《完全平方公式》测试题

合集下载

初二数学测试题

初二数学测试题

初二数学测试题(卷)说明:本试题(卷)共8页,满分100分,考试时间90分钟一、填空题(每小题2分,共30分)1.△ABC 中,∠C=90°,则∠A+∠B=2.三角形的三个外角都是钝角,则这个三角形按角分类是 三角形。

3.多项式2a ab 2+-,23ab 4a -及22b 4ab 4a +-的公因式是 4.若25kx x 42++是一个完全平方式,则k= 5.已知△ABC 中,边a=4,b=3,则第三边c 的范围6.若二次三项式6mx x 2-+能在整数范围内分解因式,则m 的整数值为 7.观察下列各式:)1x )(1x (1x 2+-=-,)1x x )(1x (1x 23++-=-,)1x (1x 4-=-)1x x x (23+++,根据前面各式的规律可得=-1x 58.+-=++222)b a (b ab a9.已知3xy ,2y x -==+,则=+22xy y x10.分解因式:+-5243y x 12y x 311.如图:AE 是△ABC 12.一个等腰三角形的周长为18cm ,其中一边长为4cm ,则其它两边长为13.如图△ABC ≌△ADE ,∠EAC=30°,ACDBE则∠BAD= 度14.在△ABC 和△DEF 中,若AB=DE ,∠B=∠E ,应补充一个条件 ,可使△ABC ≌△DEF 15、如图,由一个边长为a 的小正方形与两个长、宽分别 为a 、b 的小矩形拼接成矩形ABCD ,则整个图形可表达出一些有关多项式分解因式的等式,请你写出其中一个等式: 。

二、选择题(每小题2分,共20分)1.下列从左到右的变形,属于因式分解的是( ) A 、2x x )2x )(1x (2--=-+B 、1)y x (a 1ay ax --=--C 、3232y 3x 2y x 6⋅=D 、)2x )(2x (4x 2-+=-2.下列各式中不能运用平方差公式因式分解的是( ) A 、22b a +-B 、22y x --C 、22y x 49-D 、1m 164-3.把多项式by 4bx 3ay 4ax 3+++分组分解,其分组形式有:①)by 4bx 3()ay 4ax 3(+++;②)ay 4bx 3()by 4ax 3(+++ ③)by 4ay 4()bx 3ax 3(+++分组不合理的是( ) A 、①B 、②C 、③D 、①和③4.如图:只需满足( ),则△ABC ≌△ADC 。

代数式经典测试题附答案解析

代数式经典测试题附答案解析

代数式经典测试题附答案解析一、选择题1.下列计算,正确的是( )A .2a a a -=B .236a a a =C .933a a a ÷=D .()236a a = 【答案】D【解析】A.2a 和a,和不能合并,故本选项错误;B.2356a a a a ⋅=≠ ,故本选项错误;C.9363a a a a ÷=≠,和不能合并,故本选项错误;D.()236 a a =,故本选项正确;故选D.2.如果多项式4x 4+ 4x 2+ A 是一个完全平方式,那么A 不可能是( ).A .1B .4C .x 6D .8x 3【答案】B【解析】【分析】根据完全平方式的定义,逐一判断各个选项,即可得到答案.【详解】∵4x 4+ 4x 2+1=(2x+1)2,∴A=1,不符合题意,∵4x 4+ 4x 2+ 4不是完全平方式,∴A=4,符合题意,∵4x 4+ 4x 2+ x 6=(2x+x 3)2,∴A= x 6,不符合题意,∵4x 4+ 4x 2+8x 3=(2x 2+2x )2,∴A=8x 3,不符合题意.故选B .【点睛】本题主要考查完全平方式的定义,熟练掌握完全平方公式,是解题的关键.3.下列运算正确的是( )A .21ab ab -=B 3=±C .222()a b a b -=-D .326()a a =【答案】D【解析】【分析】主要考查实数的平方根、幂的乘方、同类项的概念、合并同类项以及完全平方公式.【详解】解:A 项,2ab ab ab -=,故A 项错误;B 3=,故B 项错误;C 项,222()2a b a ab b -=-+,故C 项错误;D 项,幂的乘方,底数不变,指数相乘,32236()a a a ⨯==.故选D【点睛】本题主要考查:(1)实数的平方根只有正数,而算术平方根才有正负.(2)完全平方公式:222()2a b a ab b +=++,222()2a b a ab b -=-+.4.下列运算正确的是( )A .3a 3+a 3=4a 6B .(a+b )2=a 2+b 2C .5a ﹣3a =2aD .(﹣a )2•a 3=﹣a 6【答案】C【解析】【分析】依次运用合并同类型、完全平方公式、幂的乘法运算即可.【详解】A .3a 3+a 3=4a 3,故A 错误;B .(a +b )2=a 2+b 2+2ab ,故B 错误;C .5a ﹣3a =2a ,故C 正确;D .(﹣a )2•a 3=a 5,故D 错误;故选C .【点睛】本题考查了幂的运算与完全平方公式,熟练掌握幂运算法则与完全平方公式是解题的关键.5.下列运算正确的是( )A .232235x y xy x y +=B .()323626ab a b -=-C .()22239a b a b +=+D .()()22339a b a b a b +-=-【答案】D【解析】【分析】根据合并同类项的法则、积的乘方,完全平方公式以及平方差公式分别化简即可.【详解】A .22x y 和3xy 不是同类项,不能合并,故该选项计算错误,不符合题意;B .()323628ab a b -=-,故该选项计算错误,不符合题意;C .()222396a b a ab b +=++,故该选项计算错误,不符合题意;D .()()22339a b a b a b +-=-,故该选项计算正确,符合题意. 故选D .【点睛】本题主要考查了合并同类项、幂的运算性质以及乘法公式,熟练掌握相关公式及运算法则是解答本题的关键.6.下列图形都是由面积为1的正方形按一定的规律组成的,其中,第1个图形中面积为1的正方形有9个,第2个图形中面积为1的正方形有14个,……,按此规律,则第几个图形中面积为1的正方形的个数为2019个( )A .400B .401C .402D .403 【答案】D【解析】【分析】 由第1个图形有9个边长为1的小正方形,第2个图形有9+5=14个边长为1的小正方形,第3个图形有9+5×2=19个边长为1的小正方形,…由此得出第n 个图形有9+5×(n-1)=5n+4个边长为1的小正方形,由此求得答案即可.【详解】解:第1个图形边长为1的小正方形有9个,第2个图形边长为1的小正方形有9+5=14个,第3个图形边长为1的小正方形有9+5×2=19个,…第n 个图形边长为1的小正方形有9+5×(n-1)=5n+4个,当5n+4=2019时,解得n=403所以第403个图形中边长为1的小正方形的个数为2019个.故选:D .【点睛】此题考查图形的变化规律,找出图形与数字之间的运算规律,利用规律解决问题.7.下列运算,错误的是( ).A .236()a a =B .222()x y x y +=+C .0(51)1=D .61200 = 6.12×10 4【答案】B【解析】【分析】【详解】A. ()326a a =正确,故此选项不合题意;B.()222 x y x 2y xy +=++,故此选项符合题意;C. )011=正确,故此选项不合题意; D. 61200 = 6.12×104正确,故此选项不合题意;故选B.8.观察等式:232222+=-;23422222++=-;2345222222+++=-⋅⋅⋅已知按一定规律排列的一组数:502、512、522、⋅⋅⋅、992、1002.若502a =,用含a 的式子表示这组数的和是( )A .222a a -B .2222a a --C .22a a -D .22a a +【答案】C【解析】【分析】根据题意,一组数:502、512、522、⋅⋅⋅、992、1002的和为250+251+252+…+299+2100==a +(2+22+…+250)a ,进而根据所给等式的规律,可以发现2+22+…+250=251-2,由此即可求得答案.【详解】250+251+252+…+299+2100=a +2a +22a + (250)=a +(2+22+…+250)a ,∵232222+=-, 23422222++=-,2345222222+++=-,…,∴2+22+…+250=251-2,∴250+251+252+…+299+2100=a +(2+22+…+250)a=a +(251-2)a=a +(2 a -2)a=2a 2-a ,故选C.【点睛】本题考查了规律题——数字的变化类,仔细观察,发现其中哪些发生了变化,哪些没有发生变化,是按什么规律变化的是解题的关键.9.下列计算正确的是( )A .a 2+a 3=a 5B .a 2•a 3=a 6C .(a 2)3=a 6D .(ab )2=ab 2【答案】C【解析】试题解析:A.a 2与a 3不是同类项,故A 错误;B.原式=a 5,故B 错误;D.原式=a 2b 2,故D 错误;故选C.考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.10.如图,是一块直径为2a +2b 的圆形钢板,从中挖去直径分别为2a 、2b 的两个圆,则剩下的钢板的面积为( )A .ab πB .2ab πC .3ab πD .4ab π【答案】B【解析】【分析】剩下钢板的面积等于大圆的面积减去两个小圆的面积,利用圆的面积公式列出关系式,化简即可.【详解】解:S 剩下=S 大圆- 1S 小圆-2S 小圆 =2222a+2b 2a 2b --222πππ()()() =()222a+b -a -b π⎡⎤⎣⎦=2ab π, 故选:B【点睛】此题考查了整式的混合运算,涉及的知识有:圆的面积公式,完全平方公式,去括号、 合并同类项法则,熟练掌握公式及法则是解本题的关键.11.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b )n 的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b )20的展开式中第三项的系数为( )A .2017B .2016C .191D .190【答案】D【解析】试题解析:找规律发现(a+b )3的第三项系数为3=1+2;(a+b )4的第三项系数为6=1+2+3;(a+b )5的第三项系数为10=1+2+3+4;不难发现(a+b )n 的第三项系数为1+2+3+…+(n ﹣2)+(n ﹣1),∴(a+b )20第三项系数为1+2+3+…+20=190,故选 D .考点:完全平方公式.12.下列图形都是由同样大小的五角星按照一定规律所组成的,按此规律排列下去,第n 个图形中五角星的个数为( )A .31n -B .3nC .31n +D .32n +【答案】C【解析】【分析】 根据前4个图形中五角星的个数得到规律,即可列式得到答案.【详解】观察图形可知:第1个图形中一共是4个五角星,即4311=⨯+,第2个图形中一共是7个五角星,即7321=⨯+,第3个图形中一共是10个五角星,即10331=⨯+,第4个图形中一共是13个五角星,即13341=⨯+,L ,按此规律排列下去,第n 个图形中一共有五角星的个数为31n +,故选:C.【点睛】此题考查图形类规律的探究,观察图形得到五角星的个数的变化规律并运用解题是关键.13.已知单项式2m 13a b -与n 7a b -互为同类项,则m n +为( )A .1B .2C .3D .4【答案】D【解析】【分析】根据同类项的概念求解.【详解】解:Q 单项式2m 13a b -与7a b n -互为同类项, n 2∴=,m 11-=,n 2∴=,m 2=.则m n 4+=.故选D .【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.14.下列运算正确的是( )A .2352x x x +=B .()-=g 23524x x xC .()222x y x y +=-D .3223x y x y xy ÷=【答案】B【解析】【分析】A 不是同类项,不能合并,B 、D 运用单项式之间的乘法和除法计算即可,C 运用了完全平方公式.【详解】A 、应为x 2+x 3=(1+x )x 2;B 、(-2x )2•x 3=4x 5,正确;C 、应为(x+y )2= x 2+2xy+y 2;D 、应为x 3y 2÷x 2y 3=xy -1.故选:B .【点睛】本题考查合并同类项,同底数幂的乘法,完全平方公式,单项式除单项式,熟练掌握运算法则和性质是解题的关键.15.若代数式()212323aa x y xy -+-是五次二项式,则a 的值为( ) A .2B .2±C .3D .3± 【答案】A【解析】【分析】根据多项式的次数与项数的定义解答.【详解】∵()212323a a x y xy -+-是五次二项式,∴2125a -+=,且20a +≠,解得a=2,故选:A.【点睛】此题考查多项式的次数与项数的定义,熟记定义是解题的关键.16.下列运算正确的是( )A .236(2)8x x -=-B .()22122x x x x -+=-+C .222()x y x y +=+D .()()22224x y x y x y -+--=-- 【答案】A【解析】解:A . (-2x 2)3=-8x 6,正确;B . -2x (x +1)=-2x 2-2x ,故B 错误;C . (x +y )2=x 2+2xy +y 2,故C 错误;D . (-x +2y )(-x -2y )=x 2-4y 2,故D 错误;故选A .17.计算1.252 017×2?01945⎛⎫ ⎪⎝⎭的值是( ) A .45 B .1625 C .1 D .-1【答案】B【解析】【分析】根据同底数幂的乘法底数不变指数相加,可得积的乘方,根据积的乘方等于乘方的积,可得答案.【详解】原式=1.252017×(45)2017×(45)2=(1.25×45)2012×(45)2=16 25.故选B.【点睛】本题考查了积的乘方,利用同底数幂的乘法底数不变指数相加得出积的乘方是解题关键.18.若55+55+55+55+55=25n,则n的值为()A.10 B.6 C.5 D.3【答案】D【解析】【分析】直接利用提取公因式法以及幂的乘方运算法则将原式变形进而得出答案.【详解】解:∵55+55+55+55+55=25n,∴55×5=52n,则56=52n,解得:n=3.故选D.【点睛】此题主要考查了幂的乘方运算,正确将原式变形是解题关键.19.若(x+4)(x﹣1)=x2+px+q,则()A.p=﹣3,q=﹣4 B.p=5,q=4C.p=﹣5,q=4 D.p=3,q=﹣4【答案】D【解析】【分析】根据整式的运算法则即可求出答案.【详解】解:∵(x+4)(x﹣1)=x2+3x﹣4∴p=3,q=﹣4故选:D.【点睛】考查整式的运算,解题的关键是熟练运用整式的运算法则.20.通过计算大正方形的面积,可以验证的公式是( )A.B.C.D.【答案】C【解析】【分析】根据大正方形的面积=3个小正方形的面积+6个矩形的面积,分别计算长结果,即可得答案.【详解】∵大正方形的面积=3个小正方形的面积+6个矩形的面积,∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ac,故选C.【点睛】本题考查了完全平方公式的几何背景,明确大正方形的面积=3个小正方形的面积+6个矩形的面积是解题关键.。

(常考题)北师大版初中数学八年级数学下册第四单元《因式分解》测试(答案解析)(2)

(常考题)北师大版初中数学八年级数学下册第四单元《因式分解》测试(答案解析)(2)

一、选择题1.下列等式中,从左到右的变形正确的是( )A .()22242x x x ++=+B .()()2444x x x -=+-C .()222244x y x xy y +=++D .()()2x 2x 3x 6+-=- 2.下列各式中能用完全平方公式分解因式的是( ) A .2444x x ++B .244x x -++C .4244x x -+D .291216x x ++ 3.在下列多项式中,不能用平方差公式因式分解的是( ) A .229x y - B .21m -+ C .2216a b -+ D .21x -- 4.下列因式分解正确的是A .4m 2-4m +1=4m (m -1)B .a 3b 2-a 2b +a 2=a 2(ab 2-b )C .x 2-7x -10=(x -2)(x -5)D .10x 2y -5xy 2=5xy (2x -y ) 5.对于任何实数m 、n ,多项式2261036m n m n +--+的值总是( ) A .非负数B .0C .大于2D .不小于2 6.若实数a 、b 满足a+b=5,a 2b+ab 2=-10,则ab 的值是( ) A .-2B .2C .-50D .50 7.因式分解x ﹣4x 3的最后结果是( ) A .x (1﹣2x )2B .x (2x ﹣1)(2x+1)C .x (1﹣2x )(2x+1)D .x (1﹣4x 2)8.下列各式由左边到右边的变形中,属于因式分解的是( ) A .()222x y x y +=+B .()24444x x x x -+=-+C .()()2111x x x +-=-D .()210 5521x x x x -=- 9.下列多项式分解因式正确的是( )A .a 2﹣2a ﹣3=a (a ﹣2)﹣3B .3ax 2﹣6ax =3(ax 2﹣2ax )C .m 3﹣m =m (m ﹣1)(m +1)D .x 2+2xy ﹣y 2=(x ﹣y )210.下列因式分解错误的是( )A .a 2﹣a +1=a (a ﹣1)+1B .a 2﹣b 2=(a +b )(a ﹣b )C .﹣a 2+9b 2=﹣(a +3b )(a ﹣3b )D .a 2﹣4ab +4b 2=(a ﹣2b )211.下列各式由左到右的变形中,属于分解因式的是( )A .x 2﹣16+6x =(x +4)(x ﹣4)+6xB .10x 2﹣5x =5x (2x ﹣1)C .a 2﹣b 2﹣c 2=(a ﹣b )(a +b )﹣c 2D .a (m +n )=am +an12.下列因式分解结果正确的是( )A .x 2+3x +2=x (x +3)+2B .4x 2﹣9=(4x +3)(4x ﹣3)C .a 2﹣2a +1=(a +1)2D .x 2﹣5x +6=(x ﹣2)(x ﹣3)二、填空题13.因式分解:316m m -=________.14.因式分解:41x -=______.15.若6x y +=,3xy =-,则2222x y xy +=_____.16.若m+n=1,mn=-6,则22m n mn +代数式的值是____________________;17.在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x 4﹣y 4,因式分解的结果是(x ﹣y )(x+y )(x 2+y 2),若取x=9,y=9时,则各个因式的值是:(x ﹣y )=0,(x+y )=18,(x 2+y 2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式x 3﹣xy 2,取x=27,y=3时,用上述方法产生的密码是:_____(写出一个即可).18.分解因式:a 2﹣a ﹣6=________________.19.已知2,350ab b a =--=,则代数式223a b ab ab -+的值为_______________________.20.分解因式:mn 2﹣4mn+4m =_____.三、解答题21.(1)因式分解:328a a -.(2)如图,//AB CD ,40A ∠=︒,45D ∠=︒,求1∠和2∠的度数.22.因式分解:(1)382a a -(2)()()24129x y x y +-+-23.下面是小华同学分解因式229()4()a x y b y x -+-的过程,请认真阅读,并回答下列问题.解:原式229()4()a x y b x y =-+-① 22()(94)x y a b =-+②2()(32)x y a b =-+③任务一:以上解答过程从第 步开始出现错误.任务二:请你写出正确的解答过程.24.(1)分解因式:244am am a ++(2)计算:(-2)(2)(2)x x x y x y ++-25.分解因式:(1)3218a b ab -;(2)244ab ab a -+.26.(阅读材料)把代数式通过配凑等手段,得到局部完全平方式,再进行有关运算和解题,这种解题方法叫做配方法.配方法在代数式求值、解方程、最值问题中都有着广泛的应用.例如:①用配方法因式分解:a 2+6a +8.原式=a 2+6a +9-1=(a +3) 2-1=(a +3-1)( a +3+1)=(a +2)(a +4)②求x 2+6x +11的最小值.解:x 2+6x +11=x 2+6x +9+2=(x +3) 2+2;由于(x +3) 2≥0,所以(x +3) 2+2≥2,即x 2+6x +11的最小值为2.请根据上述材料解决下列问题:(1)在横线上添上一个常数项使之成为完全平方式:a 2+4a + ;(2)用配方法因式分解:a 2-12a +35;(3)用配方法因式分解:x 4+4;(4)求4x 2+4x +3的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】分别对各选项进行变形,然后对照进行判断即可得到答案.【详解】解:A 、()22241+3x x x ++=+,原选项变形错误,故不符合题意;B 、()()2422x x x -=+-,原选项变形错误,故不符合题意;C 、()222244x y x xy y +=++,原选项变形正确,故符合题意;D 、2(2)(3)6x x x x +=---,原选项变形错误,故不符合题意;故选:C .【点睛】此题主要考查了整式的乘法和因式分解,熟练掌握运算法则是解答此题的关键.2.C解析:C【分析】利用完全平方公式逐项进行判定即可.【详解】解:A. 2444x x ++,无法因式分解,故不符合题意;B. 244x x -++,无法因式分解,故不符合题意;C. ()2422442x x x -+=-,符合题意;D. 291216x x ++,无法因式分解,故不符合题意.故答案为C.【点睛】本题主要考查了运用完全公式法分解因式,熟练掌握完全平方公式是解答本题关键. 3.D解析:D【分析】根据平方差公式有: 229x y -==(x +3y )(x−3y );21m -+=m 2-1=(m+1)(m−1);2216a b -+=b 2−16a 2=(b +4a )(b−4a );而−x 2−1=−(x 2+1),不能用平方差公式分解.【详解】A.229x y -==(x +3y )(x−3y );B.21m -+=m 2-1=(m+1)(m−1);C.2216a b -+=b 2−16a 2=(b +4a )(b−4a );而−x 2−1=−(x 2+1),不能用平方差公式分解.故选:D .【点睛】本题考查了平方差公式:a 2−b 2=(a +b )(a−b ),熟练掌握此公式是解答此题的关键. 4.D解析:D【分析】A 、利用完全平方公式分解;B 、利用提取公因式a 2进行因式分解;C 、利用十字相乘法进行因式分解;D 、利用提取公因式5xy 进行因式分解.【详解】A 、4m 2-4m+1=(2m-1)2,故本选项错误;B 、a 3b 2-a 2b+a 2=a 2(ab 2-b+1),故本选项错误;C 、(x-2)(x-5)=x 2-7x+10,故本选项错误;D 、10x 2y-5xy 2=xy (10x-5y )=5xy (2x-y ),故本选项正确;故选D .【点睛】本题考查了因式分解,要想灵活运用各种方法进行因式分解,需要熟练掌握各种方法的公式和法则;分解因式中常出现错误的有两种:①丢项:整项全部提取后要剩1,分解因式后项数不变;②有些结果没有分解到最后,如最后一个选项需要一次性将公因式提完整或进行多次因式分解,分解因式一定要彻底.5.D解析:D【分析】利用完全平方公式把原式变形,根据偶次方的非负性解答即可.【详解】解:2261036m n m n +--+226910252m m n n =-++-++22(3)(5)2m n =-+-+,2(3)0m -,2(5)0n -,22(3)(5)22m n ∴-+-+,∴多项式2261036m n m n +--+的值总是不小于2,故选:D .【点睛】本题考查了完全平方公式的应用、非负数的性质,掌握完全平方公式、偶次方的非负性是解题的关键.6.A解析:A【解析】试题分析:先提取公因式ab ,整理后再把a+b 的值代入计算即可.当a+b=5时,a 2b+ab 2=ab (a+b )=5ab=-10,解得:ab=-2.考点:因式分解的应用.7.C解析:C【分析】原式提取公因式,再利用平方差公式分解即可.【详解】原式=x (1﹣4x 2)=x (1+2x )(1﹣2x ).故选C .【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解答本题的关键.8.D解析:D【分析】直接利用因式分解的定义逐一分析即可得出答案.【详解】A.()222x y x y +=+属于整式乘法运算,不符合因式分解的定义,故此选项不符合题意,B.()24444x x x x -+=-+,右边不是整式的积的形式,不符合因式分解的定义,故此选项不符合题意,C.()()2111x x x +-=-属于整式乘法运算,不符合因式分解的定义,故此选项不符合题意,D.()210 5521x x x x -=-属于因式分解,符合题意. 故选:D .【点睛】本题主要考查因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.9.C解析:C【分析】直接利用十字相乘法以及公式法分别分解因式得出答案.【详解】A 、a 2﹣2a ﹣3=a (a ﹣2)﹣3,不符合因式分解的定义,故此选项错误;B 、3ax 2﹣6ax =3ax (x ﹣2),故此选项错误;C 、m 3﹣m =m (m ﹣1)(m +1),正确;D 、x 2+2xy ﹣y 2,无法运用完全平方公式分解因式,故此选项错误;故选:C .【点睛】此题主要考查了十字相乘法以及提取公因式法、公式法分解因式,正确应用公式是解题关键.10.A解析:A【分析】直接利用公式法以及提取公因式法分解因式得出答案.【详解】A .a 2﹣a +1=a (a ﹣1)+1,不符合因式分解的定义,故此选项正确;B .a 2﹣b 2=(a +b )(a ﹣b ),正确,不符合题意;C .﹣a 2+9b 2=﹣(a +3b )(a ﹣3b ),正确,不合题意;D .a 2﹣4ab +4b 2=(a ﹣2b )2,正确,不合题意.故选:A .【点睛】此题主要考查了公式法以及提取公因式法分解因式,正确应用公式是解题关键. 11.B解析:B【分析】根据因式分解的定义逐个进行判断即可.【详解】解:A 、变形的结果不是几个整式的积,不是因式分解;B 、把多项式10x 2﹣5x 变形为5x 与2x ﹣1的积,是因式分解;C 、变形的结果不是几个整式的积,不是因式分解;D 、变形的结果不是几个整式的积,不是因式分解;故选:B .【点睛】本题主要考察了因式分解的定义,理解因式分解的定义是解题的关键.12.D解析:D【分析】根据因式分解的方法进行计算即可判断.【详解】A .因为x 2+3x +2=(x +1)(x +2),故A 错误;B .因为4x 2﹣9=(2x +3)(2x ﹣3),故B 错误;C .因为a 2﹣2a +1=(a ﹣1)2,故C 错误;D .因为x 2﹣5x +6=(x ﹣2)(x ﹣3),故D 正确.故选:D .【点睛】本题考查了因式分解-十字相乘法、公式法,解决本题的关键是掌握因式分解的方法.二、填空题13.m (m+4)(m-4)【分析】原式提取公因式再利用平方差公式分解即可【详解】解:=m (m2-16)=m (m+4)(m-4)故答案为:m (m+4)(m-4)【点睛】此题考查了综合提公因式法和公式法分解解析:m (m+4)(m-4)【分析】原式提取公因式,再利用平方差公式分解即可.【详解】解:316m m=m (m 2-16)=m (m+4)(m-4),故答案为:m (m+4)(m-4)【点睛】此题考查了综合提公因式法和公式法分解因式,熟练掌握因式分解的方法是解本题的关键.14.【分析】两次运用平方差公式进行因式分解即可得到答案【详解】解:=(x2-1)(x2+1)=故答案为:【点睛】本题考查了运用平方差公式分解因式熟练掌握因式分解的方法是解本题的关键解析:()()()2111x x x +-+. 【分析】两次运用平方差公式进行因式分解即可得到答案.【详解】解:41x -=(x 2-1)(x 2+1)=()()()2111x x x +-+. 故答案为:()()()2111x x x +-+. 【点睛】本题考查了运用平方差公式分解因式,熟练掌握因式分解的方法是解本题的关键. 15.【分析】先将原式因式分解得再整体代入即可求出结果【详解】解:∵∴原式故答案是:【点睛】本题考查因式分解解题的关键是熟练运用因式分解和整体代入的思想求值解析:36-【分析】先将原式因式分解得()2xy x y +,再整体代入即可求出结果.【详解】解:()22222x y xy xy x y +=+, ∵6x y +=,3xy =-,∴原式()23636=⨯-⨯=-.故答案是:36-.【点睛】本题考查因式分解,解题的关键是熟练运用因式分解和整体代入的思想求值.16.-6【分析】利用提公因式法因式分解再把m+n=1mn=-6代入计算即可【详解】解:∵m+n=1mn=-6∴m2n+mn2=mn (m+n )=(-6)×1=-6故答案为:-6【点睛】本题主要考查了因式分解析:-6【分析】利用提公因式法因式分解,再把m+n=1,mn=-6代入计算即可.【详解】解:∵m+n=1,mn=-6,∴m2n+mn2=mn(m+n)=(-6)×1=-6.故答案为:-6.【点睛】本题主要考查了因式分解的应用,熟练掌握提公因式法因式分解是解答本题的关键.17.(答案不唯一)【分析】将多项式4x3-xy2提取x后再利用平方差公式分解因式将x与y的值分别代入每一个因式中计算得到各自的结果根据阅读材料中取密码的方法即可得出所求的密码【详解】4x3-xy2=x(解析:(答案不唯一)【分析】将多项式4x3-xy2,提取x后再利用平方差公式分解因式,将x与y的值分别代入每一个因式中计算得到各自的结果,根据阅读材料中取密码的方法,即可得出所求的密码.【详解】4x3-xy2=x(4x2-y2)=x(2x+y)(2x-y),∴当取x=10,y=10时,各个因式的值是:x=10,2x+y=30,2x-y=10,∴用上述方法产生的密码是:103010,101030或301010,故答案为103010,101030或301010.【点睛】本题考查了因式分解的应用,涉及了提公因式法及平方差公式分解因式,属于阅读型的新定义题,其中根据阅读材料得出取密码的方法是解本题的关键.18.(a+2)(a﹣3)【分析】利用十字相乘法分解即可【详解】解:原式=(a+2)(a-3)故答案是:(a+2)(a-3)【点睛】此题考查了利用十字相乘法因式分解熟练掌握因式分解的方法是解本题的关键解析:(a+2)(a﹣3)【分析】利用十字相乘法分解即可.【详解】解:原式=(a+2)(a-3).故答案是:(a+2)(a-3).【点睛】此题考查了利用十字相乘法因式分解,熟练掌握因式分解的方法是解本题的关键.19.-8【分析】直接提取公因式将原式变形进而整体代入已知得出答案【详解】∵∵∴又∴原式=2×(-4)=-8故答案为:-8【点睛】本题主要考查了代数式求值以及提取公因式法分解因式正确将原式变形是解题关键解析:-8【分析】直接提取公因式将原式变形进而整体代入已知得出答案.【详解】∵223a b ab ab -+(31)ab a b =-+,∵350b a --=,∴35a b -=-,又2ab =,∴原式=2×(-4)=-8.故答案为:-8.【点睛】本题主要考查了代数式求值以及提取公因式法分解因式,正确将原式变形是解题关键. 20.m (n ﹣2)2【分析】首先提取公因式m 再利用完全平方公式分解因式即可【详解】解:mn2﹣4mn+4m =m (n2﹣4n+4)=m (n ﹣2)2故答案为:m (n ﹣2)2【点睛】此题主要考查了提取公因式法以解析:m (n ﹣2)2【分析】首先提取公因式m ,再利用完全平方公式分解因式即可.【详解】解:mn 2﹣4mn+4m=m (n 2﹣4n+4)=m (n ﹣2)2.故答案为:m (n ﹣2)2.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.三、解答题21.(1)2(2)(2)a a a +-;(2)140∠=︒,285∠=︒.【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2) 根据平行线的性质,可以得到∠1和∠A 的关系,从而可以得到∠1的度数,再根据∠2=∠1+∠D ,即可求得∠2的度数.【详解】解:(1)原式()2242(2)(2)a a a a a =-=+-. (2)//AB CD ,140A ∴∠=∠=︒,45D ∠=︒,2185D ∴∠=∠+∠=︒.【点睛】此题考查了提公因式法与公式法的综合运用,以及平行线的性质,解答第2小题的关键是明确题意,利用平行线的性质和三角形外角和内角的关系解答.22.(1)()()22121a a a +-;(2)()2332x y -+ 【分析】(1)首先提取公因式2a ,再利用平方差公式分解因式得出答案;(2)原式利用完全平方公式分解即可.【详解】解:(1)8a 3-2ab 2=2a (4a 2-1)=2a (2a+1)(2a-1),(2)原式=[3(x-y )+2]2=(3x-3y+2)2.【点睛】本题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.23.①;见解析【分析】根据提公因式法和平方差公式进行因式分解.【详解】解:在小华同学的解答中,对原式进行变形,从第①步开始出现错误,故答案为:①正确过程如下:229()4()a x y b y x -+-229()4()a x y b x y =---22()(94)x y a b =--()(32)(32)x y a b a b =-+-.【点睛】本题考查综合提公因式和公式法进行因式分解,掌握提公因式技巧和平方差公式的公式结构正确计算是解题关键.24.(1)()22a m + ;(2)22224x x y --【分析】(1)先提公因式a ,再根据完全平方公式分解因式;(2)先根据整式乘法、乘法公式展开括号,然后再合并同类项即可得到答案.【详解】(1)解:244am am a ++ ()244a m m =++()22a m =+; (2)(2)(2)(2)x x x y x y -++-22224x x x y =-+-22224x x y =--.【点睛】此题考查因式分解及整式的混合运算,掌握多项式的因式分解的方法,整式的乘法计算法则、合并同类项计算法则是解题的关键.25.(1)2(3)(3)ab a a +-;(2)2(21)a b -.【分析】(1)先提取公因式2ab 、然后再运用平方差公式分解即可;(2)先提取公因式a 、然后再运用完全平方公式分解即可.【详解】(1)3218a b ab -()229ab a =-;2(3)(3)ab a a =+-(2)244ab ab a -+()2441a b b =-+2(21)a b =-.【点睛】本题主要考查了因式分解,灵活运用提取公因式法和公式法分解因式是解答本题的关键. 26.(1)4;(2) ()()57a a --;(3) ()()222222x x x x ++-+;(4)2.【分析】(1)由2224___222,a a a a ++=+•⨯+ 从而可得答案;(2)由22221235266635a a a a -+=-•⨯+-+化为两数的平方差,再利用平方差公式分解,从而可得答案;(3)由()242222422222x x x x +=+••+-••化为两数的平方差,再利用平方差公式分解即可;(4)由 ()22224432221113x x x x ++=+⨯•+-+化为一个非负数与一个常数的和,再利用非负数的性质求解最小值即可.【详解】解:(1)()22442,a a a ++=+ 故答案为:4.(2)22221235266635a a a a -+=-•⨯+-+()2261a =-- ()()6161a a =-+--()()57.a a =--(3)()242222422222x x x x +=+••+-•• ()()22222x x =+-()()222222.x x x x =++-+(4)()22224432221113x x x x ++=+⨯•+-+ ()2212x =++ ()2210,x +≥()22122,x ∴++≥ 2443x x ∴++的最小值是2.【点睛】本题考查的是配方法的应用,同时考查了完全平方公式与平方差公式,掌握用配方法分解因式,求最值是解题的关键.。

初中数学代数式经典测试题附解析

初中数学代数式经典测试题附解析

初中数学代数式经典测试题附解析一、选择题1.若多项式x 2+mx +4能用完全平方公式分解因式,则m 的值可以是( ) A .4B .﹣4C .±2D .±4【答案】D【解析】【分析】利用完全平方公式因式分解2222=()a ab b a b ±+±计算即可.【详解】解:∵x 2+mx +4=(x ±2)2,即x 2+mx +4=x 2±4x +4,∴m =±4.故选:D .【点睛】本题要熟记完全平方公式,尤其是两种情况的分类讨论.2.已知:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,…,根据前面各式的规律可猜测:101+103+105+…+199=( )A .7500B .10000C .12500D .2500 【答案】A【解析】【分析】用1至199的奇数的和减去1至99的奇数和即可.【详解】解:101+103+10 5+107+…+195+197+199 =22119919922++⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭=1002﹣502,=10000﹣2500,=7500,故选A .【点睛】本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.3.下列运算错误的是( )A .()326m m =B .109a a a ÷=C .358⋅=x x xD .437a a a +=【解析】【分析】直接利用合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则化简求出即可.【详解】A、(m2)3=m6,正确;B、a10÷a9=a,正确;C、x3•x5=x8,正确;D、a4+a3=a4+a3,错误;故选:D.【点睛】此题考查合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则等知识,正确掌握运算法则是解题关键.4.(x2﹣mx+6)(3x﹣2)的积中不含x的二次项,则m的值是()A.0 B.23C.﹣23D.﹣32【答案】C【解析】试题解析:(x2﹣mx+6)(3x﹣2)=3x3﹣(2+3m)x2+(2m+18)x﹣12,∵(x2﹣mx+6)(3x﹣2)的积中不含x的二次项,∴2+3m=0,解得,m=23 ,故选C.5.下列运算正确的是()A.2m2+m2=3m4B.(mn2)2=mn4C.2m•4m2=8m2D.m5÷m3=m2【答案】D【解析】【分析】直接利用合并同类项法则以及积的乘方运算法则、整式的乘除运算分别计算后即可解答.【详解】选项A,2m2+m2=3m2,故此选项错误;选项B,(mn2)2=m2n4,故此选项错误;选项C,2m•4m2=8m3,故此选项错误;选项D,m5÷m3=m2,正确.故选D.本题考查了合并同类项以及积的乘方运算、整式的乘除运算,正确掌握相关运算法则是解题关键.6.下列运算正确的是 ( )A .()236a a a -⋅=-B .632a a a ÷=C .()2222a a =D .()326a a =【答案】D【解析】【分析】 根据幂的乘方与积的乘方的运算法则和同底数幂的乘除法运算法则对各选项进行计算,最后进一步判断即可.【详解】A :()523a a a -⋅=-,计算错误;B :633a a a ÷=,计算错误;C :()2224a a =,计算错误;D :()326a a =,计算正确;故选:D.【点睛】比特主要考查了幂的乘方与积的乘方的运算和同底数幂的运算,熟练掌握相关运算法则是解题关键.7.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把最后一项染黑了,得到正确的结果变为2412a ab -+( ),你觉得这一项应是( )A .23bB .26bC .29bD .236b 【答案】C【解析】【分析】根据完全平方公式的形式(a±b )2=a 2±2ab+b 2可得出缺失平方项.【详解】根据完全平方的形式可得,缺失的平方项为9b 2故选C .【点睛】本题考查了整式的加减及完全平方式的知识,掌握完全平方公式是解决本题的关键.8.如果(x 2+px +q )(x 2-5x +7)的展开式中不含x 2与x 3项,那么p 与q 的值是( )A .p =5,q =18B .p =-5,q =18C .p =-5,q =-18D .p =5,q =-18【答案】A【解析】 试题解析:∵(x 2+px+q )(x 2-5x+7)=x 4+(p-5)x 3+(7-5p+q )x 2+(7-5q )x+7q , 又∵展开式中不含x 2与x 3项,∴p-5=0,7-5p+q=0,解得p=5,q=18.故选A .9.一种微生物的直径约为0.0000027米,用科学计数法表示为( )A .62.710-⨯B .72.710-⨯C .62.710-⨯D .72.710⨯【答案】A【解析】【分析】绝对值小于1的正数科学记数法所使用的是负指数幂,指数由原数左边起第一个不为0的数字前面的0的个数所决定.【详解】解:0.0000027的左边第一个不为0的数字2的前面有6个0,所以指数为-6,由科学记数法的定义得到答案为62.710-⨯.故选A.【点睛】本题考查了绝对值小于1的正数科学记数法表示,一般形式为10n a -⨯.10.如图,是一个运算程序的示意图,若开始输入x 的值为81,则第2018次输出的结果是( )A .3B .27C .9D .1【答案】D【解析】【分析】 根据运算程序进行计算,然后得到规律从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3,然后解答即可.【详解】第1次,13×81=27, 第2次,13×27=9, 第3次,13×9=3, 第4次,13×3=1, 第5次,1+2=3,第6次,13×3=1, …,依此类推,偶数次运算输出的结果是1,奇数次运算输出的结果是3,∵2018是偶数,∴第2018次输出的结果为1.故选D .【点睛】本题考查了代数式求值,根据运算程序计算出从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3是解题的关键.11.下列计算正确的是( )A .236a a a ⋅=B .22a a a -=C .632a a a ÷=D .236()a a =【答案】D【解析】【分析】根据同底数幂的乘除法公式,合并同类项,以及幂的乘方公式逐项计算得到结果,即可作出判断.【详解】A 、235a a a ⋅=,不符合题意;B 、22a 和a 不是同类项,不能合并,不符合题意;C 、633a a a ÷=,不符合题意;D 、236()a a =,符合题意,故选:D .【点睛】此题考查了同底数幂的乘除法,合并同类项,以及幂的乘方,熟练掌握运算法则是解本题的关键.12.将(mx +3)(2﹣3x )展开后,结果不含x 的一次项,则m 的值为( )A .0B .92C .﹣92D .32【答案】B【解析】【分析】 根据多项式乘以多项式的法则即可求出m 的值.【详解】解:(mx +3)(2-3x )=2mx -3mx 2+6-9x=-3mx 2+(2m -9)x +6由题意可知:2m -9=0,∴m =92故选:B .【点睛】本题考查多项式乘以多项式,解题的关键是熟练运用整式的运算法则,本题属于基础题型.13.下列运算正确的是( )A .2352x x x +=B .()-=g 23524x x xC .()222x y x y +=-D .3223x y x y xy ÷=【答案】B【解析】【分析】A 不是同类项,不能合并,B 、D 运用单项式之间的乘法和除法计算即可,C 运用了完全平方公式.【详解】A 、应为x 2+x 3=(1+x )x 2;B 、(-2x )2•x 3=4x 5,正确;C 、应为(x+y )2= x 2+2xy+y 2;D 、应为x 3y 2÷x 2y 3=xy -1.故选:B .【点睛】本题考查合并同类项,同底数幂的乘法,完全平方公式,单项式除单项式,熟练掌握运算法则和性质是解题的关键.14.下列运算正确的是A .32a a 6÷=B .()224ab ab =C .()()22a b a b a b +-=-D .()222a b a b +=+【答案】C【解析】根据整式的除法,幂的乘方与积的乘方运算法则和平方差公式,完全平方公式逐一计算作出判断:A 、322a a 2a ÷=,故选项错误;B 、()2224ab a b =,故选项错误;C 、选项正确;D 、()222a b a 2ab b +=++,故选项错误.故选C .15.有两个正方形A ,B ,现将B 放在A 的内部得图甲,将A ,B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A ,B 的面积之和为( )A .7B .12C .13D .25【答案】C【解析】【分析】 设正方形A 的边长为a ,正方形B 的边长为b ,根据图形列式整理得a 2+b 2−2ab =1,2ab =12,求出a 2+b 2即可.【详解】解:设正方形A 的边长为a ,正方形B 的边长为b ,由图甲得:a 2−b 2−2(a−b )b =1,即a 2+b 2−2ab =1,由图乙得:(a +b )2−a 2−b 2=12,即2ab =12,所以a 2+b 2=13,即正方形A ,B 的面积之和为13,故选:C.【点睛】本题主要考查了完全平方公式在几何图形中的应用,解题的关键是根据图形列出算式.16.按如图所示的运算程序,能使输出y 的值为1的是( )A.a=3,b=2 B.a=﹣3,b=﹣1 C.a=1,b=3 D.a=4,b=2【答案】A【解析】【分析】根据题意,每个选项进行计算,即可判断.【详解】解:A、当a=3,b=2时,y=12a-=132-=1,符合题意;B、当a=﹣3,b=﹣1时,y=b2﹣3=1﹣3=﹣2,不符合题意;C、当a=1,b=3时,y=b2﹣3=9﹣3=6,不符合题意;D、当a=4,b=2时,y=12a-=142-=12,不符合题意.故选:A.【点睛】本题考查有理数的混合运算,代数式求值等知识,解题的关键是理解题意,属于中考常考题型.17.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑥个图形中菱形的个数为()A.42 B.43 C.56 D.57【答案】B【解析】【分析】根据题意得出得出第n个图形中菱形的个数为n2+n+1;由此代入求得第⑧个图形中菱形的个数.【详解】第①个图形中一共有3个菱形,3=12+2;第②个图形中共有7个菱形,7=22+3;第③个图形中共有13个菱形,13=32+4;…,第n个图形中菱形的个数为:n2+n+1;第⑥个图形中菱形的个数62+6+1=43.故选B.【点睛】此题考查图形的变化规律,找出图形之间的联系,找出规律是解决问题的关键.18.在很小的时候,我们就用手指练习过数数,一个小朋友按如图所示的规则练习数数,数到2019时对应的指头是()(说明:数1、2、3、4、5对应的指头名称依次为大拇指、食指、中指、无名指、小指)A.食指B.中指C.小指D.大拇指【答案】B【解析】【分析】根据题意,观察图片,可得小指、大拇指所表示的数字的规律,及其计数的顺序,进而可得答案.【详解】解:∵大拇指对的数是1+8n,小指对的数是5+8n.食指、中指、无名指对的数介于它们之间.=⨯+,又∵2019是奇数,201925283∴数到2019时对应的指头是中指.故选:B.【点睛】此题主要考查了数字变化类,只需找出大拇指和小指对应的数的规律即可.关键规律为:大拇指对的数是1+8n,小指对的数是5+8n.食指、中指、无名指对的数介于它们之间.19.计算(-2)2009+(-2)2010的结果是()A.22019 B.22009 C.-2 D.-22010【答案】B【解析】(-2)2009+(-2)2010=(-2)2009+(-2)2009+1=(-2)2009+(-2)2009×(-2)=(-2)2009×[1+(-2)]=-22009×(-1)=22009, 故选B .20.下列计算,正确的是( ) A .2a a a -=B .236a a a =C .933a a a ÷=D .()236a a = 【答案】D【解析】A.2a 和a,和不能合并,故本选项错误;B.2356a a a a ⋅=≠ ,故本选项错误;C.9363a a a a ÷=≠,和不能合并,故本选项错误;D.()236 a a =,故本选项正确; 故选D.。

(必考题)初中数学七年级数学下册第一单元《整式的乘除》测试(包含答案解析)(1)

(必考题)初中数学七年级数学下册第一单元《整式的乘除》测试(包含答案解析)(1)
9.如果4a2﹣ka+1是完全平方式,那么k的值是()
A.﹣4B.±4C.4D.±8
10.若 ,则 的值等于( )
A.37B.27C.25D.44
11.如 , ,则 ( )
A.-11B.11
C.-7D.7
12.如图所示的四边形均为矩形或正方形,下列等式能够正确表示该图形面积关系的是()
A. B.
C. D.
10.A
解析:A
【分析】
利用完全平方公式进行运算即可得.
【详解】

,即 ①,
又 ,
②,
由① ②得: ,
即 ,
故选:A.
【点睛】
本题考查了利用完全平方公式进行运算求值,熟记公式是解题关键.
11.D
解析:D
【分析】
根据 直接代入求值即可.
【详解】
解:当 , ,时,
=9-2=7.
故选:D.
【点睛】
本题考查对完全平方公式的变形应用能力,熟记有关完全平方公式的几个变形公式是解题的关键
∵ , ,
∴x+y= ,

=
=
=20,
故选:A.
【点睛】
此题考查完全平方公式,熟记完全平方公式并运用解决问题是解题的关键.
7.C
解析:C
【分析】
表示出空白三角形的面积,用总面积减去两个空白三角形的面积即可,再将得到的等式变形后,利用整体代入求值即可.
【详解】
解:如图,大正方形的边长是a,三角形①的两条直角边长都为a,三角形②的一条直角边为a-b,另一条直角边为b,
解析:6
【分析】
根据平方差公式计算.
【详解】
( +1)( ﹣1)=7-1=6,

2021年北师大版七年级数学下册1.6完全平方公式自主学习同步测试2(附答案)

2021年北师大版七年级数学下册1.6完全平方公式自主学习同步测试2(附答案)

2021年北师大版七年级数学下册1.6完全平方公式自主学习同步测试2(附答案)1.若4x2﹣kxy+9y2是完全平方式,则k的值是()A.±6B.±12C.±36D.±722.在等式“4x2+()+1=()2左边填加一个单项式,使其右边可以写成一个完全平方式,下列各选项中不行的是()A.4x B.﹣4x C.4x4D.3.若x2+2(m+1)x+25是一个完全平方式,那么m的值为()A.4或﹣6B.4C.6或4D.﹣64.三种不同类型的长方形地砖长宽如图所示,现有A类16块,B类48块,小明用这些地砖刚好拼成一个正方形(无缝且不重叠),那么小明所用C类地砖()块.A.36B.24C.12D.65.如果9x2+kx+16能写成一个完全平方的形式,则后k=()A.﹣24B.12C.±12D.±246.已知x2+2(m﹣1)x+9是一个完全平方式,则m的值为()A.4B.4或﹣2C.±4D.﹣27.若x2+mx+49是一个完全平方式,那么m的值为()A.7B.14C.﹣14D.±148.若是完全平方式,则实数k的值为()A.B.C.D.9.如图,根据计算长方形ABCD的面积,可以说明下列哪个等式成立()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)(a﹣b)=a2﹣b2D.a(a+b)=a2+ab10.如图,有A、B、C三种不同型号的卡片,每种各10张.A型卡片是边长为a的正方形,B型卡片是相邻两边长分别为a、b的长方形,C型卡片是边长为b的正方形,从中取出若干张卡片(每种卡片至少一张),把取出的这些卡片拼成一个正方形,所有符合要求的正方形个数是()A.4B.5C.6D.711.已知(a+b)2=20,(a﹣b)2=4,则ab=.12.已知:m﹣n=6,mn=1,则m2+n2=.13.计算:20202﹣4040×2019+20192=.14.若x﹣y=6,xy=7,则x2+y2的值等于.15.已知(5+2x)2+(3﹣2x)2=40,则(5+2x)•(3﹣2x)的值为.16.已知a,b满足a﹣b=1,ab=2,则a+b=.17.若m﹣n=3,mn=5,则m+n的值为.18.如图所示,两个正方形的边长分别为a和b,如果a+b=10,ab=20,那么阴影部分的面积是.19.如图,已知正方形ABCD与正方形CEFG的边长分别为a、b,如果a+b=20,ab=18,则阴影部分的面积为.20.如图,边长分别为a,b的两个正方形并排放在一起,当a+b=16,ab=60时阴影部分的面积为.21.∵a2±2ab+b2=(a±b)2,∴我们把形如a2±2ab+b2的式子称为完全平方式.请解决下列问题:(1)代数式x2+6x+m中,当m=时,代数式为完全平方式;(2)代数式x2+mx+25中,当m=时,代数式为完全平方式;(3)代数式x2+(m+2)x+(4m﹣7)为完全平方式,求m的值.22.如图,正方形ABCD和正方形EFGH的重叠部分是长方形ENDM.四边形HMDK和DNFL都是正方形,设它们的边长分别为a,b.(1)填空:(a+b)2=a2++b2;(a+b)2=(a﹣b)2+.(2)若长方形ENDM的面积为3,AM=3,CN=4,求正方形EFGH的边长.23.两个边长分别为a和b的正方形如图放置(图1),其未叠合部分(阴影)面积为S1;若再在图1中大正方形的右下角摆放一个边长为b的小正方形(如图2),两个小正方形叠合部分(阴影)面积为S2.(1)用含a,b的代数式分别表示S1、S2;(2)若a+b=10,ab=20,求S1+S2的值;(3)当S1+S2=30时,求出图3中阴影部分的面积S3.24.【阅读理解】“若x满足(70﹣x)(x﹣50)=30,求(70﹣x)2+(x﹣50)2的值”.解:设70﹣x=a,x﹣50=b,则(70﹣x)(x﹣50)=ab=30,a+b=(70﹣x)+(x﹣50)=20,(70﹣x)2+(x﹣50)2=a2+b2=(a+b)2﹣2ab=202﹣2×30=340.【解决问题】(1)若x满足(40﹣x)(x﹣30)=﹣20,则(40﹣x)2+(x﹣30)2的值为;(2)若x满足(2x﹣3)(x﹣1)=,则(3﹣2x)2+4(x﹣1)2的值为;(3)如图,正方形ABCD的边长为x,AE=14,CG=30,长方形EFGD的面积是200,四边形NGDH和MEDQ都是正方形,四边形PQDH是长方形,求图中阴影部分的面积(结果必须是一个具体的数值).25.某公司门前一块长为(6a+2b)米,宽为(4a+2b)米的长方形空地要铺地砖,如图所示,空白的A、B两正方形区域是建筑物,不需要铺地砖.两正方形区域的边长为(a+b)米.(1)求铺设地砖的面积是多少平方米;(2)当a=2,b=3时,需要铺地砖的面积是多少?(3)在(2)的条件下,某种道路防滑地砖的规格是:正方形,边长为0.2米,每块1.5元,不考虑其他因素,如果要购买此种地砖,需要多少钱?26.要说明(a+b+c)2=a2+b2+c2+2ab+2ac+2bc成立,三位同学分别提供了一种思路,请根据他们的思路写出推理过程.(1)小刚说:可以根据乘方的意义来说明等式成立;(2)小王说:可以将其转化为两数和的平方来说明等式成立;(3)小丽说:可以构造图形,通过计算面积来说明等式成立.27.在求两位数的平方时,可以用完全平方式及“列竖式”的方法进行速算,求解过程如下.例如:求322.解:因为(3x+2y)2=9x2+4y2+12xy,将上式中等号右边的系数填入下面的表格中可得:所以322=1024.(1)下面是嘉嘉仿照例题求892的一部分过程,请你帮他填全表格及最后结果;解:因为(8x+9y)2=64x2+81y2+144xy,将上式中等号右边的系数填入下面的表格中可得:所以892=;(2)仿照例题,速算672;(3)琪琪用“列竖式”的方法计算一个两位数的平方,部分过程如图所示.若这个两位数的个位数字为a,则这个两位数为(用含a的代数式表示).28.(1)当a=﹣2,b=1时,求两个代数式(a+b)2与a2+2ab+b2的值;(2)当a=﹣2,b=﹣3时,再求以上两个代数式的值;(3)你能从上面的计算结果中,发现上面有什么结论.结论是:;(4)利用你发现的结论,求:19652+1965×70+352的值.参考答案1.解:∵4x2﹣kxy+9y2是完全平方式,∴﹣kxy=±2×2x•3y,解得k=±12.故选:B.2.解:4x2+1+±4x,4x2+1+4x4,4x2+1﹣1=4x2,4x2+1﹣4x2=1都是完全平方式,观察选项,只有选项D符合题意,故选:D.3.解:∵x2+2(m+1)x+25是一个完全平方式,∴m+1=±5,解得:m=4或m=﹣6,故选:A.4.解:∵16m2+48mn+36n2=(4m+6n)2,∴(4m+6n)2=16m2+48mn+36n2,∴A类16块,B类48块,C类36块刚好拼成一个边长为(4m+6n)的正方形.故选:A.5.解:由于(3x±4)2=9x2±24x+16=9x2+mx+16,∴m=±24.故选:D.6.解:∵x2+2(m﹣1)x+9是一个完全平方式,∴2(m﹣1)=±6,解得:m=4或m=﹣2,故选:B.7.解:∵x2+mx+49是一个完全平方式,∴①x2+mx+49=(x+7)2+(m﹣14)x,∴m﹣14=0,m=14;②x2+mx+49=(x﹣7)2+(m+14)x,∴m+14=0,m=﹣14;∴m=±14;故选:D.8.解:∵4x2+kx+是完全平方式,∴kx=±2×2x×,∴k=±.故选:C.9.解:∵长方形ABCD面积=两个小长方形面积的和,∴可得a(a+b)=a2+ab故选:D.10.解:∵每一种卡片10张,并且每种卡片至少取1张,拼成的正方形,∴正方形的边长可以为:(a+b),(a+2b),(a+3b),(2a+b),(2a+2b),(3a+b)六种情况;(注意每一种卡片至少用1张,至多用10张)即:(a+b)2=a2+2ab+b2,需要A卡片1张,B卡片2张,C卡片1张;(a+2b)2=a2+4ab+4b2,需要A卡片1张,B卡片4张,C卡片4张;(a+3b)2=a2+6ab+9b2,需要A卡片1张,B卡片6张,C卡片9张;(2a+b)2=4a2+4ab+b2,需要A卡片4张,B卡片4张,C卡片1张;(2a+2b)2=4a2+8ab+4b2,需要A卡片4张,B卡片8张,C卡片4张;(3a+b)2=9a2+6ab+b2,需要A卡片9张,B卡片6张,C卡片1张;故选:C.11.解:∵(a+b)2=20,(a﹣b)2=4,4ab=(a+b)2﹣(a﹣b)2=20﹣4=16,解得ab=4.故答案为:412.解:∵(m﹣n)2=m2+n2﹣2mn,∵36=m2+n2﹣2,∴m2+n2=38,故答案为38.13.解:20202﹣4040×2019+20192=20202﹣2×2020×2019+20192=(2020﹣2019)2=12=1.故答案为:1.14.解:因为x﹣y=6,xy=7,所以x2+y2=(x﹣y)2+2xy=62+2×7=50,故答案为:50.15.解:∵(5+2x)2+(3﹣2x)2=40,∴[(5+2x)+(3﹣2x)]2﹣2(5+2x)(3﹣2x)=40,即64﹣2(5+2x)(3﹣2x)=40,∴(5+2x)(3﹣2x)=12.故答案为12.16.解:因为a﹣b=1,ab=2,所以a2+b2=(a﹣b)2+2ab=12+2×2=1+4=5,所以(a+b)2=a2+b2+2ab=5+2×2=9,所以a+b=±3.故答案为:±3.17.解:根据(m+n)2=(m﹣n)2+4mn,把m﹣n=3,mn=1,得,(m+n)2=9+20=29;所以m+n=.故选:.18.解:由图可知,五边形ABGFD的面积=正方形ABCD的面积+梯形DCGF的面积,=a2+(a+b)b=,阴影部分的面积=五边形ABGFD的面积﹣三角形ABD﹣三角形BCF=﹣﹣==,∵a+b=10,ab=20,∴a2+b2=(a+b)2﹣2ab=102﹣2×20=60,∴阴影部分的面积为=30.故答案为:30.19.解:S=a2+b2﹣(a+b)b=a2+b2﹣ab﹣b2=a2+b2﹣ab=(a2+b2﹣ab)=(a+b)2﹣ab,当a+b=20,ab=18时,原式=﹣=200﹣27=173.故答案为:173.20.解:根据题意得:S阴影部分=a2+b2﹣a2﹣b(a+b)=a2+b2﹣a2﹣ab﹣b2=(a2+b2﹣ab)=[(a+b)2﹣3ab],把a+b=16,ab=60代入得:S阴影部分=38.故图中阴影部分的面积为38.故答案为38.21.解:(1)代数式x2+6x+m中,当m=9时,代数式为完全平方式;故答案为:9;(2)代数式x2+mx+25中,当m=±10时,代数式为完全平方式;故答案为:±10;(3)∵代数式x2+(m+2)x+(4m﹣7)为完全平方式,∴=,∴m2+4m+4=16m﹣28,m2﹣12m+32=0,m2﹣12m+36=4,∴(m﹣6)2=4,m﹣6=±2,m1=8,m2=4.22.解:(1)正方形EFGH的边长为(a+b),因此面积为:(a+b)2,又正方形EFGH也可以用四部分的面积和,即a2+2ab+b2,故答案为:2ab;∵(a+b)2=a2+2ab+b2,(a﹣b)2=a2﹣2ab+b2,∴(a+b)2=(a﹣b)2+4ab,故答案为:4ab;(2)由长方形ENDM的面积为3,可得ab=3,∵AM=3,CN=4,∴3+a=4+b,即a﹣b=1由(a+b)2=(a﹣b)2+4ab得,(a+b)2=(a﹣b)2+4ab=1+12=13,∴a+b=,即正方形EFGH的边长为.23.解:(1)由图可得,S1=a2﹣b2,S2=a2﹣a(a﹣b)﹣b(a﹣b)﹣b(a﹣b)=2b2﹣ab;(2)S1+S2=a2﹣b2+2b2﹣ab=a2+b2﹣ab,∵a+b=10,ab=20,∴S1+S2=a2+b2﹣ab=(a+b)2﹣3ab=100﹣3×20=40;(3)由图可得,S3=a2+b2﹣b(a+b)﹣a2=(a2+b2﹣ab),∵S1+S2=a2+b2﹣ab=30,∴S3=×30=15.24.(1)解:设40﹣x=a,x﹣30=b,则(40﹣x)(x﹣30)=ab=﹣20,a+b=(40﹣x)+(x﹣30)=10,(40﹣x)2+(x﹣30)2=a2+b2=(a+b)2﹣2ab=102﹣2×(﹣20)=140,故答案为:140;(2)解:设2x﹣3=a,x﹣1=b,则(2x﹣3)(x﹣1)=ab=,﹣a+2b=(3﹣2x)+2 (x﹣1)=1,(3﹣2x)2+4(x﹣1)2=(﹣a)2+4b2=(﹣a+2b)2+4ab=1+9=10;(3)解:矩形EFGD的面积=(x﹣14)(x﹣30)=200,设x﹣14=a,x﹣30=b,则(x﹣14)(x﹣30)=ab=200a﹣b=(x﹣14)﹣(x﹣30)=16∴阴影部分的面积=(a+b)2=(a﹣b)2+4ab=162+4×200=1056.25.解:(1)根据题意得:铺设地砖的面积为(6a+2b)(4a+2b)﹣2(a+b)2=24a2+20ab+4b2﹣2a2﹣4ab﹣2b2=22a2+16ab+2b2(平方米);(2)当a=2,b=3时,原式=88+96+18=202(平方米);(3)根据题意得:202÷0.22×1.5=202÷0.04×1.5=7575(元).26.解:(1)小刚:(a+b+c)2=(a+b+c)(a+b+c)=a2+ab+ac+ab+b2+bc+ac+bc+c2=a2+b2+c2+2ab+2bc+2ac;(2)小王:(a+b+c)2=[(a+b)+c]2=(a+b)2+2(a+b)c+c2=a2+b2+2ab+2ac+2bc+c2;(3)小丽:如图所示:(a+b+c)2=a2+b2+c2+ab+ac+bc+ab+ac+bc,27.解:(1)因为(8x+9y)2=64x2+81y2+144xy,将上式中等号右边的系数填入下面的表格中可得:所以892=7921;故答案为:7921;(2)因为(6x+7y)2=36x2+49y2+84xy,将上式中等号右边的系数填入下面的表格中可得:所以672=4 489.(3)设这个两位数的十位数字为b,由题意得,2ab=10a,解得b=5,所以,这个两位数是10×5+a=a+50.故答案为:a+50.28.解:(1)当a=﹣2,b=1时,(a+b)2=1,a2+2ab+b2=1﹣﹣(2分)(2)当a=﹣2,b=﹣3时,(a+b)2=25,a2+2ab+b2=25﹣﹣(4分)(3)(a+b)2=a2+2ab+b2(6分)故答案是:(a+b)2=a2+2ab+b2(4)原式=19652+2×1965×35+352=(1965+35)2=4000000﹣(10分。

(常考题)人教版初中数学八年级数学上册第四单元《整式的乘法与因式分解》测试题(答案解析)(4)

(常考题)人教版初中数学八年级数学上册第四单元《整式的乘法与因式分解》测试题(答案解析)(4)

一、选择题1.如果249x mx -+是一个完全平方式,则m 的值是( )A .12±B .9C .9±D .122.下列等式中从左到右边的变形是分解因式的是( ) A .()21a a b a ab a +-=+- B .()2211a a a a --=-- C .()()22492323a b a b a b -+=-++D .1212x x x ⎛⎫+=+⎪⎝⎭3.已知3x y +=,1xy =,则23x xy y -+的值是()A .7B .8C .9D .124.已知435x y +-与2(24)x y --互为相反数,则x y 的值为( ) A .2-B .2C .1-D .15.已知25y x -=,那么()2236x y x y --+的值为( ) A .10 B .40 C .80 D .210 6.数151025N =⨯是( )A .10位数B .11位数C .12位数D .13位数7.记A n =(1﹣212)(1﹣213)(1﹣214)…(1﹣21n),其中正整数n ≥2,下列说法正确的是( ) A .A 5<A 6 B .A 52>A 4A 6C .对任意正整数n ,恒有A n <34D .存在正整数m ,使得当n >m 时,A n <100820158.下列各多项式中,能用平方差公式分解因式的是( ) A .21x -+B .21x +C .21x --D .221x x -+9.小明是一位密码翻译爱好者,在他的密码手册中,有这样一条信息:-a b ,x y -,x y +,+a b ,22x y -,22a b -分别对应下列六个字:通、爱、我、昭、丽、美、现将()()222222xy a x y b ---因式分解,结果呈现的密码信息可能是( )A .我爱美丽B .美丽昭通C .我爱昭通D .昭通美丽10.已知()()22113(21)a b ab ++=-,则1b a a ⎛⎫- ⎪⎝⎭的值是( ) A .0B .1C .-2D .-111.下列各式计算正确的是( )A .5210a a a =B .()428=aaC .()236a ba b = D .358a a a +=12.下列运算正确的是( ) A .x 2·x 3=x 6B .(x 3)2=x 6C .(-3x)3=27x 3D .x 4+x 5=x 9二、填空题13.若2,3x y a a ==,则22x y a +=_______________________. 14.若23x =,25y =,则22x y +=____________.15.下图中的四边形均为长方形,根据图形面积,写出一个正确的等式:______.16.若294x kx ++是一个完全平方式,则k 的值为_____. 17.对于有理数a ,b ,定义min{,}a b 的含义为:当a b <时,min{,}a b a =;当a b >时,min{,}a b b =.例如:min{1,22}-=-,min{3,1}1-=-.已知min{21,}21a =,min{21,}b b =,且a 和b 是两个连续的正整数,则a+b =_____.18.已知2m n +=,2mn =-,则(1)(1)m n --=________.19.如果关于x 的多项式24x bx ++是一个完全平方式,那么b =________. 20.若6x y +=,3xy =-,则2222x y xy +=_____.三、解答题21.先化简,再求值:2()(2)(2)()x y x y y x y ⎡⎤---+÷-⎣⎦,其中1x =-,2y =. 22.如图1是一个长为4a 、宽为b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2).(1)观察图1、图2,请你写出()2a b +、()2a b -、ab 之间的等量关系; (2)根据(1)中的结论,若5x y -=,114xy =,试求x y +的值; (3)拓展应用:若()()222019202134m m -+-=,求()()20192021m m --的值.23.如图1是一个长为4a 、宽为b 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2).(1)观察图2请你写出()2a b +、()2a b -、ab 之间的等量关系是______; (2)拓展应用:若()()22202020217m m -+-=,求()()20202021m m --的值.24.因式分解:(1)382a a - (2)()()24129x y x y +-+-25.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式. 例如由图①可以得到两数和的平方公式:(a +b )2=a 2+2ab +b 2.请解答下列问题:(1)写出由图②可以得到的数学等式 ;(2)利用(1)中得到的结论,解决下面问题:若a +b +c =6,a 2+b 2+c 2=14,求ab +bc +ac 的值;(3)可爱同学用图③中x 个边长为a 的正方形,y 个宽为a ,长为b 的长方形,z 个边长为b 的正方形,拼出一个面积为(2a +b )(a +4b )的长方形,则x +y +z = . 26.已知x 、y 为有理数,现规定一种新运算,满足1x y xy *=+. (1)求24*的值; (2)求(14)(2)*-的值;(3)探索()a b c *+与a b a c *+*的关系,并用等式把它们表达出来.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m 的值. 【详解】解:∵()22249=23x mx x mx -+-+,∴223mx x -=±⨯⨯ , 解得m=±12. 故选:A . 【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.2.C解析:C 【分析】将多项式写成整式的积的形式,叫做将多项式分解因式,根据定义依次判断. 【详解】A 、()21a a b a ab a +-=+-这是整式乘法计算,故该项不符合题意;B 、()2211a a a a --=--,等式右侧不是整式的乘积,故该项不符合题意;C 、()()22492323a b a b a b -+=-++,故该项符合题意;D 、1212x x x ⎛⎫+=+ ⎪⎝⎭,等式右侧是乘积,但1x 不是整式,故该项不符合题意;故选:C . 【点睛】此题考查多项式的因式分解,掌握因式分解的定义是正确判断的关键.3.A解析:A 【分析】先把3x y +=代入原式,可得23x xy y -+=22xy +,结合完全平方公式,即可求解.【详解】 ∵3x y +=,∴23x xy y -+=2()x xy x y y -++=22x xy xy y -++=22x y +,∵1xy =,∴23x xy y -+=22x y +=22()23217x y xy +-=-⨯=,故选A . 【点睛】本题主要考查代数式求值,熟练掌握完全平方公式及其变形公式,是解题的关键.4.D解析:D 【分析】根据相反数和非负数的性质即可求出x 、y 的值,再代入xy 中即可.根据绝对值和偶次方的性质可知,4350x y +-≥,224)0(x y --≥又∵435x y +-和2(24)x y --是相反数,即2435(24)0x y x y +-+--=.∴435=024=0x y x y +-⎧⎨--⎩ ,解得:=2=1x y ⎧⎨-⎩,∴2(1)1x y =-=. 故选:D . 【点睛】本题考查相反数和非负数的性质、代数式求值以及求解二元一次方程组.根据题意列出二元一次方程组求出x 、y 的值是解答本题的关键.5.B解析:B 【分析】所求式子变形后,将已知等式变形代入计算即可求出值. 【详解】 25y x -=∴ 25x y -=-()2236x y x y --+()()2=322x y x y ---=()()2535--⨯- =25+15 =40 故选:B 【点睛】此题主要考查整体代入的思想,还考查代数式求值的问题,是一道基础题.6.C解析:C 【分析】利用同底数幂的乘法和积的乘方的逆运算,将原数改写变形即可得出结论. 【详解】()1015105101051011252252253210 3.210N =⨯=⨯⨯=⨯⨯=⨯=⨯,∴N 是12位数, 故选:C .本题考查同底数幂的乘法和积的乘方的逆运算的应用,灵活运用基本运算法则对原式变形是解题关键.7.D解析:D 【分析】根据平方差公式因式分解然后约分,便可归纳出来即可. 【详解】 解:A 、A 5=22221111631111==2345105⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭, A 6=231715612⎛⎫⨯-= ⎪⎝⎭, 37512> ∴A 5>A 6, 此选项不符合题意; B 、A 4=2221115111=2348⎛⎫⎛⎫⎛⎫--- ⎪⎪⎪⎝⎭⎝⎭⎝⎭, ∴A 52=925,A 4A 6=5735=81290⨯, ∵9352590<, ∴A 52<A 4A 6,此选项不符合题意; C 、∵A 2=2131=24-, 且345674681012<<<<<,∴n ≥2时,恒有A n ≤34,此选项不符合题意;D 、当m =2015时,A m =2015+120161008==2201540302015⨯,当n >m 时,A n <10082015, ∴存在正整数m ,使得当n >m 时,A n <10082015, 此选项符合题意; 故选择:D .本题考查数字的变化规律,平方差公式,关键是根据题目找出规律是关键.8.A解析:A 【分析】根据平方差公式:两个数平方的差,等于这两个数的和与差的平方解答. 【详解】A 、21x -+,能用平方差公式分解因式;B 、21x +,不能用平方差公式分解因式;C 、21x --,不能用平方差公式分解因式;D 、221x x -+,不能用平方差公式分解因式; 故选:A . 【点睛】此题考查平方差公式:22()()a b a b a b -=+-,掌握公式中多项式的特点是解题的关键.9.C解析:C 【分析】将式子先提取公因式再用平方差公式因式分解可得:(x 2-y 2)a 2-(x 2-y 2)b 2=(x 2-y 2)(a 2-b 2)=(x+y )(x-y )(a+b )(a-b ),再结合已知即可求解. 【详解】解:(x 2-y 2)a 2-(x 2-y 2)b 2 =(x 2-y 2)(a 2-b 2)=(x+y )(x-y )(a+b )(a-b ), 由已知可得:我爱昭通, 故选:C . 【点睛】本题考查了因式分解的应用;将已知式子进行因式分解,再由题意求解是解题的关键.10.D解析:D 【分析】先对()()22113(21)a b ab ++=-进行变形,可以解出a ,b 的关系,然后在对1b a a ⎛⎫- ⎪⎝⎭进行因式分解即可. 【详解】∵()()22113(21)a b ab ++=-, ∴2222163a b a b ab +++=-,22222440a b ab a b ab +-+-+=,()()2220a b ab -+-=,∴a b =,2ab =,∴1121bb a ab a a⎛⎫-=-=-=-⎪⎝⎭ 故选:D . 【点睛】本题主要考查了因式分解的应用,在解题时要注意符号变换,同时掌握正确的运算是解答本题的关键.11.B解析:B 【分析】根据同底数幂相乘、幂的乘方、积的乘方、合并同类项法则逐一计算即可判断. 【详解】解:A 、a 5•a 2=a 7,此选项计算错误,故不符合题意; B 、(a 2)4=a 8,此选项计算正确,符合题意; C 、(a 3b )2=a 6b 2,此选项计算错误,故不符合题意; D 、a 3与a 5不能合并,此选项计算错误,故不符合题意. 故选:B . 【点睛】本题主要考查幂的运算,合并同类项,解题的关键是熟练掌握同底数幂相乘、幂的乘方与积的乘方的运算法则.12.B解析:B 【分析】根据幂的乘方与积的乘方的运算方法,同底数幂的乘法的运算方法,以及合并同类项的方法,逐项判断即可. 【详解】∵x 2•x 3=x 5,∴选项A 不符合题意; ∵(x 3)2=x 6,∴选项B 符合题意; ∵(−3x )3=−27x 3,∴选项C 不符合题意; ∵x 4+x 5≠x 9,∴选项D 不符合题意. 故选:B . 【点睛】此题主要考查了幂的乘方与积的乘方的运算方法,同底数幂的乘法的运算方法,以及合并同类项的方法,要熟练掌握.二、填空题13.36【分析】根据同底数幂的乘法及幂的乘方的逆用计算即可【详解】解:∵∴=2²×3²=36故答案为36【点睛】本题考查了同底数幂的乘法及幂的乘方的逆用熟记幂的运算性质是解答本题的关键解析:36 【分析】根据同底数幂的乘法及幂的乘方的逆用计算即可. 【详解】解:∵2,3x ya a ==,∴222222().()x y x y x y a a a a a +=⋅==2²×3²=36, 故答案为36. 【点睛】本题考查了同底数幂的乘法及幂的乘方的逆用,熟记幂的运算性质是解答本题的关键.14.75【分析】逆用积的乘方可得再逆用幂的乘方即可求解【详解】解:故答案为:75【点睛】本题考查积的乘方和幂的乘方的逆用掌握积的乘方和幂的乘方是解题的关键解析:75 【分析】逆用积的乘方可得22222x y x y +=⋅,再逆用幂的乘方即可求解. 【详解】解:()2222222223575x y x y x y +=⋅=⋅=⨯=,故答案为:75. 【点睛】本题考查积的乘方和幂的乘方的逆用,掌握积的乘方和幂的乘方是解题的关键.15.(等号两边交换位置也正确)【分析】根据三个小长方形的面积和等于大长方形的面积可列等式【详解】解:从左到右三个小长方形的面积分别为:mambmc 大长方形的面积为:m (a+b+c )三个小长方形的面积和等解析:()m a b c ma mb c ++=++(等号两边交换位置也正确) 【分析】根据三个小长方形的面积和等于大长方形的面积可列等式. 【详解】解:从左到右三个小长方形的面积分别为:ma 、mb 、mc , 大长方形的面积为:m (a+b+c ),三个小长方形的面积和等于大长方形的面积,m (a+b+c )= ma+mb+mc , 故答案为:()m a b c ma mb c ++=++. 【点睛】本题考查了单项式乘以多项式的几何意义,分别表示出各个长方形的面积,找到等量关系是解题关键.16.【分析】根据完全平方公式分和的完全平方公式和差的完全平方公式两种情形求解即可【详解】∵=∴kx=∴k=故应该填【点睛】本题考查了完全平方公式的应用熟记完全平方公式并能进行灵活公式变形是解题的关键解析:3±. 【分析】根据完全平方公式,分和的完全平方公式和差的完全平方公式两种情形求解即可. 【详解】 ∵294x kx ++=223()2x kx ++, ∴kx=322x ±⨯⨯, ∴k=3±, 故应该填3±. 【点睛】本题考查了完全平方公式的应用,熟记完全平方公式并能进行灵活公式变形是解题的关键.17.9【分析】根据新定义得出ab 的值再求和即可【详解】解:∵min{a}=min{b}=b ∴<ab <又∵a 和b 为两个连续正整数∴a=5b=4则a+b=9故答案为:9【点睛】本题主要考查了算术平方根和实数解析:9 【分析】根据新定义得出a ,b 的值,再求和即可. 【详解】解:∵,b}=b , ∴a ,b又∵a 和b 为两个连续正整数, ∴a=5,b=4, 则a+b=9. 故答案为:9. 【点睛】本题主要考查了算术平方根和实数的大小比较,正确得出a ,b 的值是解题关键.18.-3【分析】原式利用多项式乘以多项式法则计算变形后将m+n 与mn 的值代入计算即可求出值【详解】解:∵m+n=2mn=-2∴(1-m )(1-n )=1-(m+n )+mn=1-2-2=-3故答案为:-3【解析:-3 【分析】原式利用多项式乘以多项式法则计算,变形后,将m+n 与mn 的值代入计算即可求出值. 【详解】解:∵m+n=2,mn=-2,∴(1-m )(1-n )=1-(m+n )+mn=1-2-2=-3.故答案为:-3.【点睛】本题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.19.【分析】多项式的首项和末项分别是x 和2的平方那么中间一项是加上或减去x 与2积的2倍由此得到答案【详解】∵∴b=故答案为:【点睛】此题考查完全平方式掌握完全平方式的构成特点是解题的关键解析:4±【分析】多项式的首项和末项分别是x 和2的平方,那么中间一项是加上或减去x 与2积的2倍,由此得到答案.【详解】∵222(2)444x x x x bx ±±=+=++,∴b=4±,故答案为:4±.【点睛】此题考查完全平方式,掌握完全平方式的构成特点是解题的关键.20.【分析】先将原式因式分解得再整体代入即可求出结果【详解】解:∵∴原式故答案是:【点睛】本题考查因式分解解题的关键是熟练运用因式分解和整体代入的思想求值解析:36-【分析】先将原式因式分解得()2xy x y +,再整体代入即可求出结果.【详解】解:()22222x y xy xy x y +=+, ∵6x y +=,3xy =-,∴原式()23636=⨯-⨯=-.故答案是:36-.【点睛】本题考查因式分解,解题的关键是熟练运用因式分解和整体代入的思想求值.三、解答题21.25x y -;-12【分析】整式的混合运算,中括号内利用完全平方公式和平方差公式展开,合并,再计算多项式除以单项式,然后代入求值.【详解】解:2()(2)(2)()x y x y y x y ⎡⎤---+÷-⎣⎦=22222(4)()x xy y x y y ⎡⎤-+--÷-⎣⎦=2222(2+4)()x xy y x y y -+-÷-=2(25)()xy y y -+÷-=25x y -当1x =-,2y =时,原式=2(1)5221012⨯--⨯=--=-【点睛】本题考查整式的混合运算,掌握运算顺序和计算法则正确计算是解题关键.22.(1)()()224a b a b ab +--=;(2)6x y +=±;(3)-15.【分析】(1)由长方形的面积公式解得图1的面积,图2中白色部分面积为大正方形面积与小正方形面积的差,又由图1与图2中的空白面积相等,据此列式解题;(2)由(1)中结论可得()()224x y x y xy +--=,将5x y -=,114xy =整体代入,结合平方根性质解题;(3)将()2019m -与()2021m -视为一个整体,结合(1)中公式,及平方的性质解题即可.【详解】解:(1)由图可知,图1的面积为4ab ,图2中白色部分的面积为()()()()2222a b b a a b a b +--=+-- ∵图1的面积和图2中白色部分的面积相等 ∴()()224a b a b ab +--=(2)根据(1)中的结论,可知()()224x y x y xy +--=∵5x y -=,114xy =∴()2211544x y +-=⨯∴()236x y += ∴6x y +=±(3)∵()()201920212m m -+-=-∴()()2201920214m m -+-=⎡⎤⎣⎦∴()()()()22201922019202120214m m m m -+--+-= ∵()()222019202134m m -+-= ∴()()22019202143430m m --=-=-∴()()2019202115m m --=-.【点睛】本题考查完全平方公式在几何图形中的应用,是重要考点,难度较易,掌握相关知识是解题关键.23.(1)()()224a b a b ab +--=;(2)3-.【分析】(1)由图可知,图1的面积为4ab ,图2中白色部分的面积为(a+b )2-(b-a )2=(a+b )2-(a-b )2,根据图1的面积和图2中白色部分的面积相等可得答案;(2)令2020m a -=,2021m b -=,则1a b +=-,227a b +=,根据()2222ab b a b a -=++求解【详解】 解:(1)()()224a b a b ab +--=(2)令2020m a -=,2021m b -=,则1a b +=-,227a b +=由()2222ab b a b a -=++∴()2127ab --= ∴3ab =-即()()202020213m m --=-.【点睛】本题考查了完全平方公式的几何背景,解决此类题目的关键在于同一个图形的面积用两种不同的方法表示.24.(1)()()22121a a a +-;(2)()2332x y -+ 【分析】(1)首先提取公因式2a ,再利用平方差公式分解因式得出答案;(2)原式利用完全平方公式分解即可.【详解】解:(1)8a 3-2ab 2=2a (4a 2-1)=2a (2a+1)(2a-1),(2)原式=[3(x-y )+2]2=(3x-3y+2)2.【点睛】本题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.25.(1)(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc ;(2)11;(3)15(1)观察图形可得:大正方形的边长为:a+b+c ,该正方形的面积等于3个小正方形的面积加上6个长方形的面积,由此可得出等式;(2)将a+b+c =6,a 2+b 2+c 2=14代入(1)中所得的等式,计算即可;(3)由题意得:(2a+b )(a+4b )=xa 2+yab+zb 2,将等式左边展开,再比较系数即可得出x ,y ,z 的值,然后求和即可.【详解】解:(1)观察图形可得:大正方形的边长为:a +b +c ,该正方形的面积等于3个小正方形的面积加上6个长方形的面积,∴(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc .故答案为:(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc .(2)∵(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc ,a +b +c =6,a 2+b 2+c 2=14,∴62=14+2(ab +ac +bc ),∴ab +ac +bc =(36﹣14)÷2=11.(3)由题意得:(2a +b )(a +4b )=xa 2+yab +zb 2,∴2a 2+8ab +ab +4b 2=xa 2+yab +zb 2,∴2a 2+9ab +4b 2=xa 2+yab +zb 2,∴x =2,y =9,z =4,∴x +y +z =2+9+4=15.故答案为:15.【点睛】本题考查了因式分解的应用、完全平方公式的几何背景及多项式乘法等知识点,数形结合并熟练掌握相关运算法则是解题的关键.26.(1)9;(2)-27;(3)a b a c *+*=()a b c *++1.【分析】(1)根据1x y xy *=+,可以求得所求式子的值;(2)根据1x y xy *=+,可以求得所求式子的值;(3)根据1x y xy *=+,可以得到()a b c *+与a b a c *+*的关系,并用等式把它表达出来.【详解】解:(1)∵1x y xy *=+,∴24=24+1=8+1=9*⨯;(2)1x y xy *=+,∴(14)(2)=14(2)128127*-⨯-+=-+=-;(3))∵1x y xy *=+,∴()()11a b c a b c ab ac *+=++=++1111a b a c ab ac ab ac *+*=+++=+++∴a b a c *+*=()a b c *++1.本题考查有理数的混合运算,解答本题的关键理解新定义,代入数据,注意由式子转化为具体数据的时候符号及运算顺序的变化,求出相应式子的值.。

代数式经典测试题含解析

代数式经典测试题含解析

代数式经典测试题含解析一、选择题1.下列计算,正确的是( )A .2a a a -=B .236a a a =C .933a a a ÷=D .()236a a = 【答案】D【解析】A.2a 和a,和不能合并,故本选项错误;B.2356a a a a ⋅=≠ ,故本选项错误;C.9363a a a a ÷=≠,和不能合并,故本选项错误;D.()236 a a =,故本选项正确;故选D.2.下列运算错误的是( )A .()326m m =B .109a a a ÷=C .358⋅=x x xD .437a a a +=【答案】D【解析】【分析】直接利用合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则化简求出即可.【详解】A 、(m 2)3=m 6,正确;B 、a 10÷a 9=a ,正确;C 、x 3•x 5=x 8,正确;D 、a 4+a 3=a 4+a 3,错误;故选:D .【点睛】此题考查合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则等知识,正确掌握运算法则是解题关键.3.若352x y a b +与2425y x a b -是同类项.则( )A .1,2x y =⎧⎨=⎩B .2,1x y =⎧⎨=-⎩C .0,2x y =⎧⎨=⎩D .3,1x y =⎧⎨=⎩【答案】B【解析】【分析】 根据同类项的定义列出关于m 和n 的二元一次方程组,再解方程组求出它们的值.【详解】由同类项的定义,得:32425x y x y =-⎧⎨=+⎩,解得21x y =⎧⎨=-⎩:. 故选B .【点睛】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.4.(x 2﹣mx +6)(3x ﹣2)的积中不含x 的二次项,则m 的值是( )A .0B .23C .﹣23D .﹣32 【答案】C【解析】试题解析:(x 2﹣mx+6)(3x ﹣2)=3x 3﹣(2+3m )x 2+(2m+18)x ﹣12,∵(x 2﹣mx+6)(3x ﹣2)的积中不含x 的二次项,∴2+3m=0,解得,m=23-, 故选C .5.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为( )A .12B .14C .16D .18【答案】C【解析】【分析】观察第1个、第2个、第3个图案中的三角形个数,从而可得到第n 个图案中三角形的个数为2(n+1),由此即可得.【详解】∵第1个图案中的三角形个数为:2+2=4=2×(1+1);第2个图案中的三角形个数为:2+2+2=6=2×(2+1);第3个图案中的三角形个数为:2+2+2+2=8=2×(3+1);……∴第n 个图案中有三角形个数为:2(n+1)∴第7个图案中的三角形个数为:2×(7+1)=16,故选C.【点睛】本题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果是解题的关键.6.如图1所示,有一张长方形纸片,将其沿线剪开,正好可以剪成完全相同的8个长为a ,宽为b 的小长方形,用这8个小长方形不重叠地拼成图2所示的大正方形,则大正方形中间的阴影部分面积可以表示为( )A .2()a b -B .29bC .29aD .22a b -【答案】B【解析】【分析】 根据图1可得出35a b =,即53a b =,图1长方形的面积为8ab ,图2正方形的面积为2(2)a b +,阴影部分的面积即为正方形的面积与长方形面积的差.【详解】解:由图可知,图1长方形的面积为8ab ,图2正方形的面积为2(2)a b +∴阴影部分的面积为:22(2)8(2)a b ab a b +-=-∵35a b =,即53a b = ∴阴影部分的面积为:222(2)()39b b a b -=-= 故选:B .【点睛】本题考查的知识点是完全平方公式,根据图1得出a ,b 的关系是解此题的关键.7.若(x +1)(x +n )=x 2+mx ﹣2,则m 的值为( )A .﹣1B .1C .﹣2D .2【答案】A【解析】【分析】先将(x+1)(x+n)展开得出一个关于x 的多项式,再将它与x 2+mx-2作比较,即可分别求得m ,n 的值.【详解】解:∵(x+1)(x+n)=x 2+(1+n)x+n ,∴x 2+(1+n)x+n=x 2+mx-2,∴12n m n +=⎧⎨=-⎩, ∴m=-1,n=-2.故选A .【点睛】本题考查了多项式乘多项式的法则以及类比法在解题中的运用.8.已知a +b +c =1,22223+-+=a b c c ,则ab 的值为( ).A .1B .-1C .2D .-2【答案】B【解析】【分析】将a +b +c =1变形为a +b =1- c ,将22223+-+=a b c c 变形为222221+=+--a b c c ,然后利用完全平方公式将两个式子联立即可求解.【详解】∵22223+-+=a b c c∴()222221=12+=--+-a b c c c∵a +b +c =1∴1+=-a b c∴()()221+=-a b c∴()2222+=+-a b a b展开得222222++=+-a b ab a b∴1ab =-故选B .【点睛】本题考查完全平方公式的应用,根据等式特点构造完全平方式是解题的关键.9.若2m =5,4n =3,则43n ﹣m 的值是( )A .910B .2725C .2D .4【答案】B【解析】【分析】根据幂的乘方和同底数幂除法的运算法则求解.【详解】∵2m =5,4n =3,∴43n ﹣m =344n m =32(4)(2)n m =3235=2725 故选B.【点睛】本题考查幂的乘方和同底数幂除法,熟练掌握运算法则是解题关键.10.如图,是一块直径为2a +2b 的圆形钢板,从中挖去直径分别为2a 、2b 的两个圆,则剩下的钢板的面积为( )A .ab πB .2ab πC .3ab πD .4ab π【答案】B【解析】【分析】剩下钢板的面积等于大圆的面积减去两个小圆的面积,利用圆的面积公式列出关系式,化简即可.【详解】解:S 剩下=S 大圆- 1S 小圆-2S 小圆 =2222a+2b 2a 2b --222πππ()()() =()222a+b -a -b π⎡⎤⎣⎦=2ab π, 故选:B【点睛】此题考查了整式的混合运算,涉及的知识有:圆的面积公式,完全平方公式,去括号、 合并同类项法则,熟练掌握公式及法则是解本题的关键.11.下列运算中,正确的是( )A .236x x x ⋅=B .333()ab a b =C .33(2)6a a =D .239-=-【答案】B【解析】【分析】分别根据同底数幂的乘法法则,积的乘方法则以及负整数指数幂的运算法则逐一判断即可.【详解】x 2•x 3=x 5,故选项A 不合题意;(ab )3=a 3b 3,故选项B 符合题意;(2a )3=8a 6,故选项C 不合题意;3−2=19,故选项D 不合题意. 故选:B .【点睛】 此题考查同底数幂的乘法,幂的乘方与积的乘方以及负整数指数幂的计算,熟练掌握幂的运算法则是解题的关键.12.将(mx +3)(2﹣3x )展开后,结果不含x 的一次项,则m 的值为( ) A .0B .92C .﹣92D .32 【答案】B【解析】【分析】根据多项式乘以多项式的法则即可求出m 的值.【详解】解:(mx +3)(2-3x )=2mx -3mx 2+6-9x=-3mx 2+(2m -9)x +6由题意可知:2m -9=0,∴m =92故选:B .【点睛】本题考查多项式乘以多项式,解题的关键是熟练运用整式的运算法则,本题属于基础题型.13.下列计算正确的是( )A .23a a a ⋅=B .23a a a +=C .()325a a =D .23(1)1a a a +=+【答案】A【解析】【分析】根据合并同类项的法则,同底数幂的乘法,单项式乘多项式以及幂的乘方的知识求解即可求得答案.【详解】A 、a•a 2=a 3,故A 选项正确;B 、a 和2a 不是同类项不能合并,故B 选项错误;C 、(a 2)3=a 6,故C 选项错误;D 、a 2(a+1)=a 3+a 2,故D 选项错误.故答案为:A .【点睛】本题主要考查了合并同类项的法则,同底数幂的乘法,单项式乘多项式以及幂的乘方的知识,解题的关键是熟记法则.14.计算(0.5×105)3×(4×103)2的结果是( )A .13210⨯B .140.510⨯C .21210⨯D .21810⨯ 【答案】C【解析】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质进行计算.解:(0.5×105)3×(4×103)2=0.125×1015×16×106=2×1021.故选C .本题考查同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.15.下列计算正确的是()A .4482a a a +=B .236a a a •=C .4312()a a =D .623a a a ÷=【答案】C【解析】【分析】根据合并同类项、同底数幂的乘除法公式、幂的乘方公式逐项判断,即可求解.【详解】A 、4442a a a +=,故错误;B 、235a a a •=,故错误;C 、4312()a a =,正确;D 、624a a a ÷=,故错误;故答案为:C.【点睛】本题考查了整式的运算,解题的关键是熟练掌握合并同类项的运算法则、同底数幂的乘除法公式、幂的乘方公式.16.下列计算正确的是( )A .236a a a ⋅=B .22a a a -=C .632a a a ÷=D .236()a a =【答案】D【解析】根据同底数幂的乘除法公式,合并同类项,以及幂的乘方公式逐项计算得到结果,即可作出判断.【详解】A 、235a a a ⋅=,不符合题意;B 、22a 和a 不是同类项,不能合并,不符合题意;C 、633a a a ÷=,不符合题意;D 、236()a a =,符合题意,故选:D .【点睛】此题考查了同底数幂的乘除法,合并同类项,以及幂的乘方,熟练掌握运算法则是解本题的关键.17.若x +y =,x ﹣y =3﹣的值为( )A .B .1C .6D .3﹣【答案】B【解析】【分析】根据二次根式的性质解答.【详解】解:∵x+y =,x ﹣y =3﹣,==1.故选:B .【点睛】本题考查了二次根式的混合运算,以及平方差公式的运用,解题的关键是熟练掌握平方差公式进行解题.18.若(x +4)(x ﹣1)=x 2+px +q ,则( )A .p =﹣3,q =﹣4B .p =5,q =4C .p =﹣5,q =4D .p =3,q =﹣4【答案】D【解析】【分析】根据整式的运算法则即可求出答案.【详解】解:∵(x +4)(x ﹣1)=x 2+3x ﹣4∴p =3,q =﹣4【点睛】考查整式的运算,解题的关键是熟练运用整式的运算法则.19.下列运算正确的是( )A .426x x x +=B .236x x x ⋅=C .236()x x =D .222()x y x y -=-【答案】C【解析】试题分析:4x 与2x 不是同类项,不能合并,A 错误; 235x x x ⋅=,B 错误;236()x x =,C 正确;22()()x y x y x y -=+-,D 错误.故选C .考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法;因式分解-运用公式法.20.已知:()()22x 1x 32x px q +-=++,则p ,q 的值分别为( ) A .5,3B .5,−3C .−5,3D .−5, −3【答案】D【解析】【分析】 此题可以将等式左边展开和等式右边对照,根据对应项系数相等即可得到p 、q 的值.【详解】由于()()2x 1x 3+-=2x 2-6x+x-3=2 x 2-5x-3=22x px q ++, 则p=-5,q=-3,故答案选D.【点睛】本题考查了多项式乘多项式的法则,根据对应项系数相等求解是关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6
1.8完全平方公式
(总分100分 时间40分钟)
一、填空题:(每题4分,共28分) 1 2 2 1 2 1. ( _x+3y) = _____ ,(
) = —y-y+1.
3
4
2 2 2 2
2. (
)
=9a - ______ +16b ,x +10x+ _______ =(x+
2
3. (a+b-c) = ___________________ .
2 2 2
1
4. (a-b) + _______ =(a+b) ,x + 飞 + ___________ =(x-
x 2
5. 如果a 2
+ma+9是一个完全平方式,那么m= _______
6. (x+y-z )(x-y+z )= ____ .
7. 一个正方形的边长增加 2cm,它的面积就增加12cm 2
,?这个正方形的边长是 ________________
二、选择题:(每题5分,共30分) 8. 下列运算中,错误的运算有()
2
2
2
2
2
2
2
2
2
〔22
I
①(2x+y) =4x +y ,②(a-3b) =a -9b ,③(-x-y) =x -2xy+y ,④(x-
) =x - 2 x+ ,
4
A.1 个
B.2 个
C.3 个
D.4 个
9.若 a 2
+b 2
=2,a+b=1,则 ab 的值为 ()
A.-1
B.-
1
C.-
3 D.3
2 2
10.若 4 4
~2 —
1,则-=()
x x
x
A.-2
B.-1
C.1
D.2
11.已知 x-y=4,xy=12,则 x 2
+y 2
的值是()
1
14. 已知 X M 0 且 x+ =5,求 x 4
x
.)
A.28
B.40
C.26
D.25 12.若 x 、y 是有理数,设 N=3x+2y-18x+8y+35,则()
A.N C.N
定是负数 定是正数
1 13.如果(一a
2 八1 2
3 3 三、解答题:(
x)2
B.N D.N
1 2
a
4
2 3 或-1 3 每题7分,共42分)
B.- 一定不是负数
的正负与x 、y 的取值有关
1 ,则 x 、y 9 -C.
3
的值分别为(
15. 计算(a+1)(a+2)(a+3)(a+4).
1 1
2 1 2 2 1 2 4
16.化简求值:(a -b)[(a -b)2(a -b)2](a2-ab b2) 2b(a41),其中
a=2,b=-1.
17. 已知a2 b2 c2-ab-bc-ca=0, 求证a=b=c.
18.证明:如果b2=ac,则(a+b+c)(a-b+c)( a2 b2 c2)= a4 b4 c4.
2 2 2
19.若a+b+c=0, a b c =1,试求下列各式的值
(1)bc+ac+ab; (2) a4 b4 c4.
1 2
4
3 2 3 .
4 =
a b -ab +2b.
2
当 a=2,b=-1 时,原式=-10. 2 2 2
17. ■/ a +b +c -ab-bc-ca=0
2 2 2
• 2(a +b +c -ab-bc-ca)=0
2 2 2 2 2 2
• (a -2ab+b )+(b -2bc+c )+(a -2ac+c )=0 即 (a-b) 2
+(b-c)
2
+(a-c) 2
=0
• a-b=0,b-c=0,a-c=0 • a=b=c.
2 2 2 2 2 2 2 2 22 2

18. 左边=[(a+c) -b ](a -b +c )=(a +b +c )(a -b +c )
2 2 2 2
19.(1) •/ (a+b+c) =a +b +c +2ab+2ac+2bc
2 2 2 2 2 2 2 2 2 2
(2) •/ (bc+ac+ab) =b c +a c +a b +2 abc +2 acb +2a bc
2 2 2 2 2 2 2
答案: 1 2 2 1
1. x +2xy+9y , y-1
2.3a-4b,24ab,25,5
3.a 9 2 ± 6 6.x 2-y 2+2yz-z 2 1 1
4. ■/ x+ =5 • (x+ x 2 1 _ • x + —2 =23 2 2 2
+b +c +2ab-2ac-2bc 4.4ab,-2, 7.2 8.D 9.B 10.C 11.B 12.B 1 2 2 1 )=25,即 x +2+巧=25
x x 2
13.A 2 1 2 2 4 •- (x + —2 ) =23 即 x +2+ x x 15. [(a+1) (a+4)] [(a+2) (a+3)]=(a 1 1 4 =529,即 x 4
4 =527. x x 2 2 2 2 2
+5a+4) (a +5a+6)= (a +5a) +10(a +5a)+24 4 3 2
…小
=a 10a 35a 50a 24. 16.原式=(a- =(a
_ =(2a =2a
1 b)][(a+
2 1 2
b) • 2ab(a + ab+b )-2b(
2 2 2 2 2 1 2 4
b-ab )(a + ab+b )-2 a 4b+2b
2
4
b+a 3
b 2
+2a 2
b 3
-a 3
b 2
- 1 a 2
b 3
-ab 4
-2a 4
b+2b
2
-b)[(a+ - b)+(a- 2 一 b)-(a- 1 b)](a 2+ 2 1 2 4 r b+b)-2b( a
-1)
4
a -1)
=(a 2 2、24 4 4 2 2 4 4
+c) -b =a c +2a c -b =a
b 4
c 4.
• ab+ac+bc= (a b c)2
(『以
c 2)
1
2
1 2
4 • bc+ac+ab =(ab+ac+bc) -2abc(a+b+c)= • a 4 b 4 c 4=(a 2
+b 2
+c 2
)4-2(a 2
b 2
+a 2
c 2
+b 2
c 2
)=1-2 x -。

相关文档
最新文档