数列教案(公开课)

合集下载

数列教案(公开课)

数列教案(公开课)

数列教案(公开课)一、教学内容本节课的教学内容选自人教版高中数学必修5第三章“数列”中的3.1“数列的概念”和3.2“数列的递推公式”。

具体内容包括:1. 数列的定义:数列是一种按照一定顺序排列的数的形式,每一个数称为项,数列中的任意一项都可以用它的项数来表示。

2. 数列的通项公式:数列的通项公式是用来表示数列中第n项与序号n之间关系的公式。

3. 数列的递推公式:数列的递推公式是用来表示数列中第n项与前一项之间关系的公式。

二、教学目标1. 理解数列的概念,掌握数列的表示方法。

2. 学会求解数列的通项公式和递推公式。

3. 能够运用数列的知识解决实际问题。

三、教学难点与重点1. 教学难点:数列的通项公式的求解和数列的递推公式的应用。

2. 教学重点:数列的概念、数列的表示方法、数列的通项公式和递推公式的求解。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体教学设备。

2. 学具:教材、练习册、笔记本、文具。

五、教学过程1. 实践情景引入:通过生活中的排队问题,引导学生思考数列的概念。

2. 数列的定义:讲解数列的定义,引导学生理解数列的特点。

3. 数列的表示方法:讲解数列的表示方法,如项数、项的表示等。

4. 数列的通项公式:讲解数列的通项公式,引导学生掌握求解通项公式的方法。

5. 数列的递推公式:讲解数列的递推公式,引导学生学会求解递推公式。

6. 例题讲解:讲解数列的通项公式和递推公式的应用,引导学生学会解决问题。

7. 随堂练习:布置练习题,让学生巩固所学知识。

8. 作业布置:布置求解数列通项公式和递推公式的练习题。

六、板书设计1. 数列的概念定义:按照一定顺序排列的数的形式表示方法:项数、项的表示2. 数列的通项公式求解方法:观察、归纳、推理3. 数列的递推公式求解方法:观察、归纳、推理七、作业设计1. 求解数列的通项公式:已知数列的前三项为2, 5, 8,求数列的通项公式。

答案:an=3n12. 求解数列的递推公式:已知数列的前两项为1, 2,且数列满足递推关系an+1=2an1,求数列的递推公式。

《数列的概念》示范公开课教案【高中数学北师大】

《数列的概念》示范公开课教案【高中数学北师大】

第一章 数列1.1 数列的概念1.理解数列的概念,了解数列通项公式的意义与分类;2.能由通项公式求出数列的各项,反之能根据数列的前几项发现规律,写出数列的通项公式;3.通过学习,培养学生观察抽象的能力,认识数列是刻画自然规律的数学模型.教学重点:理解数列的概念,认识数列是刻画自然规律的数学模型. 教学难点:根据数列的前几项发现规律,写出数列的通项公式.一、情境导入在现实生活和数学学习中,我们经常需要根据问题的意义,通过对一些数据按特定顺序排列的方法来刻画研究对象.例如:1、从2000年到2022年我国共参加了6次奥运会,各次参赛获得的金牌总数依次为:28,32,52,38,26,38.2、拉面师傅在拉面过程中,随着拉的次数增多,面条根数依次增多:1,2,4,8,16,... 3.人们在1740年发现了一颗彗星,并且每隔83年出现一次.从发现那次算起,这颗彗星近五次出现的年份依次为:1740,1823,1906,1989,2072.4.庄子曰:“一尺之棰,日取其半,万世不竭”.意思为:一尺长的木棒,每日取其一半,永远也取不完.如果将“一尺之棰”视为一份,那么每日剩下的部分依次为:问题1:这几列数的共同特点是什么? 答:①规律都用一列数表示 ②都有一定顺序设计意图:从生活实例引入课题,让学生认识数学是刻画自然规律的数学模型.二、新知探究定义概念1.数列:一般地,按一定次序排列的一列数叫做数列,数列中的每一个数叫作这个数列的项.数数列的一般形式: 123,,,,,n a a a a ⋯⋯ , 简记为数列 {}n a .其中数列第一项 1a ,也叫首项,n a 是数列的第n 项,也叫数列的通项.11111,,,,,2481632⋯◆教学目标◆教学重难点◆教学过程想一想:将数列:1,2,3,4,5,6改成:6,5,4,3,2,1.两个数列一样吗? 答:不一样.2.数列的分类:✮以项数来分类:(1) 有穷数列:项数有限的数列; (2) 无穷数列:项数无限的数列. ✮ 以各项的大小关系来分类:(1) 递增数列:从第2项起,每一项都大于它的前一项的数列.即对任意n ∈N ∗,总有a n+1>a n (或a n+1−a n >0).(2) 递减数列:从第2项起,每一项都小于它的前一项的数列.即对任意n ∈N ∗,总有a n+1<a n (或a n+1−a n <0). (3) 常数列:各项都相等的数列;(4) 摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列.问题2: 数列与数集有什么异同?答:(1)数列{}n a 中是一列数,而集合中的元素不一定是数; (2)数列{}n a 中的数是有一定次序的,而集合中的元素没有次序; (3)数列{}n a 中的数可以重复,而集合中的元素不能重复. 问题3:数列{}n a 的项与序号n 有怎样的关系?答:数列的每一项都对应一个序号,反之,数列的每一个序号都对应着一个项. 如数列:2,4,8,16,32,64,⋯这个数列的每一项的序号n 与这一项的对应关系可用如下公式表示: 这样,只要依次用序号1,2,3,4,⋯代替求出数列相应的项.总结:1.对任意数列 {}n a ,其每一项的序号与项都有对应关系:2.如果数列 {}n a 的第 n 项n a 与序号 n 之间的关系可以用一个式子表示成:(),.n a f n n N +=∈这个式子叫做数列的通项公式.a n =2n问题4: 任意一个数列都能写出通项公式吗?它是唯一的吗? 答:不是每一个数列都能写出它的通项公式;如:1248319,,,, ② 一些数列的通项公式不是唯一.如:数列 1-11-1,,,,1(1)n n a +=-1(1)n n a -=-或11,n n a n ⎧=⎨-⎩,为奇数或为偶数设计意图:从具体的一个数列出发,分析数列项与序号间的关系,培养学生从特殊到一般的思想与分析问题习惯.三、应用举例例1 根据下列数列的通项公式,写出数列的前5项.(1)1;1n a n =+(2)sin .2n n a π=解:(1)依次取 1,2,3,4,5,n = 得到数列 {}n a 前5项为11111,,,,;23456(2)依次取 1,2,3,4,5,n = 得到数列 {}n a 前5项为1,0,1,0,1.-例2 如果数列 {}n a 的通项公式为2328n a n n =-,那么 -49和 68 是不是这个数列的项? 如果是,是第几项?解:令 232849n n -=-, 解得:77().3n n ==或舍去 .∴-49是这个数列的第7项令 232868n n -=, 解得:342.3n n =-=或均不符合题意, .∴68不是这个数列的项总结:数列的通项公式给出了第n 项a n 与它的项数n 之间的关系.已知数列的通项公式,只要用项数代替通项公式中的n ,即可求出相应的项.反过来,判断某一个数是不是数列中的项,就用数列的通项公式建立以n 为变量的方程,若方程有正整数解,则该数为数列中的项,n 的值即为该数在数列中的项数;若方程没有正整数解,则该数不是数列中的项.例3 写出下列数列的一个通项公式. (1)1,4,9,16,25,(2)1,3,5,7,9,--(3)9,99,999,9999,解:(1)2n a n =;(2) ()+1(1)21n n a n =--;(3)101nn a =- ;总结:用观察归纳法写出一个数列的通项公式,体现了由特殊到一般的思维规律,可以: (1)先统一项的结构,如都化成分数、根式等;(2)分析这一结构中变化的部分与不变的部分,探索变化部分的规律与对应序号间的关系式;(3)对于符号交替出现的情况,可先观察其绝对值,再以(−1)^k 处理符号;设计意图:通过例1、例2、例3,加深对数列通项公式的理解,同时培养学生观察与归纳能力.四、课堂练习1.下列说法:①数列{}31n -的第 5 项是10 ;②数列22222,1,,,,,,345n可以记为 2n ⎧⎫⎨⎬⎩⎭;③数列 3,6,9 与数列 6,9,3 是相同的数列;④数列 1,1,2,3,5,8,13,21,是无穷数列. 其中,正确的有 .2.写出下列数列的一个通项公式:(1)1,3,7,15,(2)7,77,777,7777,(3) 1,3,1,3,1,3,参与答案: 1.② ④2.(1) 21nn a =- ;(2) 7(101)9nn a =-(3) {1,3,n n n a =为奇数,为偶数. 或 2(1)n n a =+- .3.古希腊著名科学家毕达哥拉斯把1,3,6,10,15,21,….这些数量的(石子),排成一个个如图一样的等边三角形,从第二行起每一行都比前一行多1个石子,像这样的数称为三角形数.那么把三角形数从小到大排列,第10个三角形数是_________.解:根据题意,三角形数的每一项都是数列{}n 的前n 项的和,即10123,55n a n a =++++=故答案为:55设计意图:巩固数列的概念和数列的通项公式,强调数列的有序性,加深学生对数列的概念的认识.五、课堂小结一、知识:1.数列的有关概念:定义、分类、表示;2.数列的通项公式; 二、数学素养:培养观察、分析、归纳思维能力设计意图:总结与归纳本节课所学知识,培养学生的归纳概括能力.六、布置作业教材第7页练习1、2、3、4.。

数列的极限优秀公开课PPT课件一等奖新名师优质课获奖比赛公开课

数列的极限优秀公开课PPT课件一等奖新名师优质课获奖比赛公开课

三、数列旳极限
观察数列 {1 (1)n1 } 当 n 时的变化趋势. n
三、数列旳极限
观察数列 {1 (1)n1 } 当 n 时的变化趋势. n
三、数列旳极限
观察数列 {1 (1)n1 } 当 n 时的变化趋势. n
问题: 当 n 无限增大时, xn是否无限接近于某一
拟定旳数值?假如是,怎样拟定?
2, 1 , 4 ,, n (1)n1 ,; {n (1)n1 }
23
n
n
3, 3 3,, 3 3 3 ,
注意: 1.从几何上看,数列能够看作一种动点 在数轴上旳运动.
x3 x1 x2 x4 xn
2.从函数旳角度看,数列是整标函数
xn f (n). n N
三、数列旳极限
观察数列 {1 (1)n1 } 当 n 时的变化趋势. n
——刘徽
一、概念旳引入
1、割圆术:
“割之弥细,所 失弥少,割之又 割,以至于不可 割,则与圆周合 体而无所失矣”
——刘徽
正六边形旳面积 A1
正十二边形旳面积 A2
R
正6 2n1形旳面积 An
A1, A2 , A3 ,, An ,
S
2、截丈问题:
“一尺之棰,日截其半,万世不竭”
第一天截下的杖长为
三、数列旳极限
观察数列 {1 (1)n1 } 当 n 时的变化趋势. n
三、数列旳极限
观察数列 {1 (1)n1 } 当 n 时的变化趋势. n
三、数列旳极限
观察数列 {1 (1)n1 } 当 n 时的变化趋势. n
三、数列旳极限
观察数列 {1 (1)n1 } 当 n 时的变化趋势. n
合适放大为 | xn a | (n) 再令 (n) , 并从中能以便旳解出 n ( ),

关于公开课等比数列教案

关于公开课等比数列教案

关于公开课等比数列教案第一章:等比数列的概念1.1 引入等比数列的概念通过实际例子,让学生理解等比数列的定义和特点。

解释等比数列的通项公式和公比的概念。

1.2 等比数列的性质探讨等比数列的性质,如相邻两项的比值是常数,每一项都是前一项与公比的乘积等。

引导学生通过数学归纳法证明等比数列的性质。

第二章:等比数列的求和公式2.1 引入等比数列的求和公式通过实际例子,让学生理解等比数列的求和公式的推导过程。

解释等比数列求和公式的形式和各个参数的含义。

2.2 等比数列求和公式的应用探讨等比数列求和公式的应用,如求等比数列的前n项和、求等比数列中某一项的值等。

引导学生通过实际例子运用等比数列求和公式解决问题。

第三章:等比数列的通项公式的应用3.1 引入等比数列的通项公式的应用通过实际例子,让学生理解等比数列通项公式的应用,如求等比数列的第n项的值。

解释等比数列通项公式的形式和各个参数的含义。

3.2 等比数列通项公式的进一步应用探讨等比数列通项公式的进一步应用,如判断等比数列的收敛性和发散性。

引导学生通过实际例子运用等比数列通项公式解决问题。

第四章:等比数列的性质和求和公式的综合应用4.1 引入等比数列性质和求和公式的综合应用通过实际例子,让学生理解等比数列的性质和求和公式的综合应用,如求等比数列的前n项和,并判断等比数列的收敛性和发散性。

解释等比数列的性质和求和公式的关系。

4.2 等比数列性质和求和公式的综合应用案例分析探讨等比数列性质和求和公式的综合应用案例,如解决实际问题中的等比数列问题。

引导学生通过实际例子运用等比数列的性质和求和公式解决问题。

第五章:等比数列的应用案例分析5.1 引入等比数列的应用案例分析通过实际例子,让学生理解等比数列的应用案例,如解决金融、经济、物理等领域中的问题。

解释等比数列在实际问题中的应用场景。

5.2 等比数列应用案例分析探讨等比数列在实际问题中的应用案例,如计算复利、求等比数列的极限等。

数学数列公开课教案高中

数学数列公开课教案高中

数学数列公开课教案高中数学数列公开课教案一、引入数学数列作为高中数学的重要内容之一,是学生理解数学规律、培养逻辑思维的基础。

本节课旨在通过开展数学数列公开课,激发学生对数列的兴趣,引导学生深入理解数列的概念、性质和应用。

通过生动的案例和互动的教学方式,帮助学生掌握数列的基本概念,提高数学解题能力和思维逻辑能力。

二、基础概念的讲解1. 数列的定义数列是由一组按照确定规律排列的数字构成的序列。

数列中的每一个元素称为数列的项,数列的第一个项称为首项,数列的每一项与它的前一项之差称为公差。

2. 等差数列如果一个数列中的任意两项之差都相等,则称该数列为等差数列。

等差数列可以用通项公式进行表示。

3. 等比数列如果一个数列中的任意两项之比都相等,则称该数列为等比数列。

等比数列可以用通项公式进行表示。

三、数列公式的推导1. 等差数列的通项公式的推导设等差数列首项为a1,公差为d,第n项为an。

根据等差数列的定义,有an = a1 + (n-1)d。

推导过程:an = a1 + (n-1)d= a1 + nd - d= a1 + (n-1)d + d= a1 + (n-1)d + (a2 - a1)根据等差数列的性质,有a2 - a1 = a3 - a2 = ... = an - a(n-1) = d。

所以an = a1 + (n-1)d可以进一步简化为an = a1 + (n-1)d。

2. 等比数列的通项公式的推导设等比数列首项为a1,公比为q,第n项为an。

根据等比数列的定义,有an = a1 * q^(n-1)。

推导过程:an = a1 * q^(n-1)四、数列问题的实际应用1. 等差数列的应用等差数列在实际生活中的应用非常广泛,如商场的促销活动、贷款的等额还款等。

通过讲解实际案例,引导学生将抽象的数学概念与实际问题相结合,培养学生解决实际问题的能力。

2. 等比数列的应用等比数列在实际生活中也有很多应用,如利润的递增、细菌的繁殖等。

[数学]数列_教案_课件

[数学]数列_教案_课件

数列_教案_课件PPT第一章:数列的概念与分类1.1 数列的定义引导学生了解数列的概念,理解数列是一种特殊的函数。

举例说明数列的基本形式,如等差数列、等比数列等。

1.2 数列的分类介绍等差数列、等比数列、斐波那契数列等常见数列的特点。

分析不同数列的性质,如单调性、周期性等。

第二章:数列的通项公式2.1 等差数列的通项公式引导学生推导等差数列的通项公式。

讲解等差数列的通项公式在实际问题中的应用。

2.2 等比数列的通项公式引导学生推导等比数列的通项公式。

讲解等比数列的通项公式在实际问题中的应用。

第三章:数列的前n项和3.1 等差数列的前n项和引导学生推导等差数列的前n项和公式。

讲解等差数列的前n项和公式在实际问题中的应用。

3.2 等比数列的前n项和引导学生推导等比数列的前n项和公式。

讲解等比数列的前n项和公式在实际问题中的应用。

第四章:数列的极限4.1 数列极限的概念引导学生了解数列极限的概念,理解数列极限的意义。

举例说明数列极限的性质,如数列极限的存在性、唯一性等。

4.2 数列极限的计算方法讲解数列极限的常用计算方法,如夹逼定理、单调有界定理等。

引导学生运用计算方法求解实际问题中的数列极限。

第五章:数列的应用5.1 数列在数学分析中的应用引导学生了解数列在数学分析中的重要性,如数列极限在微积分中的应用。

举例说明数列在数学分析中的实际应用,如级数求和、函数逼近等。

5.2 数列在其他领域的应用引导学生了解数列在其他领域的应用,如数列在物理学、经济学等中的应用。

举例说明数列在其他领域的实际应用,如数列模型在经济学中的预测等。

第六章:等差数列的性质与应用6.1 等差数列的性质引导学生了解等差数列的基本性质,如项的公式、中项定理等。

举例说明等差数列性质在解决问题时的应用。

6.2 等差数列的应用讲解等差数列在实际问题中的应用,如数列的求和、最大最小值问题等。

引导学生运用等差数列性质解决实际问题。

第七章:等比数列的性质与应用7.1 等比数列的性质引导学生了解等比数列的基本性质,如项的公式、中项定理等。

[数学]数列_教案_课件

[数学]数列_教案_课件

数学_数列_教案_课件PPT第一章:数列的概念与性质1.1 数列的定义引导学生了解数列的定义,理解数列是一种特殊的函数。

举例说明数列的常见形式,如等差数列、等比数列等。

1.2 数列的性质探讨数列的项、公差、公比等基本概念。

引导学生理解数列的递推关系,如通项公式、前n项和等。

第二章:等差数列2.1 等差数列的定义与性质引导学生了解等差数列的定义,理解等差数列的特点。

探讨等差数列的通项公式、前n项和公式等。

2.2 等差数列的求和引导学生掌握等差数列的求和公式,理解求和公式的推导过程。

举例说明等差数列求和的运用。

第三章:等比数列3.1 等比数列的定义与性质引导学生了解等比数列的定义,理解等比数列的特点。

探讨等比数列的通项公式、前n项和公式等。

3.2 等比数列的求和引导学生掌握等比数列的求和公式,理解求和公式的推导过程。

举例说明等比数列求和的运用。

4.1 数列极限的概念引导学生了解数列极限的定义,理解数列极限的意义。

探讨数列极限的性质,如保号性、夹逼性等。

4.2 数列极限的计算引导学生掌握数列极限的计算方法,如夹逼定理、单调有界定理等。

举例说明数列极限的计算运用。

第五章:数列的应用5.1 数列在数学分析中的应用引导学生了解数列在数学分析中的重要性,如函数的泰勒展开等。

探讨数列在数学分析中的应用实例。

5.2 数列在其他学科中的应用引导学生了解数列在其他学科中的应用,如物理学中的振动问题等。

探讨数列在其他学科中的应用实例。

数学_数列_教案_课件PPT第六章:数列的分类6.1 数列的分类介绍引导学生了解数列的分类,包括整数数列、有理数数列、实数数列等。

探讨不同类型数列的特点和应用。

6.2 数列的子序列引导学生了解数列的子序列的概念,理解子序列与原序列的关系。

探讨子序列的性质和应用,如子序列的极限与原序列的极限的关系。

7.1 多级数列的定义与性质引导学生了解多级数列的定义,理解多级数列的特点。

探讨多级数列的通项公式、前n项和公式等。

2022年 《公开课 数列求和 》优秀教案

2022年 《公开课 数列求和 》优秀教案

数列〔教案〕教学要求1.要求学生熟记等差、等比数列的通项公式和前n项和公式2.要求学生熟练掌握数列求和的各种常规方法。

教学重难点1.教学重点等差、等比数列的通项公式和前n项和公式2.教学难点求前n项的各种常规方法教学技能与方法熟练掌握求数列前n项和的各种方法:公式法,倒序求和法,分组求和法,裂项求和法,错位相减法等教学渗透数学核心素养数学运算能力核心素养,演绎推理核心素养。

教学课时安排: 1课时教具安排: PPT,白板,投影仪教学过程:求解数列问题的根本策略在于“归〞——化归与归纳,对于非等差或等比数列,可从特殊情景出发,归纳出一般性的方法、规律;将数列化归为等差(比)数列,然后借助数列的性质或根本量运算求解 .例题数列{an }满足a1=1,nan+1=2〔n+1〕an。

设bn=(1)求b1,b2,b3;(2)判断数列{bn}是否为等比数列,并说明理由;(3)求{an}的通项公式.分析:切入点:由数列的递推关系式寻找bn 与bn+1的关系.关键点:由条件得出bn+1=2bn,利用等比数列的定义求解.稳固练习1.设{an }是等差数列,其前n项和为Sn(n∈N*);{bn}是等比数列,公比大于0,其前n项和为Tn(n∈N*).b1=1,b3=b2+2,b4=a3+a5,b 5=a4+2a6.(1)求Sn和Tn;(2)假设Sn+(T1+T2+…+Tn)=an+4bn,求正整数n的值.分析:启发式引导学生利用裂项求和法解题。

3.设{an }是等差数列,{bn}是等比数列,公比大于0.a1=b1=3,b2=a3,b3=4a2+3.(1)求{an }和{bn}的通项公式;分析:探究数列分组求和,错位相减法的数学模型。

教学小结数列求和的各种常规方法和数学模型,公式法,倒序求和法,分组求和法,裂项求和法,错位相减法等。

课后作业1.(2021·全国卷17)设{an }是公比不为1的等比数列,a1为a2,a3的等差中项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)8,( ), 2, -1, -4,…
(3)-7, -11, -15, ( ), -23
共同特点:从第2项起,每一项与它的前一项的差等于同一个常数。这样的数列叫做等差数列。
【等差数列】
一、等差数列的定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。这个常数叫做等差数列的公差,公差通常用字母d表示。
四、课堂练习
1.求等差数列3,7,11,…的第4项与第10项。
2.已知等差数列 中, , ,求公差d.
3.已知等差数列 中, , ,求d, 。
教师活动:巡堂辅导,叫学生上黑板演练,纠正错一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示。
用符号表示:
教师活动:分析定义,强调关键的地方,帮助学生理解和掌握。
问题:1.数列(1)(2)(3)的公差分别是多少
2.(4)1, 3, 5, 7, 9, 2, 4, 6, 8, 10
(5)5, 5, 5, 5, 5, 5 ……是等差数列吗
师生一起讨论回答。
二、等差数列的通项公式
如果等差数列 的首项是 ,公差是d,则据其定义可得:
2.等比数列的定义、通项公式的理解、掌握和应用。
教学难点
等差数列、等比数列的公式的掌握和运用。
教学过程
教学环节和教学内容
【复习回顾】
数列的定义以及数列的通项公式。
【引入】
今年是猴年,那么上一个猴年是几几年上上个呢下一个呢下下个呢
你能根据规律在( )内填上合适的数吗
(1)1992,2004,2016,( ),( ),( )
即:
即:
即:
……
由此归纳等差数列的通项公式可得:
∴已知一数列为等差数列,则只要知其首项 和公差d,便可求得其通项
思考:已知等差数列的第m项 和公差d,这个等差数列的通项公式是答:
三、例题讲解
例1 (1)求等差数列8,5,2…的第20项.
(2)-401是等差数列-5,-9,-13…的第几项-800是不是其中的项解:
二、等差数列
三、等比数列
四 课堂练习
(1)设 是等差数列{ }前n项的和,若 =3, =7,则 = 解:
(2)设 是等比数列{ }前n项的和,若 =7, =91,则 = 解:
教师活动:巡堂辅导,叫学生上黑板演练,纠正错误与讲解
【课后作业】
书本P171页 练习十一 1.(1)(2)(3)
四、课堂练习
(1)已知a,b,c成等比数列,公比q=3,如果a,b+8,c三数成等差数列,求a,b,c。
(2)设a<b<c,且a,b,c三数成等差,如果a+b+c=3,且a²,b²,c²成等比数列,求a,b,c。
教师活动:巡堂辅导,叫学生上黑板演练,纠正错误
【数列前n项和】
一、定义
……
由此归纳整理可得:
《数列》教案
授课教师
朱宇振
授课班级
高二(9)班
课题
数列
课型
教学目标
1.复习数列的基本概念。
2.等差数列的定义、通项公式。
3.等比数列的定义、通项公式。
4.数列前n项和的定义、通项公式。
5.让学生能识别数列的等差或等比关系,并能用有关的知识解决相应的问题。
教学重点
1.等差数列的定义、通项公式的理解、掌握和应用。
用符号表示: :
二、等比数列的通项公式
如果等比数列 的首项是 ,公差是d,则据其定义可得:
即:
即:
即:
……
由此归纳等比数列的通项公式可得: 。
∴已知一数列为等比数列,则只要知其首项 和公比q,便可求得其通项公式:
思考:已知等比数列的第m项 和公差q,这个等差数列的通项公式是答:
三、例题讲解
例二 等比数列{ }首项为27/16,末项为1/3,公比q=-2/3,则项数n=( )解:
相关文档
最新文档