八年级数学上册《三角形内角和》教案
三角形的内角和优秀教学设计_三角形的内角和(优秀8篇)

三角形的内角和优秀教学设计_三角形的内角和(优秀8篇)《三角形内角和》数学教案篇一尊敬的各位评委老师:大家好!今天我很高兴也很荣幸能有这个机会与大家共同交流,在深入钻研教材,充分了解学生的基础上,我准备从以下几个方面进行说课:“三角形的内角和”是三角形的一个重要性质,它有助于学生理解三角形内角之间的关系,是进一步学习几何的基础。
1、知识与技能:明确三角形的内角的概念,使学生自主探究发现三角形内角和等于180°,并运用这一规律解决问题。
2、过程和方法:通过学生猜、量、拼、折、观察等活动,培养学生发现问题、提出问题、分析问题和解决问题的能力。
3、情感与态度:使学生感受数学图形之美及转化思想,体验数学就在我们身边。
教学重点:动手操作、自主探究发现三角形的内角和是180°,并能进行简单的运用。
教学难点:采用多种途径验证三角形的内角和是180°。
通过前面的学习,学生已经掌握了三角形的一些基础知识,会量角,部分学生已经知道三角形内角和是180°,但不知道怎样得出这个结论。
本节课采用自主探索、合作交流的教学方法,学生自主参与知识的构建。
领悟转化思想在解决问题中的应用。
1、教师准备:多媒体课件、三角形教具。
2、学生准备:锐、直、钝角三角形各两个,量角器、剪刀。
(一)、创设情境,激趣导入导入:“同学们,有三位老朋友已经恭候我们多时了。
“(出示三角形动画课件),让学生依次说出各是什么三角形。
课件分别闪烁三角形三个内角,并介绍:“这三个角叫做三角形的内角,把三个角的度数加起来,就是三角形的内角和。
请学生画一个三角形,要求:有两个直角。
为什么不能画,问题在哪呢?这节课我们就一起来探究三角形的内角和。
板书课题。
(二)、自主探究、合作交流1、探索特殊三角形内角和拿出自己的一副三角板,同桌之间互相说一说各个角的度数。
三角形内角和是多少度呢?指名汇报。
90°+30°+60°=180°90°+45°+45°=180°从刚才两个三角形内角和的计算中,你发现了什么?2、探索一般三角形的内角和一般三角形的内角和是多少度?猜一猜。
7.5《三角形内角和定理》数学北师大版八年级上册第2课时教案

第七章平行线的证明7.5 三角形内角和定理第 2 课时一、教学目标1.掌握三角形内角和定理的两个推理,并能运用这些定理解决简单的问题.2.经历探索与证明的过程,进一步发展推理能力.3.在一题多解、一题多变中,积累解决几何问题的经验,提升解决问题的能力.二、教学重点及难点重点:了解并掌握三角形的外角的定义.难点:掌握三角形内角和定理的两个推论,利用这两个推论进行简单的证明和计算.三、教学用具多媒体课件,三角板、直尺。
四、相关资《三角形外角》动画,《三角形其他外角》动画.五、教学过程【新知导入】△ABC内角的一条边与另一条边的反向延长线组成的角,称为△ABC的外角.请试着画出△ABC的其他外角.设计意图:外角概念探究意义不大,所以直接明晰这一概念,通过在图中标注其他外B ACDE 角,深化学生对外角概念的理解,同时,在图中标注其他外角的过程也为发现有关外角的结论做了铺垫.【合作探究】图中,∠ACD 与其他角有什么关系?请证明你的结论.通过学生讨论,发现:定理 三角形的一个外角等于和它不相邻的两个内角的和.定理 三角形的一个外角大于任何一个和它不相邻的内角.已知:△ABC .求证:∠ACD=∠A +∠B ,∠ACD >∠A ,∠ACD >∠B .证明:∵ ∠A +∠B +∠ACB =180°(三角形内角和定理),∴∠A +∠B =180°-∠ACB (等式的性质),∵ ∠ACD +∠ACB =180°(平角的定义)∴∠ACD =180°-∠ACB (等式的性质)∴∠ACD =∠A +∠B (等量代换)∴∠ACD >∠A ,∠ACD >∠B .在这里,我们通过三角形的内角和定理直接推导出两个新定理.像这样,由一个基本事实或定理直接推出的定理,叫做这个基本事实或定理的推论.推论可以当做定理使用.设计意图:希望发现有关外角的两个定理.可以对学生进行适当的引导,关系既可以是不等关系,也可以是等量关系.【典例精析】例1 已知,如图,在△ABC 中,∠B =∠C ,AD 平分外角∠EAC .求证:AD ∥BC分析:要证明AD∥BC,只需证明“同位角相等”或“内错角相等”或“同旁内角互补”.证明:∵∠EAC=∠B+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∠B=∠C(已知)∴∠B=∠EAC(等式的性质)∵AD平分∠EAC(已知)∴∠DAE=∠EAC(角平分线的定义)∴∠DAE=∠B(等量代换)∴A D∥BC(同位角相等,两直线平行)想一想,还有没有其他的证明方法呢?这个题还可以用“内错角相等,两直线平行”来证.证明:∵∠EAC=∠B+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∠B=∠C(已知)∴∠C=∠EAC(等式的性质)∵AD平分∠EAC(已知)∴∠DAC=∠EAC(角平分线的定义)∴∠DAC=∠C(等量代换)∴AD∥BC(内错角相等,两直线平行)还可以用“同旁内角互补,两直线平行”来证.证明:∵∠EAC=∠B+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∠B=∠C(已知)∴∠C=∠EAC(等式的性质)∵AD平分∠EAC(已知)∴∠DAC=∠EAC∴∠DAC=∠C(等量代换)∵∠B+∠BAC+∠C=180°∴∠B+∠BAC+∠DAC=180°即:∠B+∠DAB=180°∴AD∥BC(同旁内角互补,两直线平行)设计意图:例题的图形较复杂,可以给出分析过程,鼓励学生先自行解决,同时对有困难的学生给予必要的指导.“想一想”关注解决问题方法的多样化,通过多种解法,开拓学生思维.例2如图,P是△ABC内的一点,求证:∠BPC>∠A.解析:由题意无法直接得出∠BPC>∠A,延长BP交AC于D,就能得到∠BPC>∠PDC,∠PDC>∠A.即可得证.证明:延长BP,交AC于D,∵∠BPC是△PDC的外角(外角定义),∴∠BPC>∠PDC(三角形的一个外角大于任何一个和它不相邻的内角).∵∠PDC是△ABD的外角(外角定义),∴∠PDC>∠A(三角形的一个外角大于任何一个和它不相邻的内角).∴∠BPC>∠A.方法总结:利用推论2证明角的大小时,两个角应是同一个三角形的内角和外角.若不是,就需借助中间量转化求证.设计意图:让学生复习“三角形的一个外角大于任何一个和它不相邻的内角”,同时体会某些不等关系的递推和论证过程.鼓励学生寻求多种解法,如还可以连接AP,并延长AP 交BC于点D ,这时∠BPC和∠A分别被分成了两个小角,用“三角形的一个外角大于任何一个和它不相邻的内角”可以证明.【课堂练习】1.判断下列命题的对错.(1)三角形的外角和是指三角形的所有外角的和. ()×(2)三角形的外角和等于它的内角和的2倍. ()√(3)三角形的一个外角等于两个内角的和. ()×(4)三角形的一个外角等于与它不相邻的两个内角的和.( )√(5)三角形的一个外角大于任何一个内角. ( )×(6)三角形的一个内角小于任何一个与它不相邻的外角.( )√2.若一个三角形的一个外角小于与它相邻的内角,则这个三角形是( )C A.直角三角形 B.锐角三角形 C.钝角三角形 D.无法确定3.如图所示,若∠A=32°,∠B=45°,∠C=38°,则∠DFE 等于( )B A.120° B.115° C.110° D.105°4.如图,AB//CD ,∠A =37°, ∠C =63°,那么∠F 等于( )A.26° B.63° C.37° D.60°5.如图,如果∠1=100°,∠2=145°,那么∠3等于( )A .110°B .160°C .137°D .115°解析:∠1=100°∠2=145°∠BAC =80°∠ABC =35°∠3=∠BAC +∠ABC =115°方法总结:三角形的外角等于与它不相邻的两个内角的和,而不是等于任意两个内角的和.6.如图,求证:(1)∠BDC >∠A .(2)∠BDC =∠B +∠C +∠A .FEDCB A FA B ECD证法一:(1)连接AD,并延长AD,如图,则∠1是△ABD的一个外角,∠2是△ACD的一个外角.∴∠1>∠3.∠2>∠4(三角形的一个外角大于任何一个和它不相邻的内角)∴∠1+∠2>∠3+∠4(不等式的性质)即:∠BDC>∠BAC.(2)连结AD,并延长AD,如图.则∠1是△ABD的一个外角,∠2是△ACD的一个外角.∴∠1=∠3+∠B∠2=∠4+∠C(三角形的一个外角等于和它不相邻的两个内角的和)∴∠1+∠2=∠3+∠4+∠B+∠C(等式的性质)即:∠BDC=∠B+∠C+∠BAC证法二:(1)延长BD交AC于E(或延长CD交AB于E),如图.则∠BDC是△CDE的一个外角.∴∠BDC>∠DEC.(三角形的一个外角大于任何一个和它不相邻的内角)∵∠DEC是△ABE的一个外角(已作)∴∠DEC>∠A(三角形的一个外角大于任何一个和它不相邻的内角)∴∠BDC>∠A(不等式的性质)(2)延长BD交AC于E,则∠BDC是△DCE的一个外角.∴∠BDC=∠C+∠DEC(三角形的一个外角等于和它不相邻的两个内角的和)∵∠DEC是△ABE的一个外角∴∠DEC=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和)∴∠BDC=∠B+∠C+∠BAC(等量代换)设计意图:巩固三角形外角定理.六、课堂小结今天这节课你学到了什么知识?1.外角2.三角形的外角等于与它不相邻的两个内角的和3.三角形的一个外角大于任何一个和它不相邻的内角设计意图:通过对三角形外角及性质的学习,使学生的认识有进一步的升华,再一次体会证明格式的严谨,体会到数学的严密性.七、板书设计7.5 三角形内角和定理(2)1.外角2.三角形的外角等于与它不相邻的两个内角的和3.三角形的一个外角大于任何一个和它不相邻的内角。
三角形内角和数学教案设计

三角形内角和數學教案設計
标题:三角形内角和的数学教案设计
一、教学目标:
1. 知识与技能:理解并掌握三角形内角和定理,能运用此定理解决相关问题。
2. 过程与方法:通过观察、操作、推理等活动,培养学生的空间观念和逻辑思维能力。
3. 情感态度与价值观:体验数学学习的乐趣,养成严谨的学习态度。
二、教学重点难点:
1. 重点:理解和掌握三角形内角和定理。
2. 难点:运用三角形内角和定理解决实际问题。
三、教学过程:
(一) 引入新课
教师展示几个不同形状的三角形,引导学生观察每个三角形内角的特点,并提出问题:“这些三角形的内角有什么共同之处?”
(二) 新知探究
1. 教师引导学生用折纸的方式制作一个任意三角形,然后剪下三个内角,拼接在一起。
让学生直观地看到三个内角可以拼成一个平角,从而得出“三角形内角和等于180度”的结论。
2. 教师给出三角形内角和定理的定义,即“任何三角形的三个内角之和都等于180度”。
(三) 巩固练习
设计一些题目让学生进行练习,如计算给定三角形的未知角度,或者判断是否符合三角形内角和定理等。
(四) 小结与拓展
让学生总结本节课所学的内容,教师补充强调三角形内角和定理的重要性,并引入多边形内角和的概念,激发学生对更深入的数学知识的好奇心。
四、教学反思:
在教学过程中,教师要关注每一位学生的学习状态,及时调整教学策略,确保每位学生都能理解和掌握三角形内角和定理。
同时,教师应鼓励学生主动思考,提高他们的解决问题的能力。
北师大版八年级上册第七章7.5.1三角形内角和定理(教案)

北师大版八年级上册第七章7.5.1三角形内角和定理(教案)
一、教学内容
北师大版八年级上册第七章7.5.1三角形内角和定理。本节课主要内容包括:
1.探索并理解三角形内角和定理,即三角形的三个内角之和为180度;
2.学会运用三角形内角和定理解决相关问题,如求三角形未知角度,证明线段平行等;
3.掌握三角形内角和定理在实际问题中的应用,如测量角度、计算图形面积等;
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了三角形内角和定理的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对三角形内角和定理的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解三角形内角和定理的基本概念。三角形内角和定理是指三角形的三个内角之和始终等于180度。这一概念在几何学中具有重要作用,可以帮助我们解决许多实际问题。
案例分析:接下来,我们来看一个具体的案例。通过测量一个三角形三个角的度数,并验证它们的和是否为180度,从而展示三角形内角和定理在实际中的应用。
四、教学流程
(一)导入新课(用时5分钟)
初中数学《三角形内角和定理》教案

教学设计探究新知如何验证三角形的内角和等于180°?提示:阅读教材11页(度量或剪拼)以小组为单位进行交流,教师巡视学生的操作活动过程,请小组代表展示。
小组讨论,用剪纸拼图的方法。
验证三角形内角和,小组代表呈现结果.预设可能出现的拼图结果方案一:将两个角,拼在第三个角的旁边,构成平角180°;方案二:将∠A和∠B剪下拼到点C处;方案三:将∠C剪下拼到点A处......小组讨论,小组代表口述说理过程.观察拼接图形,思考:(1)拼接法改变的是什么?(2)移动角的目的是什么?(3)和180°相关的结论有哪些?(4)你能得到什么启示?任意一个三角形的内角和都等于180°,与三角形的形状、大小无关.已知:在ΔABC中,∠A、∠B、∠C是它的三个内角,求证:∠A+∠B+∠C=180°.按小组对三角形内角和性质“说理”(口述),教师板书,师生共同完成证明过程归纳知识点:三角形的内角和定理:三角形三个内角的和等于180°符号语言:在三角形ABC中,∠A+∠B+∠C=180°(三角形的内角和等于180°)教师介绍三角形内角和的证明史。
通过拼接图形,自主探究三角形的内角和是180度,体验解决问题策略的多样化并启发学生添加辅助线得到平行,进而利用平行线的性质证实三角形的内角和性质。
学生可凭借操作时的感性经验,找到证明方法.以方案一为例,学生口述说理过程,教师板书。
有了前面的铺垫,降低了说理的难度.书写的过程加深了对三角形内角和性质的记忆。
拉近学生与古代数学家之间的距离。
尝试运用1.在△ABC中,∠A=35°,∠ B=43 °,则∠C = ()2.在一个三角形中,有两个内角分别是26°,64°,则此三角形一定是()三角形.3.下列各组角能成为三角形的三个内角的是()(A)100°,50°,20° (B)10°,10°,60°(C)10°,10°,60°(D)2.5°,2.5°,175°4.下列说法不正确的是()(A)三角形三个内角中最多有一个钝角;(B)三角形三个内角中至少有2个锐角:(C)三角形三个内角中最多有一个直角;(D)钝角三角形的内角和大于直角三角形的内角和。
《三角形内角和》数学教案设计

《三角形内角和》數學教案設計标题:《三角形内角和》數學教案設計一、教学目标:1. 学生能理解和掌握三角形的内角和定理。
2. 学生能够通过实验操作,观察并发现三角形内角和等于180度的规律。
3. 培养学生的空间想象能力、逻辑推理能力和动手操作能力。
二、教学重点和难点:教学重点:理解并掌握三角形内角和定理。
教学难点:通过实验操作,发现并理解三角形内角和等于180度的规律。
三、教学过程:1. 引入新课:教师可以通过提问:“同学们,你们知道三角形有几条边,几个角吗?”引导学生复习三角形的基本概念。
然后提出问题:“那么,一个三角形的三个内角加起来是多少度呢?”,引发学生思考,引入新课。
2. 新课讲解:教师可以利用教具或PPT展示,先让学生自己尝试测量不同类型的三角形的内角,并记录下来。
然后,教师引导学生观察数据,发现三角形内角和总是等于180度的规律。
最后,教师给出三角形内角和定理的定义和证明方法。
3. 实验操作:教师可以让学生分组进行实验,每组准备一些不同类型的三角形纸片,用量角器测量每个三角形的内角,验证三角形内角和是否等于180度。
4. 巩固练习:教师提供一些题目,让学生运用所学知识解题,以巩固对三角形内角和定理的理解和掌握。
5. 课堂小结:教师带领学生回顾本节课的内容,总结三角形内角和定理,强调其在实际生活中的应用。
四、作业布置:安排一些与三角形内角和相关的习题,要求学生独立完成,以检验他们对本节课内容的理解程度。
五、教学反思:在课程结束后,教师需要反思教学效果,看看是否达到了预期的教学目标,对于教学过程中出现的问题,应该如何改进等。
以上就是关于《三角形内角和》的数学教案设计,希望对您有所帮助。
2024版《三角形内角和》数学教案

鼓励学生自主学习探究
探究其他证明方法
除了课堂上所讲的证明方法外, 鼓励学生探究其他证明三角形内 角和定理的方法,如利用三角函
数、向量等知识进行证明。
阅读相关数学资料
推荐一些与三角形内角和相关的 数学资料,如数学课本、辅导书、 数学期刊等,供学生课后阅读学
辅助线法证明过程
在三角形内部作一条辅助线,将 三角形划分为两个较小的三角形。
分别计算两个小三角形的内角和, 再将它们相加得到原三角形的内
角和。
通过辅助线的引入,帮助学生理 解三角形内角和定理的多种证明 方法,并培养学生的创新思维和
解题能力。
04
三角形内角和定理应用举 例
计算三角形未知角度
已知两个内角度数,求第三个内角
证明方法。
引出新课
引入三角形内角和的概念
通过图形展示和讲解,引出三角形内 角和的定义和性质。
启发学生思考
展示证明方法
向学生展示三角形内角和定理的证明 方法,强调证明过程中的逻辑严密性 和严谨性。
引导学生通过观察、猜想、验证等方 式,自主探究三角形内角和的定理。
02
三角形内角和概念解析
三角形定义及分类
02
内角性质
三角形内角和定理
01
02
03
定理内容
三角形的三个内角之和等 于180°。
定理证明
可以通过平行线性质、辅 助线等多种方法进行证明。
定理应用
在解决与三角形内角相关 的问题时,可以直接使用 三角形内角和定理进行计 算或推理。
03
探究三角形内角和定理证 明方法
拼图法证明过程
《三角形的内角和》数学教案

《三角形的内角和》数学教案标题:《三角形的内角和》数学教案一、教学目标1. 知识与技能:(1) 学生能够理解并掌握三角形内角和为180度的概念。
(2) 学生能通过实际操作,验证三角形内角和为180度的性质。
2. 过程与方法:(1) 通过观察、操作、推理等活动,提高学生的空间观念和逻辑思维能力。
(2) 通过合作交流,培养学生良好的学习习惯和团队协作精神。
3. 情感态度与价值观:(1) 培养学生对数学的兴趣,体验成功的喜悦。
(2) 让学生意识到数学与生活密切相关,提高应用数学知识解决实际问题的能力。
二、教学重难点1. 教学重点:理解和掌握三角形内角和为180度的性质。
2. 教学难点:如何引导学生从实际操作中抽象出三角形内角和为180度的规律。
三、教学过程(一) 导入新课教师可以通过展示生活中常见的三角形图形(如三角尺、金字塔等),引出今天要学习的内容——三角形的内角和。
(二) 新知探索1. 定义讲解教师首先介绍什么是三角形的内角,并在黑板上画出一个三角形,标出三个内角,让学生明确三角形内角的概念。
2. 探索实践然后,教师分发预先准备好的各种形状和大小的三角形纸片,让学生动手测量并计算每个三角形的内角和。
在这个过程中,教师可以适时地进行指导和帮助。
3. 归纳总结当所有小组完成测量后,教师组织全班进行交流分享。
通过对各组数据的分析,引导学生发现无论三角形的形状和大小如何变化,其内角和总是等于180度。
(三) 巩固练习设计一些针对性的练习题,让学生运用所学知识解决问题,进一步巩固三角形内角和为180度的知识点。
四、课堂小结教师引导学生回顾本节课的学习内容,强调三角形内角和为180度这一重要性质,并鼓励学生在日常生活中寻找应用这个性质的例子。
五、作业布置布置一些关于三角形内角和的习题,让学生回家独立完成,以检验他们对本节课知识的理解和掌握程度。
六、教学反思在教学结束后,教师应反思本节课的教学效果,评估学生的学习情况,思考如何改进教学方法,提高教学效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.下列说法正确的是()
A .三角形的角平分线、中线、高都在三角形的内部B.直角三角形只有一条高
C.三角形的三条高至少有一条在三角形内D.钝角三角形的三条高均在三角形外
2.下列说法正确的是()
A.三角形的中线就是过顶点平分对边的直线B.任何三角形都有三条高
C.三角形的 角平分线就是三角形内角的平分线D.任何三角形的三条高必交于一点
∠C=∠() ∵DE∥AC(已作)
∵∠DAB+∠BAC+∠EAC=180°( )∴∠A=∠BED,∠C=∠BDE( )
∴∠A+∠B+∠C=1800()∵DF∥AB( )
∴∠BED =∠EDF( )
∠B=∠FDC( )
∵∠EDB+∠EDF+∠FDC=180°( )
5.应用探究
(1)如图,在△ABC中,∠1=∠2,∠3=∠4,∠BAC=54°,求∠DAC的度数.
2.如图3,在△ABC中,已知∠ACB=90°,AD是AB边上的高.
那么在Rt△ABC中,∠B与∠互余;
在Rt△BDC中,∠B+∠=90°;
在Rt△ADC中,∠A+∠=90°.
3.在△ABC中,∠A-∠B=36°,∠C=2∠B,则∠A=,∠B=,
∠C=.
4.△ABC中,∠B=42°,∠C=52°,AD平分∠BAC,则∠DAC=_____________ _.
(2)在△ABC中,已知∠A= ∠B = ∠C,请你判断三角形的形状.
(3)如图,AD是△ABC的角平分线,E是BC延长线上一点,∠EAC=∠B,∠ADE与∠DAE相等吗?
四、课堂训练
1.课本第26页做一做第2题.做在书上.注:直角三角形ABC可以写成Rt△ABC.
在Rt△ABC中,如果∠C=90°,那么∠A+∠B=°.
2.能运用相关结论进行有关的推理和计算.
3.通过观察、操作、想象、推理等活动,体会说理的必要性.
三、新课学习
教学内容
【预习交流】
1.预习课本P25到P27,有哪些疑惑?
2.三角形3个内角的和等于°
3.在△ABC中,把∠A撕下,然后把点A与点C重合在同一点,摆成如图所示的位置:
∵∠A=∠ACD(已作)
5.已知:如图,在△ABC中,∠A=55°,
H是高BD、CE的交点,则∠BHC=.
6.如图所示,在△ABC中,∠B=440,∠C=720,
AD是△ABC的角平分线,
(1)求∠BAC的度数;(2)求∠ADC的度数.
7.如图,已知DF⊥AB于点F,且∠A=45°,∠D=30°,求∠ACB的度数.
五、学习心得(教学后记)
4.如图,(1)当=时,AD是△ABC的中线.
(2)当= 时,ED是△BEC的角平分线.
(3)当AD⊥BC时,BD是△的高,又是△的高.
5.画图:
(1)作出右图中ΔABC的高AD,角平分线BE,中线CF.
(2)将所作的图形整体平移,平移方向箭头所示,平移的距离为2cm.
二、ቤተ መጻሕፍቲ ባይዱ习目标
1.理解三角形内角之间的关系,直角三角形的两个内角互余,三角形外角的意义以及外角和内角之间的关系.
(第4题图)
6. 直角三角形中,有一个锐角是另一个锐角的2倍 ,
则这两个锐角的度数为.
7.如图(1)BP、CP分别是△ABC中∠ABC和外角∠ACE的平分线,∠A=100°.(1)求∠BPC的度数;
(2)如图(2)若BP1、CP1分别平分∠PBC、∠PCE,BP2、CP2分别平分∠P1BC、
∠P1CE,BP3、CP3分别平分∠P2BC、∠P2CE,…,BPn、CPn分别平分∠P n-1BC、
∠Pn-1CE,则∠BP1C=°∠BP2C=°∠BPnC=°
∴AB∥( )
∴∠B+∠BCD=180°()
即∠B+∠ACB+∠ACD=180°
∴∠A+∠B+∠C=1800()
【点评释疑】
1.说明三角形的内角和等于180°.
已知在△ABC中,求证:∠A+ ∠B+∠C=180°
图1图2
法一、如图1,过点A作DE∥BC.法二、如图2,过BC上任意一点D作
则∠B=∠,DE∥AC,DF∥AB分别交AB、AC于E、F
A.4∶3∶2 B.3∶2∶4 C.5∶3∶1 D.3∶1∶5
4.光线a照射到平面镜CD上,然后在平面镜AB和CD之间来回反射,光线的反
射角等于入射角.若已知∠1=55°,∠3=75°,则∠2=()
A.50°B.55°C.66°D.65°
5.三角形的三个内角中,最多有个锐角,
最多有个直角,最多有个钝角.
6、课后巩固
1.在一个三角形,若 ,则 是().
A.直角三角形B.锐角三角形C.钝角三角形D.以上都不对
2.在一个三角形ABC中,∠A=∠B=45°,则△ABC是()
A.直角三角形B.锐角三角形C.钝角三角形D.以上都不对
3.若一个三角形的3个外角的度数之比为2∶3∶4,则与之相应的3个内角的度数
之比为( )