是特解还是通解?(1)y = sin 2x, y''+ 4 y = 0(2)y =C1 cos ax +C2 sin ax, y''+a y = 02(3)y=C eλ1x+C eλ2 x,y'-(λ+λ)y'+λλy=0,λ≠λ1 2 1 2 1 2 1 2 (4)y =C eλx+C eλx,y '- 2λy'+λ2 y = 0(5)y =Ce3x (C 为任意常数), y''-9 y= 0x e x x(6)y=x(⎰1dx +C), xy'-y =xex⎧d 2 x+=【题 2】验证函数x(t) = cos t+ 2sin t -2t cos t是初值问题⎪dt 2x 4 sin t的解。
【题 3】求下列初值问题的解:⎧d x= cosωt(ω≠ 0, 为常数)⎨⎪⎩x(0) =10⎪⎩x(0) = 1, x'(0) = 0⎧d2 y=⎨ 12x2⎪⎩y(0)=0,y'(0)=1⎧y'''=x(3)⎨y(0) =a , y'(0) =a , y '(0) =a⎩0 1 2【题 4】化下列方程为齐次方程,并求出通解:(x +y)d x +(3x + 3y - 4)d y = 0y (1 x ) 【题 5】 指出下列微分方程的阶. (1)dy =xy 2 + y 6dx(2) ( y ')2+ 2( y ')6 - x 5 = 0(3) y ' + 2( y ')3+ y 2 + x 5 = 0【题 6】求解下列微分方程-(1)微分方程 y ' = 的通解是————。
x (2)微分方程 y d x + (x 2 - 4x )d y = 0 的通解为————。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江经济职业技术学院 成教学院
《微积分》复习卷一
2012 年第 1 学期
班级: 学号: 姓名: 题序
一 二 三 四 五 总分 计分
一、选择题
1.函数y=216ln 1x x
x -+-的定义域是( ) A.(0,1) B.(0,1)∪(1,4)
C.(0,4)
D.(0,1)∪(1,4]
2.设f (x)=xln(1+x),则f ′(0)=( )
A.0
B.1
C.-1
D.2
3.曲线y=x 3-1在点(-2,-9)处的切线方程为( )
A.y=12x+15
B.y=12x+33
C.y=-12x+15
D.y=2x+9
4.若函数)(x f '存在原函数,下列错误的等式是:( )
A )()(x f dx x f dx d ⎰
= B )()(x f dx x f ⎰=' C dx x f dx x f d )()(⎰= D C x f x df +=⎰)()(
5.设)(x f 为偶函数,)(x ϕ为奇函数,且)]([x f ϕ有意义,则)]([x f ϕ是( ) A 偶函数 B 奇函数
C 非奇非偶函数
D 可能奇函数也可能偶函数
二、填空题
1.设f (x )的一个原函数是x 3,则⎰' f (x )d x =____.
2.设z =e sin x cos y ,则x
z ∂∂=____. 3.设y =21x -,则d y =____.
4.函数y =sin x -x 在区间[0,π]上的最大值是____.
5.⎰cos ⎪⎭
⎫ ⎝⎛-13
x d x =____.
三、计算题(一) 1.设y =2x (sinln x -cosln x ),求
x y d d x=1 .
2.设u =e
y x z +,求d u .
3.求⎰
x
x 2cos d x .
四、计算题(二)
1.设y =61ln 1)1(22+-+x x x +31arctan 3
12-x (x ≠-1),求y ′.
2.求定积分⎰20
2πx sin x d x .
五、证明题
1.已知函数f(x)=e x-x-2,证明在区间(0,2)内至少存在一个点x0,使得0e x-2=x0.。