统计过程控制(SPC)案例分析报告
spc分析报告

SPC分析报告1. 引言SPC是统计过程控制(Statistical Process Control)的缩写,它是一种用于监控和改进过程稳定性和一致性的方法。
通过对过程中的关键指标进行统计分析,可以帮助我们了解过程的性能,并及时采取控制措施,以确保产品或服务的质量达到要求。
本文将基于SPC方法,对一个实际案例进行分析,以展示如何通过SPC来改进过程。
2. 案例描述我们将以一个制造业公司的生产线为例进行分析。
该生产线生产的零件的尺寸是关键指标,需要保证在一定的范围内。
在实际生产中,我们发现尺寸的偏离情况比较严重,需要找出问题所在,以便采取相应的控制措施。
3. 数据收集首先,我们需要收集一定数量的样本数据,以便进行分析。
我们在生产线上连续采集了100个零件的尺寸数据,并将其记录下来。
4. 数据分析接下来,我们将对收集到的数据进行分析。
4.1 数据绘图我们可以先绘制一个控制图,以直观地观察尺寸数据的变化。
markdown python import matplotlib.pyplot as plt导入数据data = [1.2, 1.3, 1.4, …]绘制控制图plt.plot(data, marker=’o’) plt.axhline(y=mean(data), color=’r’, linestyle=’–‘, label=’平均值’) plt.axhline(y=mean(data)+3std(data), color=’g’, linestyle=’–‘, label=’上控制限’) plt.axhline(y=mean(data)-3std(data), color=’g’, linestyle=’–‘, label=’下控制限’) plt.legend() plt.xlabel(’样本编号’) plt.ylabel(’尺寸’) plt.title(’尺寸控制图’) plt.show() ```通过绘制控制图,我们可以看到数据点的分布情况以及是否超出了控制限。
spc案例

spc案例SPC(Statistical Process Control,也叫统计过程控制)是一种通过统计方法对产品和过程进行监控和改进的质量管理方法。
下面是一个SPC案例,用以说明其在实际生产中的应用。
某制造公司生产一种产品,经过市场调查发现,该产品存在一定的质量问题,如尺寸偏差、露粉等。
为了解决这些问题,公司决定采用SPC方法来监控和改进生产过程。
首先,公司确定一组关键工艺参数,如温度、压力、转速等,以及相关的质量指标,如尺寸、外观等。
随后,公司对每个工艺参数进行测量和记录,并将其输入到SPC软件中。
同时,公司还设置了对应的上下限值,即规定了每个工艺参数的合理变化范围。
在生产过程中,SPC软件会自动进行统计分析,并生成控制图。
控制图上有一条中心线,表示期望值,以及上下限线,表示允许的变化范围。
同时,还有一些参考线,如标准偏差线,用于判断过程稳定性。
公司的技术人员定期对控制图进行检查,观察各参数是否在规定范围内波动,是否出现异常情况。
如果发现异常,技术人员会及时采取措施,如调整机器参数、更换工具等,以及及时通知相关操作人员。
通过SPC的实施,公司逐渐发现了一些问题。
例如,当温度过高时,产品尺寸会偏大;当压力过低时,产品内部会出现空隙。
公司根据这些发现,对生产过程进行了优化,并引入了更先进的控制系統,进一步提高了产品质量。
此外,SPC还帮助公司进行了质量变化的监控和评估。
公司可以利用SPC软件生成的统计报表,进行不同时间段内产品质量的对比。
同时,公司还可以进行根因分析,找出导致质量问题的根本原因,并提出相应的改进措施。
总的来说,通过SPC的应用,该制造公司有效地改善了产品质量,减少了不合格品的数量,并提高了自身的竞争力。
SPC 方法在实际生产中具有广泛的应用前景,可以帮助企业提升质量管理水平,降低成本,提高效率。
SPC-过程能力分析报告

废品率 (%)
到11月, 废品率上升到2.6% ─ 年度最高点,总经理采取措施
召集一次“特别会议”,要一次性并永久性解决这个问题
在作完一个关于废品重要性的生动报告后,总经理走了.
3
员工们不知道该做什么.而且他们还有更重要的指标.
所以他们什么也没做.
2
不再 “温和的管理”
1
1 2 3 4 5 6 7 8 9 10 11 2000
过程输出的分布宽度或从过程中统计抽样值(例如:子组均值) 的分布宽度的量度,用希腊字母σ或字母s(用于样本标准差)
表示。
将一组测量值从小到大排列后,中间的值即为中位数。如果数
据的个数为偶数,一般将中间两个数的平均值作为中位数。
一个单个的单位产品或一个特性的一次测量,通常用符号 X 表
示。
2.2 SPC的关系链
目录
CONTENTS
一、一个真实的故事 二、SPC的基础知识 三、控制图 四、过程能力分析
1.一个真实的故事
案
例
2000年 4月 ***厂公司晚会上 工厂的废品率比上年度降低1.5%
总经理给全厂颁奖
3
仪式在餐厅进行:为所有的人准备了各种点心和饮料!
总经理讲演:“每个人都应为你们取得的成就感到骄傲”
带来故障成本的大幅度降低
2.2 SPC的关系链
(2) SPC的组成链
名称
平均值 (X )
极差 (Range)
σ (Sigma) 标准差 (Standard Deviation)
中位数 ˜x 单值
(Individual)
一组测量值的均值
解释
一个子组、样本或总体中最大与最小值之差
用于代表标准差的希腊字母
SPC过程能力分析报告

SPC过程能力分析报告SPC(统计过程控制)是一种以统计方法来控制过程稳定性和质量的管理工具。
通过在过程中收集数据并进行统计分析,SPC可以帮助企业识别和纠正过程中的变异,以确保产品或服务的一致性和稳定性。
本篇报告将对公司进行SPC过程能力分析,以评估和改进其过程控制能力。
一、背景介绍本次分析的对象是一家电子产品制造公司,其主要产品为手机电池。
公司希望通过SPC过程能力分析来评估和改进其电池生产过程的稳定性和质量,以提高产品一致性并降低缺陷率。
二、数据收集和分析为了进行SPC过程能力分析,我们收集了公司过去六个月的电池生产数据。
主要数据包括每月产量、每月缺陷数量以及每月质量控制检查结果等。
通过对数据进行统计分析,我们得出了以下结论:1.控制图分析我们使用控制图来分析过程的稳定性。
通过绘制产量、缺陷数量和质量控制检查结果的控制图,我们发现产量的控制图显示过程处于可接受的稳定性范围内,而缺陷数量和质量控制检查结果的控制图则显示过程存在明显的非随机变异。
2.批次分析我们对每个批次的电池进行了分析,发现一些批次的电池存在较高的缺陷率。
通过深入分析这些批次的生产数据和质量控制记录,我们发现生产过程中存在一些固定的问题,如材料供应商质量不稳定和操作员技能不足等。
三、问题原因分析基于数据收集和分析结果,我们对电池生产过程中存在的问题进行了原因分析。
主要问题包括以下几个方面:1.材料质量不稳定一些批次的电池缺陷率较高,部分原因是材料供应商质量不稳定。
为了解决这个问题,公司应该与供应商合作,建立更加稳定的供应链,并定期审核供应商的质量体系。
2.过程操作不规范操作员技能和培训不足是导致缺陷率高的原因之一、公司应该加强对操作员的培训,确保其熟悉操作流程和使用设备的规范。
此外,公司还应该建立标准操作程序,并通过培训和审查来确保操作员按照这些程序进行操作。
3.设备维护不及时设备故障和维护不及时也会导致生产过程的不稳定性和缺陷率的升高。
SPC统计过程控制应用实例分析

SPC统计过程控制应用实例分析1.SPC控制特性的定义T1S6949质量管理体系在实际应用中强调以系统的方法对过程进行分析研究,以确定系统的输入因子,输出因子以及输入对输出的影响作用。
产品实现的过程也可以用框图简单地描述为下图:上图表示,产品实现的过程为由材料、生产参数、设备、人员、环境构成的输入因素通过生产转换成输出产品的过程,同时利用输出的信息来反作用于输入因素,以得到输入因素如材料、生产参数等的持续改进。
输入因素通过生产过程转化成输出的产品,其中的实现过程也就是SPC需要进行监控的工艺过程,当然针对SPC控制特性的选择并不是越多越好,由于检验本身是不带来增值效益的过程,因此在行业的应用过程中,考虑到成本的计算,SPC只会应用在部分关键特性的监控过程中,而关键特性的选择也根据企业自身的生产能力及控制能力的需要来决定的。
因此在进行统计过程控制时,首先需要定义控制的对象,然后通过监控生产实现过程中的各大因素对控制对象的作用,检测到过程的特殊原因波动,从而实现提前预防不合格品产品的作用。
针对关键特性之外的其他参数,可以通过记录检查表的形式将其记录并保存,以便工艺改进时提供历史依据的参考。
PSC的控制项目对产品特性及工序监控的必要性,通常通过以下几个方面进行考量;(1) 从产品特性要求判断,是否为产品关键特性;如Tirm Form工序,SPC记录共面性的抽样检验结果,以判断产品当前的生产流程是否处于稳定受控的状态下。
产品的关键特性在产品设计阶段己确定。
(2) 另一方面,在产品生产制造的过程中,关键工序参数的监控对产品质量良率起着重大的决定作用,利用实时的SPC方法进行工艺参数的监控,能够及时发现生产过程中存在的特殊原因,及时围堵并消除,以得到立即的改正及预防的作用。
例如,在硅片切割工序(Wafer saw),工艺上利用对切割槽宽度的定期数据采集,绘制SPC控制图,从而起到过程监控的作用,以防止参数对切割工序带来的过程能力偏移。
SPC统计过程控制案例分析报告

统计过程控制(SPC)案例分析一.用途1. 分析判断生产过程的稳定性,生产过程处于统计控制状态。
2.与时发现生产过程中的异常现象和缓慢变异,预防不合格品产生。
3.查明生产设备和工艺装备的实际精度,以便作出正确的技术决定。
4.为评定产品质量提供依据。
二.控制图的基本格式 1.标题部分X-R控制图数据表2质量 特 性在方格纸上作出控制图:样本号- 3 - / 24横坐标为样本序号,纵坐标为产品质量特性。
图上有三条平行线: 实线CL :中心线 虚线UCL :上控制界限线 LCL :下控制界限线。
三. 控制图的设计原理1. 正态性假设:绝大多数质量特性值服从或近似服从正态分布。
2. 3σ准则:99。
73%。
3. 小概率事件原理:小概率事件一般是不会发生的。
4. 反证法思想。
四. 控制图的种类1. 按产品质量的特性分(1)计量值(S X R X R X R X S ----,,~,)(2)计数值(p ,pn ,u ,c 图)。
2. 按控制图的用途分:(1)分析用控制图;(2)控制用控制图。
五. 控制图的判断规则1. 分析用控制图:规则1 判稳准则-----绝大多数点子在控制界限线(3种情况); 规则2 判异准则-----排列无下述现象(8种情况)。
2. 控制用控制图:规则1 每一个点子均落在控制界限。
规则2 控制界限点子的排列无异常现象。
[案例1] p控制图某半导体器件厂2月份某种产品的数据如下表(2)(3)栏所表示,根据以往记录知,稳态下的平均不合格品率0389p,作控制图对其进行.0控制.数据与p图计算表- 5 - / 24[解]步骤一 :预备数据的取得,如上边表所示.步骤二: 计算样本不合格品率024.085/2/,/111====n D p n D p i i i 步骤三: 计算p 图的控制线ii i i n n p p p LCL CL n n p p p UCL n D p /)0389.01(0389.030389.0/)1(30389.0/)0389.01(0389.030389.0/)1(30389.02315/90/--=--==-+=-+=====∑∑ 由于本例中各个样本大小i n 不相等,所以必须对各个样本分别求出其控制界线.例如对第一个样本n1=85,有UCL=0.102 CL=0.0389 LCL=-0.024此处LCL 为负值,取为零.作出它的SPC 图形.[案例2]为控制某无线电元件的不合格率而设计p 图,生产过程质量解:一.收集收据在5M1E 充分固定并标准化的情况下,从生产过程中收集数据,见下表所表示:某无线电元件不合格品率数据表二.计算样本中不合格品率:k i n k p iii ,.....,2,1,==,列在上表.- 7 - / 24%14017775/248===∑∑iink p四.计算控制线 p 图:ii n p p p UCL n p p p UCL p CL /)1(3/)1(3%140--=-+===从上式可以看出,当诸样本大小i n 不相等时,UCL,LCL 随i n 的变化而变化,其图形为阶梯式的折线而非直线.为了方便,若有关系式:2/2min max n n n n ≥≤同时满足,也即i n 相差不大时,可以令n n i =,,使得上下限仍为常数,其图形仍为直线.本例中,711=n , 诸样本大小i n 满足上面条件,故有控制线为:p 图:%08.0/)1(3/)1(3%72.2/)1(3/)1(3%140=--=--==-+=-+===n p p p n p p p UCL n p p p n p p p UCL p CL i i五.制作控制图:以样本序号为横坐标,样本不合格品率为纵坐标,做p 图.六.描点:依据每个样本中的不合格品率在图上描点. 七.分析生产过程是否处于统计控制状态从图上可以看到,第14个点超过控制界限上界,出现异常现象,这说明生产过程处于失控状态.尽管p =1.40%<2%,但由于生产过程失控,即不合格品率波动大,所以不能将此分析用控制图转化为控制用控制图,应查明第14点失控的原因,并制定纠正措施.[案例3]某手表厂为了提高手表的质量,应用排列图分析造成手表不合格的各种原因,发现---停摆占第一位.为了解决停摆问题,再次应用排列图分析造成停摆的原因,结果发现主要是由于螺栓脱落造成的,而后者是有螺栓松动造成.为此,厂方决定应用控制图对装配作业中的螺栓扭矩进行过程控制.[分析]螺栓扭矩是计量特征值,故可选用正态分布控制图,又由于本例是大量生产,不难取得数据,故决定选用灵敏度高的R x -图. [解]按照下列步骤建立R x -图步骤一.根据合理分组原则,取25组预备数据,见下表. 步骤二.计算各样本组的平均值i X ,例如第一组样本的平均值为1X =(154+174+164+166+162)/5=164.0步骤三.计算各样本的极差20154174}m in{}m ax {,1=-=-=i i i X X R R 步骤四.计算样本总均值R X 和平均样本极差- 9 - / 24280.14272.163,3578.4081====∑∑R X RX ii所以步骤五.计算R 图与X 的参数 (1)先计算R 图的参数样本容量n=5时,D4=2.114,D3=0代入R 图公式0280.14188.30280.14*114.234=======R D LCL R CL R D UCL R R R均值控制图 极差控制图X 图计算表. 例2的原始数据与R- 11 - / 24(2)可见现在R 图判稳,故接着再建立均值图。
统计过程控制SPC案例分析

【案例1】 R X -控制图示例某手表厂为了提高手表的质量,应用排列图分析造成手表不合格品的各种原因,发现“停摆”占第一位。
为了解决停摆问题,再次应用排列图分析造成停摆事实的原因,结果发现主要是由于螺栓松动引发的螺栓脱落成的。
为此厂方决定应用控制图对装配作业中的螺栓扭矩进行过程控制。
分解:螺栓扭矩是一计量特性值,故可选用基于正态分布的计量控制图。
又由于本例是大量生产,不难取得数据,故决定选用灵敏度高的R X -图。
解:我们按照下列步骤建立R X -图步骤1:取预备数据,然后将数据合理分成25个子组,参见表1。
步骤2:计算各组样本的平均数i X 。
例如,第一组样本的平均值为:0.16451621661641741541=++++=X其余参见表1中第(7)栏。
步骤3:计算各组样本的极差i R 。
例如,第一组样本的极差为:{}{}20154174min max 111=-=-=j j X X R其余参见表1中第(8)栏。
表1: 【案例1】的数据与R X -图计算表i故:272.163=X ,280.14=R 。
步骤5:计算R 图的参数。
先计算R 图的参数。
从D 3、D 4系数表可知,当子组大小n =5,D 4=2.114,D 3=0,代入R 图的公式,得到: 188.30280.14114.24=⨯==R D UCL R280.14==R CL R ==R D LCL R 3—极差控制图:均值控制图:图1 【案例1】 的第一次R X -图参见图1。
可见现在R 图判稳。
故接着再建立X 图。
由于n =5,从系数A 2表知A 2=0.577,再将272.163=X ,280.14=R 代入X 图的公式,得到X 图:512.171280.14577.0272.1632≈⨯+=+=R A X UCL X 272.163==X CL X032.155280.14577.0272.1632≈⨯-=-=R A X LCL X因为第13组X 值为155.00小于X LCL ,故过程的均值失控。
SPC案例分析

SPC案例分析在当今竞争激烈的制造业环境中,质量控制成为了企业生存和发展的关键。
统计过程控制(Statistical Process Control,简称 SPC)作为一种有效的质量控制工具,已经在众多企业中得到了广泛的应用。
本文将通过一个具体的案例,深入探讨 SPC 在实际生产中的应用和效果。
一、案例背景我们选取的案例是一家汽车零部件制造企业,该企业主要生产发动机缸体。
在过去的一段时间里,客户对产品的质量投诉不断增加,主要问题集中在缸体的尺寸精度不符合要求,导致发动机装配过程中出现故障。
为了解决这一问题,企业决定引入 SPC 方法进行质量控制。
二、SPC 方法的实施过程1、确定关键质量特性首先,企业的质量控制团队与生产部门合作,通过对产品设计要求和客户反馈的分析,确定了发动机缸体的关键质量特性,即缸体的内径尺寸和圆柱度。
2、数据采集在生产过程中,质量控制人员每隔一定时间从生产线上抽取一定数量的缸体样本,使用高精度测量仪器对关键质量特性进行测量,并记录测量数据。
3、控制图的绘制将采集到的数据输入到统计软件中,绘制均值极差控制图(XR 控制图)和均值标准差控制图(XS 控制图)。
控制图的横坐标表示样本序号,纵坐标表示测量值。
4、控制限的确定根据样本数据的分布特征和统计规律,计算出控制图的控制限。
控制限分为上控制限(UCL)、下控制限(LCL)和中心线(CL)。
中心线通常为样本数据的均值,上控制限和下控制限则根据一定的计算公式得出。
5、过程监控与分析定期对控制图进行观察和分析,判断生产过程是否处于受控状态。
如果数据点落在控制限内,且没有明显的趋势或异常模式,则认为过程处于受控状态;反之,如果数据点超出控制限,或者出现连续上升或下降的趋势,或者存在周期性的波动等异常模式,则认为过程失控,需要采取相应的措施进行改进。
三、案例结果与分析在实施 SPC 方法后的一段时间里,企业对生产过程进行了持续的监控和分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计过程控制(SPC)案例分析一.用途1. 分析判断生产过程的稳定性,生产过程处于统计控制状态。
2.及时发现生产过程中的异常现象和缓慢变异,预防不合格品产生。
3.查明生产设备和工艺装备的实际精度,以便作出正确的技术决定。
4.为评定产品质量提供依据。
二.控制图的基本格式1.标题部分X-R控制图数据表2 质量 特 性在方格纸上作出控制图:样本号横坐标为样本序号,纵坐标为产品质量特性。
图上有三条平行线:实线CL :中心线 虚线UCL :上控制界限线 LCL :下控制界限线。
三. 控制图的设计原理1. 正态性假设:绝大多数质量特性值服从或近似服从正态分布。
2. 3σ准则:99。
73%。
3. 小概率事件原理:小概率事件一般是不会发生的。
4. 反证法思想。
四. 控制图的种类1. 按产品质量的特性分(1)计量值(S X R X R X R X S ----,,~,)(2)计数值(p,pn,u,c图)。
2.按控制图的用途分:(1)分析用控制图;(2)控制用控制图。
五.控制图的判断规则1.分析用控制图:规则1 判稳准则-----绝大多数点子在控制界限线内(3种情况);规则2 判异准则-----排列无下述现象(8种情况)。
2.控制用控制图:规则1 每一个点子均落在控制界限内。
规则2 控制界限内点子的排列无异常现象。
[案例1] p控制图某半导体器件厂2月份某种产品的数据如下表(2)(3)栏所表示,根据以往记录知,稳态下的平均不合格品率0389p,作控.0制图对其进行控制.数据与p图计算表[解]步骤一 :预备数据的取得,如上边表所示.步骤二: 计算样本不合格品率024.085/2/,/111====n D p n D p i i i 步骤三: 计算p 图的控制线ii i i n n p p p LCL CL n n p p p UCL n D p /)0389.01(0389.030389.0/)1(30389.0/)0389.01(0389.030389.0/)1(30389.02315/90/--=--==-+=-+=====∑∑由于本例中各个样本大小i n 不相等,所以必须对各个样本分别求出其控制界线.例如对第一个样本n1=85,有UCL=0.102CL=0.0389LCL=-0.024此处LCL 为负值,取为零.作出它的SPC 图形.CLLCL[案例2]为控制某无线电元件的不合格率而设计p图,生产过程质量要求为平均不合格率≤2%。
解:一.收集收据在5M1E充分固定并标准化的情况下,从生产过程中收集数据,见下表所表示:某无线电元件不合格品率数据表二.计算样本中不合格品率:k i n k p ii i ,.....,2,1,==,列在上表.三.求过程平均不合格品率:%14017775/248===∑∑iink p四.计算控制线 p 图:iin p p p UCL n p p p UCL p CL /)1(3/)1(3%140--=-+===从上式可以看出,当诸样本大小i n 不相等时,UCL,LCL 随i n 的变化而变化,其图形为阶梯式的折线而非直线.为了方便,若有关系式:2/2min max n n n n ≥≤同时满足,也即i n 相差不大时,可以令n n i =,,使得上下限仍为常数,其图形仍为直线.本例中,711=n , 诸样本大小i n 满足上面条件,故有控制线为:p 图:%08.0/)1(3/)1(3%72.2/)1(3/)1(3%140=--=--==-+=-+===n p p p n p p p UCL n p p p n p p p UCL p CL i i五.制作控制图:以样本序号为横坐标,样本不合格品率为纵坐标,做p 图.CLLCL七.分析生产过程是否处于统计控制状态从图上可以看到,第14个点超过控制界限上界,出现异常现象,这说明生产过程处于失控状态.尽管p=1.40%<2%,但由于生产过程失控,即不合格品率波动大,所以不能将此分析用控制图转化为控制用控制图,应查明第14点失控的原因,并制定纠正措施.[案例3]某手表厂为了提高手表的质量,应用排列图分析造成手表不合格的各种原因,发现---停摆占第一位.为了解决停摆问题,再次应用排列图分析造成停摆的原因,结果发现主要是由于螺栓脱落造成的,而后者是有螺栓松动造成.为此,厂方决定应用控制图对装配作业中的螺栓扭矩进行过程控制. [分析]螺栓扭矩是计量特征值,故可选用正态分布控制图,又由于本例是大量生产,不难取得数据,故决定选用灵敏度高的x-图.R[解]按照下列步骤建立Rx-图步骤一.根据合理分组原则,取25组预备数据,见下表. 步骤二.计算各样本组的平均值i X ,例如第一组样本的平均值为1X =(154+174+164+166+162)/5=164.0步骤三.计算各样本的极差20154174}m in{}m ax {,1=-=-=i i i X X R R 步骤四.计算样本总均值R X 和平均样本极差280.14272.163,3578.4081====∑∑R X RX ii所以步骤五.计算R 图与X 的参数 (1) 先计算R 图的参数样本容量n=5时,D4=2.114,D3=0代入R 图公式0280.14188.30280.14*114.234=======R D LCL R CL R D UCL R R R均值控制图极差控制图例2的原始数据与R X 图计算表.(2)可见现在R 图判稳,故接着再建立均值图。
032.155280.14*577.0272.163272.163512.171280.14*577.0272.163,280.14,272.163577.0222=-=-====+=+====R A X LCL X CL R A X UCL X R X A X X X 得到图的公式代入将 第13组数据是例外值,需要用判定准则(判稳/判异)判断。
125.14868.29125.14*114.2,617.16324/)0.1558.4081(24/125.1424/)18357(24/.,13,14,,,.,032.155,00.15534========-===-===∑∑R D LCL R CL R D UCL R X R X X R R X R LCL X R R R I X 图得到图的公式图与代入此时的参数图与并重新计算组数据故本例可以去掉第决组数据时该问题已经解采集到第很快进行了调整夹具松动调查其原因发现故过程的均值失控小于值为另外,由表可见,R 图中的第17组R=30出界,于是再次执行20字方针:“查出异因,采取措施,保证消除,纳入标准,不再出现”,消除异因纳入标准之后,应再收集35组数据,重新计算,但为了简化本例题,而采用舍去第17组数据的方法(注:舍弃数据的办法不是不能用,而必须是调整没有改变原有的4M1E 的关系,例如刚才对第13组数据的舍弃,异因对后面的数据没有影响),重新计算如下:670.16323/)4.1628.3926(23/435.1323/)30339(23/=-===-==∑∑i I X X R RR 图:435.13401.28435.13*114.234=======R D LCL R CL R D UCL R R R由表知道,R 图可以判稳,计算均值控制图如:918.155435.13*577.0670.163670.163421.171435.13*577.0670.163:22=-=-====+=+=R A X LCL X CL R A X UCL X X X X 图将23组样本的极差值与均值分别打点与R 图和x 图上(下图表示),根据判稳准则,知此过程的波动情况与均值都处于稳态.[注意]严格地讲,23组数据根本不能运用判稳准则,一般建议收集35—40组数据,运用第二条判稳准则来判断过程是否处于稳态.步骤六.与规格进行比较.已知给定质量规格为TL=100,YU=200.现把全部预备数据作直方图并与规格进行比较.如下图所表示.由此可见,数据分布与规格比较均有余量,但其平均值并未对准规格中心,因此还可以加以调整以便提高过程适应能力指数,减少不合格品率.调整后要重新计算RX 图. SU=200145 150 155 160 165 170 175 180 185 SL=100 m=150 u=163.69步骤七. 延长上述RX 图的控制线,进入控制用控制图阶段,对过程进行日常控制.[例4]某厂生产一种零件,其长度要求为49.50±0.10mm,生产过程质量要求为Cp≥1,为对该过程实行连续监控,试设计RX 图。
某零件长度值数据表(单位:mm)解:一。
收集数据并加以分组在5M1E 充分固定并标准化的情况下,从生产过程中收集数据。
每隔2h ,从生产过程中抽取5个零件,测量其长度,组成一个大小为5的样本,一共收集25个样本(数据见上表)。
一般来说,制作R X -图,每组样本大小n ≤10,组数k ≥25。
二. 计算每组的样本均值及极差(列于上表)。
三. 计算总平均和极差平均0800.05068.49==R X四. 计算控制线X图:4606.495530.495068.4922=-==+===R A X CL R A X UCL X CL R 图:01692.00800.034<=====R D LCL R D UCL R CL 其中系数A2,D3,D4均从控制图系数表中查得。
五. 制作控制图在方格纸上分别做X 图和R 图,两张图画在同一张纸上,以便对照分析。
X 图在上,R 图在下,纵轴在同一直线上,横轴相互平行并且刻度对齐。
本题中R 图的下控制界限线LCL <0,但R 要求R ≥0,故LCL 可以省略。
均值控制图极差控制图六.描点:根据各个样本的均值X 和极差Ri 在控制图上描点(如上).七.分析生产过程是否处于统计控制状态.利用分析用控制图的判断原则,经分析生产过程处于统计控制状态。
八.计算过程能力指数 1.求Cp 值 ()97.0326.2/08.0620.0/662=⨯=≈=n d R T T C p σ 2.求修正系数068.02/20.050.495068.492/2/=-=-≈-=T T x T T k m mμ。
3.求修正后的过程能力指数.90.0)1(=-=p pkC k C偿若过程质量要求为过程能力指数不小于1,则显然不满足要求,于是不能将分析用控制图转化为控制用控制图,应采取措施提高加工精度。
九.过程平均不合格品率p=2-0.9966-0.9())11.3(--+=Φ=kCpkC--Φ2]Φ71)1.2(2Φ-3[1()]3[Pp991=0.43%.-[例5]某化工厂生产某种化工产品,为了控制产品中主要成分含量而设置质量控制点。