复合场1复合场的分类叠加场电场磁场重力

合集下载

《高三复习复合场》课件

《高三复习复合场》课件

通过微积分,可以计算物体在 复合场中的运动轨迹、速度和 加速度等物理量。
微积分还可以用于分析复合场 中的能量转化和功率等问题。
向量在复合场中的应用
向量在复合场中主要用于表示和 解决与方向和大小相关的物理量
,如力、速度和加速度等。
通过向量运算,可以解决物体在 复合场中的合成和分解问题,以
及力的平衡和扭矩等问题。
调整计划
根据学习进度和效果,适 时调整复习计划,以满足 个性化需求和提高效率。
掌握复习方法
重点复习
针对薄弱环节和重点知识点,进 行有针对性的复习,强化理解和
记忆。
多样化复习方法
采用多种复习方法,如阅读、笔记 、做题、讨论等,以提高复习效果 和兴趣。
归纳总结
对所学知识进行归纳总结,形成知 识体系和框架,便于理解和记忆。
磁场
磁体或电流周围存在磁场,磁场会对放入其中的磁体或电流产生作用力。磁场 具有方向性,规定小磁针静止时北极所指的方向为该点的磁场方向。
电磁感应现象
电磁感应
当导体在磁场中做切割磁感线运动或 磁场发生变化时,会在导体中产生感 应电动势,从而产生电流。这种现象 称为电磁感应。
法拉第电磁感应定律
感应电动势的大小与磁通量的变化率 成正比,与磁通量的大小无关。
调整复习心态
保持积极心态
保持乐观、积极的心态,相信自 己能够克服困难,取得好成绩。
缓解压力
学会合理调节情绪和压力,避免 过度焦虑和紧张,保持身心健康

寻求支持
与老师、同学或家长交流,寻求 支持和帮助,共同解决问题和克
服困难。
合理安排时间
合理分配时间
劳逸结合
根据学科重要程度和学习进度,合理 分配时间,确保各科均衡发展。

复合场1复合场的分类叠加场电场磁场重力

复合场1复合场的分类叠加场电场磁场重力

复合场1.复合场的分类: (1)叠加场:电场、磁场、重力场共存,或其中某两场共存. (2)组合场:电场与磁场各位于一定的区域内,并不重叠或相邻或在同一区域,电场、磁场交替出现.二、带电粒子在复合场中的运动形式1.静止或匀速直线运动当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动. 2.匀速圆周运动:当带电粒子所受的重力与电场力大小相等,方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动.3.较复杂的曲线运动:当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一直线上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线.4.分阶段运动:带电粒子可能依次通过几个情况不同的组合场区域,其运动情况随区域发生变化,其运动 过程由几种不同的运动阶段组成.1.[带电粒子在复合场中的直线运动]某空间存在水平方向的匀强电场带电小球沿如图所示的直线斜向下由A 点沿直线向B 点运动,此空间同时存在由A 指向B 的匀强磁场,则下列说法正确的是( ) A .小球一定带正电B .小球可能做匀速直线运动C .带电小球一定做匀加速直线运动D .运动过程中,小球的机械能增大2.[带电粒子在复合场中的匀速圆周运动]如图所示,一带电小球在一正交电场、磁场区域里做匀速圆周运动,电场方向竖直向下,磁场方向垂直纸面向里,则下列说法正确的是( ) A .小球一定带正电 B .小球一定带负电 C .小球的绕行方向为顺时针 D .改变小球的速度大小,小球将不做圆周运动3.[质谱仪原理的理解]如图所示是质谱仪的工作原理示意图.带电粒子被加速电场加速后,进入速度选择器.速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B 和E .平板S 上有可让粒子通过的狭缝P 和记录粒子位置的胶片A 1A 2.平板S 下方有磁感应强度为B 0的匀强磁场.下列表述正确的是( ) A .质谱仪是分析同位素的重要工具 B .速度选择器中的磁场方向垂直纸面向外 C .能通过狭缝P 的带电粒子的速率等于E /B D .粒子打在胶片上的位置越靠近狭缝P ,粒子的比荷越小4.[回旋加速器原理的理解]回旋加速器,工作原理示意图如图置于高真空中的D 形金属盒半径为R ,两盒间的狭缝很小,带电粒子穿过的时间可忽略.磁感应强度为B 的匀强磁场与盒面垂直,高频交流电频率为f ,加速电压为U .若A 处粒子源产生的质子质量为m 、电荷量为+q ,在加速器中被加速,且加速过程中不考虑相对论效应和重力的影响.则下列说法正确的是( ) A .质子被加速后的最大速度不可能超过2πRf B .质子离开回旋加速器时的最大动能与加速电压U 成正比 C .质子第2次和第1次经过两D 形盒间狭缝后轨道半径之比为2∶1 D .不改变磁感应强度B 和交流电频率f ,该回旋加速器的最大动能不变规律总结:带电粒子在复合场中运动的应用实例1.质谱仪: (1)构造:如图由粒子源、加速电场、偏转磁场和照相底片等构成. (2)原理:粒子由静止被加速电场加速,根据动能定理可得关系式qU =12mv 2.粒子在磁场中受洛伦兹力作用而偏转,做匀速圆周运动,根据牛顿第二定律得关系式qvB =m v 2r.由两式可得出需要研究的物理量,如粒子轨道半径、粒子质量、比荷. r =1B 2mUq ,m =qr 2B 22U ,q m =2U B 2r2. 2.回旋加速器: (1)构造:如图D 1、D 2是半圆形金属盒,D 形盒的缝隙处接交流电源,D 形盒处于匀强磁场中. (2)原理:交流电的周期和粒子做圆周运动的周期相等,粒子在圆周运动的过程中一次一次地经过D 形盒缝隙,两盒间的电势差一次一次地反向,粒子就会被一次一次地加速.由qvB =mv 2r , 图6得E km =q 2B 2r 22m ,可见粒子获得的最大动能由磁感应强度B 和D 形盒半径r 决定,与加速电压无关. 特别提醒 这两个实例都应用了带电粒子在电场中加速、在磁场中偏转(匀速圆周运动)的原理.3.速度选择器:(1)平行板中电场强度E 和磁感应强度B 互相垂直.这种装置能把具有一定速度的粒子选择出来,所以叫做速度选择器. (2)带电粒子能够沿直线匀速通过速度选择器的条件是qE =qvB ,即v =E B .4.磁流体发电机:(1)磁流体发电是一项新兴技术,它可以把内能直接转化为电能. (2)根据左手定则,如图中的B 是发电机正极. (3)磁流体发电机两极板间的距离为L ,等离子体速度为v ,磁场的磁感应强度为B ,则由qE =q U L =qvB 得两极板间能达到的最大电势差U =BLv .5.电磁流量计工作原理:如图9所示,圆形导管直径为d ,用非磁性材料制成,导电液体在管中向左流动,导电液体中的自由电荷(正、负离子),在洛伦兹力的作用下横向偏转,a 、b 间出现电势差,形成电场,当自由电荷 所受的电场力和洛伦兹力平衡时,a 、b 间的电势差就保持稳定,即:qvB =qE =q U d ,所以v =U Bd ,因此液体流量Q =Sv =πd 24·U Bd =πdU 4B. 带电粒子在叠加场中的运动:1.带电粒子在叠加场中无约束情况下的运动情况分类 (1)磁场力、重力并存:①若重力和洛伦兹力平衡,则带电体做匀速直线运动.②若重力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,故机械能守恒,由此可求解问题. (2)电场力、磁场力并存(不计重力的微观粒子):①若电场力和洛伦兹力平衡,则带电体做匀速直线运动.②若电场力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题. (3)电场力、磁场力、重力并存:①若三力平衡,一定做匀速直线运动.②若重力与电场力平衡,一定做匀速圆周运动.③若合力不为零且与速度方向不垂直,将做复杂的曲线运动,因洛伦兹力不做功,可用能量守恒或动能定理求解问题.2.带电粒子在叠加场中有约束情况下的运动:带电体在复合场中受轻杆、轻绳、圆环、轨道等约束的情况下,常见的运动形式有直线运动和圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,运用动能定理、能量守恒定律结合牛顿运动定律求出结果.例 1 如图带电平行金属板相距为2R ,在两板间有垂直纸面向里、磁感应强度为B的圆形匀强磁场区域 ,与两板及左侧边缘线相切.一个带正电的粒子(不计重力)沿两板间中心线O 1O 2从左侧边缘O 1点以某一速度射入,恰沿直线通过圆形磁场区域,并从极板边缘飞出,在极板间运动时间为t 0.若撤去磁场,质子仍从O 1点以相同速度射入,则经t 02时间打到极板上. (1)求两极板间电压U ; (2)若两极板不带电,保持磁场不变,该粒子仍沿中心线O 1O 2从O 1点射入,欲使粒子从两板左侧间飞出,射入的速度应满足什么条件?突破训练1 如图空间存在着垂直纸面向外的水平匀强磁场, 磁感应强度为B ,在y 轴两侧分别有方向相反的匀强电场,电场强度均为E ,在两个电场的交界处左侧,有一带正电的液滴a 在电场力和重力作用下静止,现从场中某点由静止释放一个带负电的液滴b ,当它的运动方向变为水平方向时恰与a 相撞,撞后两液滴合为一体,速度减小到原来的一半,并沿x 轴正方向做匀速直线运动,已知液滴b 与a 的质量相等,b 所带电荷量是a 所带电荷量的2倍,且相撞前a 、b 间的静电力忽略不计. (1)求两液滴相撞后共同运动的速度大小; (2)求液滴b 开始下落时距液滴a 的高度h .例2 如图甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两长为L 的平行金属极板MN 和PQ ,两极板中心各有一小孔S 1、S 2,两极板间电压的变化规律如图乙所示,正反向电压的大小均为U 0,周期为T 0.在t =0时刻将一个质量为m 、电荷量为-q (q >0)的粒子由S 1静止释放,粒子在电场力的作用下向右运动,在t =T 02时刻通过S 2垂直于边界进入右侧磁场区.(不计粒子重力,不考虑极板外的电场) (1)求粒子到达S 2时的速度大小v 和极板间距d . (2)为使粒子不与极板相撞,求磁感应强度的大小应满足的条件. (3)若已保证了粒子未与极板相撞,为使粒子在t =3T 0时刻再次到达S 2,且速度恰好为零,求该过程中粒子在磁场内运动的时间和磁感应强度的大小.突破训练2 如图所示装置中,区域Ⅰ和Ⅲ中分别有竖直向上和水平向右的匀强电场,电场强度分别为E 和E2;区域Ⅱ内有垂直向外的水平匀强磁场,磁感应强度为B .一质量为m 、带电荷量为q 的带负电粒子(不计重力)从左边界O 点正上方的M 点以速度v 0水平射入电场,经水平分界线OP 上的A 点与OP 成60°角射入区域Ⅱ的磁场,并垂直竖直边界CD 进入Ⅲ区域的匀强电场中.求: (1)粒子在区域Ⅱ匀强磁场中运动的轨迹半径; (2)O 、M 间的距离; (3)粒子从M 点出发到第二次通过CD 边界所经历的时间.突破训练3 如图甲所示,与纸面垂直的竖直面MN 的左侧空间中存在竖直向上的场强大小为E =2.5×102N/C 的匀强电场(上、下及左侧无界).一个质量为m =0.5kg 、电荷量为q =2.0×10-2 C 的可视为质点的带正电小球,在t =0时刻以大小为v 0的水平初速度向右通过电场中的一点P ,当t =t 1时刻在电场所在空间中加上一如图乙所示随时间周期性变化的磁场,使得小球能竖直向下通过D 点,D 为电场中小球初速度方向上的一点,PD 间距为L ,D 到竖直面MN 的距离DQ 为L /π.设磁感应强度垂直纸面向里为正.(g =10 m/s 2) (1)如果磁感应强度B 0为已知量,使得小球能竖直向下通过D 点,求磁场每一次作用时间t 0的最小值(用题中所给物理量的符号表示); (2)如果磁感应强度B 0为已知量,试推出满足条件的时刻t 1的表达式(用题中所给物理量的符号表示); (3)若小球能始终在电磁场所在空间做周期性运动,则当小球运动的周期最大时,求出磁感应强度B 0及运动的最大周期T 的大小(用题中所给物理量的符号表示).高考题组1.如图一半径为R 的圆表示一柱形区域的横截面(纸面).在柱形区域内加一方向垂直于纸面的匀强磁场,一质量为m 、电荷量为q 的粒子沿图中直线从圆上的a 点射入柱形区域,从圆上的b 点离开该区域,离开时速度方向与直线垂直.圆心O 到直线的距离为35R .现将磁场换为平行于纸面且垂直于直线的匀强电场,同一粒子以同样速度沿直线从a 点射入柱形区域,也从b 点离开该区域.若磁感应强度大小为B ,不计重力,求电场强度的大小.2.如图所示,两块水平放置、相距为d 的长金属板接在电压可调的电源上.两板之间的右侧区域存在方向垂直纸面向里的匀强磁场.将喷墨打印机的喷口靠近上板下表面,从喷口连续不断喷 出质量均为m 、水平速度均为v 0、带相等电荷量的墨滴.调节电源电压至U ,墨滴在电场区域恰能沿水平向右做匀速直线运动;进入电场、磁场共存区域后,最终垂直打在下板的M 点. (1)判断墨滴所带电荷的种类,并求其电荷量; (2)求磁感应强度B 的值; (3)现保持喷口方向不变,使其竖直下移到两板中间的位置.为了使墨滴仍能到达下板M 点,应将磁感应强度调至B ′,则B ′的大小为多少?3.有人设计了一种带电颗粒的速率分选装置,其原理如图所示,两带电金属板间有匀强电场,方向竖直向上,其中PQNM矩形区域内还有方向垂直纸面向外的匀强磁场.一束比荷(电荷量与质量之比)均为1k 的带正电颗粒,以不同的速率沿着磁场区域的水平中心线O ′O 进入两金属板之间,其中速率为v 0的颗粒刚好从Q 点处离开磁场,然后做匀速直线运动到达收集板,重力加速度为g ,PQ =3d ,NQ =2d ,收集板与NQ 的距离为l ,不计颗粒间的相互作用.求: (1)电场强度E 的大小; (2)磁感应强度B 的大小; (3)速率为λv 0(λ>1)的颗粒打在收集板上的位置到O 点的距离.4. 如图所示,坐标平面第Ⅰ象限内存在大小为E =4×105 N/C 、方向水平向左的匀强电场,在第Ⅱ象限内存在方向垂直纸面向里的匀强磁场.质荷比为m q =4×10-10 N/C 的带正电粒子从x 轴上的A 点以初速度v 0=2×107 m/s 垂直x 轴射入电场,OA =0.2 m ,不计重力.求: (1)粒子经过y 轴时的位置到原点O 的距离; (2)若要求粒子不能进入第三象限,求磁感应强度B 的取值范围(不考虑粒子第二次进入电场后的运动情况.)5.如图甲,在以O 为坐标原点的xOy 平面内,存在着范围足够大的电场和磁场,一个带正电小球在t =0时刻以v 0=3gt 0的初速度从O 点沿+x方向(水平向右)射入该空间,在t 0时刻该空间同时加上如图乙所示的电场和磁场,其中电场方向竖直向上,场强大小E 0=mg q ,磁场垂直于xOy 平面向外,磁感应强度大小B 0=πm qt 0,已知小球的质量为m ,带电荷量为q ,时间单位为t 0,当地重力加速度为g ,空气阻力不计.试求: (1)t 0末小球速度的大小; (2)小球做圆周运动的周期T 和12t 0末小球速度的大小; (3)在给定的xOy 坐标系中,大体画出小球在0到24t 0内运动轨迹的示意图;(4)30t 0内小球距x 轴的最大距离.►题组1. 在水平匀强电场和垂直纸面向里的匀强磁场中,有一竖直足够长固定绝缘杆MN ,小球P 套在杆上,已知P 的质量为m ,电荷量为+q ,电场强度为E ,磁感应强度为B ,P 与杆间的动摩擦因数为μ,小球由静止开始下滑直到稳定的过程中( ) A .小球的加速度一直减小B .小球的机械能和电势能的总和保持不变C .下滑加速度为最大加速度一半时的速度可能是v =2μqE -mg 2μqBD .下滑加速度为最大加速度一半时的速度可能是v =2μqE +mg 2μqB2. 如图所示,已知一带电小球在光滑绝缘的水平面上从静止开始经电压U 加速后,水平进入互相垂直的匀强电场E 和匀强磁场B 的复合场中(E 和B 已知),小球在此空间的竖直面内做匀速圆周运动,则 ( ) A .小球可能带正电 B .小球做匀速圆周运动的半径为r =1B 2UE g C .小球做匀速圆周运动的周期为T =2πEBg D .若电压U 增大,则小球做匀速圆周运动的周期增加3.如图空间的某个复合场区域内存在着方向相互垂直的匀强电场和匀强磁场.质子由静止开始经一加速电场加速后,垂直于复合场的界面进入并沿直线穿过场区,质子从复合场区穿出时的动能为E k .那么氘核同样由静止开始经同一加速电场加速后穿过同一复合场后的动能E k ′的大小是( )A .E k ′=E kB .E k ′>E kC .E k ′<E kD .条件不足,难以确定4.如图两块平行金属极板MN 水平放置,板长L =1 m .间距d =33 m ,两金属板间电压U MN =1×104 V ;在平行金属板右侧依次存在ABC 和FGH 两个全等的正三角形区域,正三角形ABC 内存在垂直纸面向里的匀强磁场B 1,三角形的上顶点A 与上金属板M 平齐,BC 边与金属板平行,AB 边的中点P 恰好在下金属板N 的右端点;正三角形FGH 内存在垂直纸面向外的匀强磁场B 2.已知A 、F 、G 处于同一直线上,B 、C 、H 也处于同一直线上.AF 两点的距离为23m .现从平行金属板MN 左端沿中心轴线方向入射一个重力不计的带电粒子,粒子质量m =3×10-10 kg ,带电荷量q =+1×10-4 C ,初速度v 0=1×105 m/s. (1)求带电粒子从电场中射出时的速度v 的大小和方向; (2)若带电粒子进入中间三角形区域后垂直打在AC 边上,求该区域的磁感应强度B 1; (3)若要使带电粒子由FH 边界进入FGH 区域并能再次回到FH 界面,求B 2应满足的条件.5. 如图一个质量为m 、电荷量为q 的正离子,在D 处沿图示方向以一定的速度射入磁感应强度为B 的匀强磁场中,磁场方向垂直纸面向里.结果离子正好从距A 点为d 的小孔C 沿垂直于电场方向进入匀强电场,此电场方向与AC 平行且向上,最后离子打在G 处,而G 处距A 点2d(AG ⊥AC ).不计离子重力,离子运动轨迹在纸面内.求: (1)此离子在磁场中做圆周运动的半径r ; (2)离子从D 处运动到G 处所需时间; (3)离子到达G 处时的动能.6.如图甲所示,水平直线MN 下方有竖直向上的匀强电场,现将一重力不计、比荷q m =106C/kg 的正电荷置于电场中的O 点由静止释放,经过π15×10-5 s 后,电荷以v 0=1.5×104 m/s 的速度通过MN 进入其上方的匀强磁场,磁场与纸面垂直,磁感应强度B 按图乙所示规律周期性变化(图乙中磁场以垂直纸面向外为正,以电荷第一次通过MN 时为t =0时刻).求: (1)匀强电场的电场强度E ; (2)图乙中t =4π5×10-5 s 时刻电荷与O 点的水平距离; (3)如果在O 点右方d =68 cm 处有一垂直于MN 的足够大的挡板,求电荷从O 点出发运动到挡板所需的时间.7.如图甲所示,在xOy 平面内有足够大的匀强电场,电场方向竖直向上,电场强度E =40 N/C ,在y 轴左侧平面内有足够大的瞬时磁场,磁感应强度B 1随时间t 变化的规律如图乙所示,15π s 后磁场消失,选定磁场垂直纸面向里为正方向.在y 轴右侧平面内还有方向垂直纸面向外的恒定的匀强磁场,分布在一个半径为r =0.3 m 的圆形区域(图中未画出),且圆的左侧与y 轴相切,磁感应强度B 2=0.8 T .t =0时刻,一质量m =8×10-4 kg 、电荷量q =2×10-4 C 的微粒从x 轴上x P =-0.8 m 处的P 点以速度v =0.12 m/s 向x 轴正方向入射.(g取10 m/s 2,计算结果保留两位有效数字) (1)求微粒在第二象限运动过程中离y 轴、x 轴的最大距离. (2)若微粒穿过y 轴右侧圆形磁场时,速度方向的偏转角度最大,求此圆形磁场的圆心坐标(x ,y ).1.答案 CD 解析 由于重力方向竖直向下,空间存在磁场,且直线运动方向斜向下,与磁场方向相同,故不受洛伦兹力作用,电场力必水平向右,但电场具体方向未知,故不能判断带电小球的电性,选项A 错误;重力和电场力的合力不为零,故不可能做匀速直线运动,所以选项B 错误;因为重力与电场力的合力方向与运动方向相同,故小球一定做匀加速直线运动,选项C 正确;运动过程中由于电场力做正功,故机械能增大,选项D 正确.2.答案 BC 解析 小球做匀速圆周运动,重力必与电场力平衡,则电场力方向竖直向上,结合电场方向可知小球一定带负电,A 错误,B 正确;洛伦兹力充当向心力,由曲线运动轨迹的弯曲方向结合左手定则可得绕行方向为顺时针方向,C 正确,D 错误.3.答案 ABC 解析 粒子在题图中的电场中加速,说明粒子带正电,其通过速度选择器时,电场力与洛伦兹力平衡,则洛伦兹力方向应水平向左,由左手定则知,磁场的方向应垂直纸面向外,选项B 正确;由Eq =Bqv 可知,v =E /B ,选项C 正确;粒子打在胶片上的位置到狭缝的距离即为其做匀速圆周运动的直径D =2mv Bq,可见D 越小,则粒子的比荷越大,D 不同,则粒子的比荷不同,因此利用该装置可以分析同位素,A 正确,D 错误.4.答案 AC 解析 粒子被加速后的最大速度受到D 形盒半径R 的制约,因v =2πR T=2πRf ,故A 正确;粒子离开回旋加速器的最大动能E km =12mv 2=12m ×4π2R 2f 2=2m π2R 2f 2,与加速电压U 无关,B 错误;根据R =mv Bq ,Uq =12mv 21,2Uq =12mv 22,得质子第2次和第1次经过两D 形盒间狭缝后轨道半径之比为2∶1,C 正确;因回旋加速器的最大动能E km =2m π2R 2f 2与m 、R 、f 均有关,D 错误.例1解析 (1)设粒子从左侧O 1点射入的速度为v 0,极板长为L ,粒子在初速度方向上做匀速直线运动L ∶(L -2R )=t 0∶t 02,解得L =4R 粒子在电场中做类平抛运动:L -2R =v 0·t 02 a =qE m R =12a (t 02)2 在复合场中做匀速运动:q U 2R =qv 0B 联立各式解得v 0=4R t 0,U =8R 2B t 0(2)设粒子在磁场中做圆周运动的轨迹如图所示,设其轨道半径为r ,粒子恰好从上极板左边缘飞出时速度的偏转角为α,由几何关系可知:β=π-α=45°,r +2r =R 因为R =12qE m (t 02)2,所以qE m =qv 0B m =8R t 20 根据牛顿第二定律有qvB =m v 2r ,解得v =22-1Rt 0 所以,粒子在两板左侧间飞出的条件为0<v <22-1R t 0突破训练1 解析 液滴在匀强磁场、匀强电场中运动,同时受到洛伦兹力、电场力和重力作用. (1)设液滴a 质量为m 、电荷量为q ,则液滴b 质量为m 、电荷量为-2q ,液滴a 平衡时有qE =mg ① a 、b 相撞合为一体时,质量为2m ,电荷量为-q ,速度为v ,由题意知处于平衡状态,重力为2mg ,方向竖直向下,电场力为qE ,方向竖直向上,洛伦兹力方向也竖直向上,因此满足qvB +qE =2mg ②由①、②两式,可得相撞后速度v =E B(2)对b ,从开始运动至与a 相撞之前,由动能定理有W E +W G =ΔE k ,即(2qE+mg )h =12mv 20 ③ a 、b 碰撞后速度减半,即v =v 02,则v 0=2v =2E B 再代入③式得h =mv 204qE +2mg =v 206g =2E 23gB2 例2 解析 (1)粒子由S 1至S 2的过程,根据动能定理得qU 0=12mv 2 ① 由①式得v = 2qU 0m ②设粒子的加速度大小为a ,由牛顿第二定律得q U 0d =ma ③ 由运动学公式得d =12a (T 02)2 ④联立③④式得d =T 04 2qU 0m ⑤(2)设磁感应强度的大小为B ,粒子在磁场中做匀速圆周运动的半径为R ,由牛顿第二定律得qvB =m v 2R⑥ 要使粒子在磁场中运动时不与极板相撞,需满足2R >L 2 ⑦ 联立②⑥⑦式得B <4L 2mU 0q(3)设粒子在两边界之间无场区向左匀速运动的过程所用时间为t 1,有d =v t 1 ⑧ 联立②⑤⑧式得t 1=T 04 ⑨ 若粒子再次到达S 2时速度恰好为零,粒子回到极板间应做匀减速运动,设匀减速运动的时间为t 2,根据运动学公式得d =v 2t 2 ⑩ 联立⑧⑨⑩式得t 2=T 02 ⑪ 设粒子在磁场中运动的时间为t t =3T 0-T 02-t 1-t 2 ⑫ 联立⑨⑪⑫式得t =7T 04⑬设粒子在匀强磁场中做匀速圆周运动的周期为T ,由⑥式结合运动学公式得T =2πm qB ⑭ 由题意可知T =t ⑮ 联立⑬⑭⑮式得B =8πm 7qT 0. 突破训练2 解析 (1)粒子的运动轨迹如图所示,其在区域Ⅰ的匀强电场中做类平抛运动,设粒子过A 点时速度为v ,由类平抛运动规律知v =v 0cos 60°粒子在匀强磁场中做匀速圆周运动,由牛顿第二定律得Bqv =m v 2R ,所以R =2mv 0qB (2)设粒子在区域Ⅰ的电场中运动时间为t 1,加速度为a .则有qE =ma ,v 0tan 60°=at 1,即t 1=3mv 0qE O 、M 两点间的距离为L =12at 21=3mv 202qE(3)设粒子在Ⅱ区域磁场中运动时间为t 2 则由几何关系知t 2=T 16=πm 3qB 设粒子在Ⅲ区域电场中运动时间为t 3,a ′=q E2m =qE 2m 则t 3=22v 0a ′=8mv 0qE 粒子从M 点出发到第二次通过CD 边界所用时间为t =t 1+t 2+t 3=3mv 0qE +πm 3qB +8mv 0qE =8+3mv 0qE +πm 3qB 例3解析 (1)粒子在磁场中运动时qvB =mv 2R T =2πR v 解得T =2πm qB =4×10-3 s (2)粒子的运动轨迹如图所示,t =20×10-3 s 时粒子在坐标系内做了两个圆周运动和三段类平抛运动,水平位移x =3v 0T =9.6×10-2m 竖直位移y =12a (3T )2 Eq =ma 解得y =3.6×10-2 m 故t =20×10-3 s 时粒子的位置坐标为: (9.6×10-2 m ,-3.6×10-2 m)(3)t =24×10-3 s 时粒子的速度大小、方向与t =20×10-3 s 时相同,设与水平方向夹角为α 则v =v 20+v 2yv y =3aT tan α=v y v 0 解得v =10 m/s 与x 轴正向夹角α为37°(或arctan 34)斜向右下方突破训练3 解析 (1)当小球仅有电场作用时:mg =Eq ,小球将做匀速直线运动.在t 1时刻加入磁场,小球在时间t 0内将做匀速圆周运动,圆周运动周期为T 0,若竖直向下通过D 点,由图甲分析可知: t 0=3T 04=3πm 2qB 0(2)PF -PD =R ,即: v 0t 1-L =R qv 0B 0=mv 20/R 所以v 0t 1-L =mv 0qB 0,t 1=L v 0+m qB 0(3)小球运动的速率始终不变,当R 变大时,T 0也增加,小球在电磁场中的运动的周期T 增加,在小球不飞出电磁场的情况下,当T 最大时有: DQ =2R =L π=2mv 0qB 0 B 0=2πmv 0qL ,T 0=2πR v 0=L v 0由图分析可知小球在电磁场中运动的最大周期: T =8×3T 04=6L v 0,小球运动轨迹如图乙所示. 1. 解析 粒子在磁场中做圆周运动.设圆周的半径为r ,由牛顿第二定律和洛伦兹力公式得qvB =m v 2r①式中v 为粒子在a 点的速度.过b 点和O 点作直线的垂线,分别与直线交于c 点和d 点.由几何关系知,线段ac 、bc 和过a 、b 两点的圆弧轨迹的两条半径(未画出)围成一正方形.因此ac =bc =r② 设cd =x ,由几何关系得ac =45R +x ③bc =35R +R 2-x 2 ④ 联立②③④式得r =75R ⑤ 再考虑粒子在电场中的运动.设电场强度的大小为E ,粒子在电场中做类平抛运动.设其加速度大小为a ,由牛顿第二定律和带电粒子在电场中的受力公式得qE =ma ⑥粒子在电场方向和直线方向运动的距离均为r ,由运动学公式得r =12at 2 ⑦ r =vt ⑧ 式中t 是粒子在电场中运动的时间.联立①⑤⑥⑦⑧式得E =14qRB 25m. 2.解析 (1)墨滴在电场区域做匀速直线运动,有q U d =mg ① 由①式得:q =mgd U ②由于电场方向向下,电荷所受电场力向上,可知:墨滴带负电荷.(2)墨滴垂直进入电场、磁场共存区域后,重力仍与电场力平衡,合力等于洛伦兹力,墨 滴做匀速圆周运动,有qv 0B =m v 20R ③ 考虑墨滴进入电场、磁场共存区域和下板的几何关系,可知。

高考物理:带电粒子在复合场中的运动

高考物理:带电粒子在复合场中的运动

带电粒子在复合场中的运动一、复合场 1. 复合场的分类(1)叠加场:电场、磁场、重力场共存,或其中某两场共存.(2)组合场:电场与磁场各位于一定的区域内,并不重叠或相邻或在同一区域,电场、磁场交替出现. 2.二、带电粒子在复合场中的运动形式 1. 静止或匀速直线运动当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动. 2. 匀速圆周运动当带电粒子所受的重力与电场力大小相等,方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动. 3. 较复杂的曲线运动当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一直线上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线. 4. 分阶段运动带电粒子可能依次通过几个情况不同的组合场区域,其运动情况随区域发生变化,其运动过程由几种不同的运动阶段组成.经典例题(一)1.如图一带电的小球从光滑轨道高度为h 处下滑,沿水平进入如图匀强磁场中,恰好沿直线由a 点穿出场区,则正确说法是( ) A.小球带正电 B.小球带负电 C.球做匀变速直线运动 D.磁场对球做正功2.如图所示,速度为v 0、电荷量为q 的正离子恰能沿直线飞出离子速度选择器,选择器中磁感应强度为B ,电场强度为E ,则( ) A .若改为电荷量-q 的离子,将往上偏(其它条件不变) B .若速度变为2v 0将往上偏(其它条件不变)C .若改为电荷量+2q 的离子,将往下偏(其它条件不变)D .若速度变为21v 0将往下偏(其它条件不变) 3.如图所示,在xOy 平面内,匀强电场的方向沿x 轴正方向,匀强磁场的方向垂直于xOy 平面向里.一电子(不计重力)在xOy 平面内运动时,速度方向保持不变.则电子的运动方向沿( ) A .x 轴正方向 B .x 轴负方向 C .y 轴正方向 D .y 轴负方向4.电容为C 的平行板电容器两板之间距离为d ,接在电压为U 的电源上。

复合组合场

复合组合场

带电粒子在组合场中运动问题
组合场是指电场与磁场同时存 在,但各位于一定的区域内,并不 互相重叠的情况。此类题目应根据 场的过渡把整个过程分好段,并特 别注意前一过程的末状态是后一过 程的初状态,要对转折点速度的大 小和方向和受力情况分析好。

(2012·南京模拟)如图8-3-8所示的区域中,左边 为垂直纸面向里的匀强磁场,磁感应强度为B,右边是一 个电场强度大小未知的匀强电场,其方向平行于OC向上且 垂直于磁场方向.在P点有一个放射源,在纸平面内向各 个方向放射出质量为m、电荷量为-q、速度大小相等的带 电粒子,有一初速度方向与边界线的夹角θ =60°的粒子 (如图所示),恰好从O点正上方的小孔C垂直于OC射入匀强 电场,最后打在Q点.已知OC=L,OQ=2L,不计粒子的重 力,求(1)该粒子的初速度v0的大小;
Brg E
例3.某带正电粒子质量为m, 电量为q,从图中速度选 择器左端由中点O以速度v0向右射去,电场强度为E, 从右端中心a下方的b点射出,ab=x;不计重力,射出时 的速度为___。
此题为电场和磁场 的复合场 由动能定理:
qEx=1/2mv2-1/2mv02
注意其运动轨迹既不是圆弧,也不是抛物线, 对比磁偏转和电偏转。
带电粒子在复合场中运动的处理方法
带电粒子在复合场中做什么运动,取决于带电粒子所受的 合外力及其初始状态的速度,因此应把带电粒子的运动情况和 受力情况结合起来进行分析,正确分析带电粒子的受力及运动特 征是解决问题的前提. ①当带电粒子在复合场中所受合外力为零时,做匀速直线 运动(如速度选择器)。应选用平衡条件进行处理。 ②当带电粒子所受的重力与电场力等值反向,洛伦兹力提 供向心力时,带电粒子在垂直于磁场的平面内做匀速圆周运动。 应选用向心力公式进行处理。 ③当带电粒子所受的合外力是变力,且与初速度方向不在 一条直线上时,粒子做非匀变速曲线运动,这时粒子的运动轨 迹既不是圆弧,也不是抛物线,应考虑用功能观点即动能定理 或能量守恒定律处理此类问题。

带电粒子在复合场中的运动

带电粒子在复合场中的运动

带电粒子在复合场中的运动一、复合场及分类复合场是指重力场、电场、磁场并存的场,在中学中常有四种组合形式:①电场与磁场的复合场;②磁场与重力场的复合场;③电场与重力场的复合场;④电场、磁场与重力场的复合场.二、处理复合场问题的前提判断带电粒子的重力是否可以忽略,这要依据具体情况而定,质子、α粒子、离子等微观粒子,一般不考虑重力;液滴、尘埃、小球等宏观带电物体由题设条件决定,有时还应根据题目的隐含条件来判断.三、解决带电粒子在复合场中运动问题的基本思路1.弄清复合场的组成.一般有磁场、电场的复合;磁场、重力场的复合;磁场、电场、重力场三者的复合.2.正确受力分析,除重力、弹力、摩擦力外要特别注意静电力和磁场力的分析.3.确定带电粒子的运动状态,注意运动情况和受力情况的结合.4.对于粒子连续通过几个不同情况的场的问题,要分阶段进行处理.5.画出粒子运动轨迹,灵活选择不同的运动规律.(1)当带电粒子在复合场中做匀速直线运动时,根据受力平衡列方程求解.(2)当带电粒子在复合场中做匀速圆周运动时,应用牛顿定律结合圆周运动规律求解.(3)当带电粒子做复杂曲线运动时,一般用动能定理或能量守恒定律求解.(4)对于临界问题,注意挖掘隐含条件.题型分类:一、带电粒子在重力场和磁场中运动命题规律:带电粒子在重力场和磁场中运动,根据重力和洛伦兹力的特点,确定粒子的运动轨迹,或最终运动状态.1、如图所示,一半径为R的光滑绝缘半球面开口向下,固定在水平面上.整个空间存在匀强磁场,磁场方向竖直向下.一电荷量为q(q>0)、质量为m的小球P在球面上做水平的匀速圆周运动,圆心为O’.球心O到该圆周上任一点的连线与竖直方向的夹角为θ(0<θ<90o).为了使小球能够在该圆周上运动,求磁感应强度大小的最小值及小球P相应的速率.重力加速度为g.2、一个足够长的绝缘斜面,斜面倾角为0,置于匀强磁场中,磁感应强度为B ,方向垂直于纸面向里,与水平面平行.如图所示,现有一带电荷量为q 、质量为m 的小球在斜面顶端由静止开始释放,小球与斜面间的动摩擦因数为μ,则( ).A .如果小球带正电荷,小球在斜面上的最大速度为qBmg θcos B .如果小球带正电荷,小球在斜面上的最大速度为qBmg μθμθ)cos (sin - C .如果小球带负电荷,小球在斜面上的最大速度为qBmg θcos D .如果小球带负电荷,小球在斜面上的最大速度为qBmg μθμθ)cos (sin -二、带电粒子在重力场、电场、磁场中做直线运动命题规律:根据带电粒子在复合场中做直线运动,判断粒子的受力情况.粒子所受合力为零或物体在约束条件下沿直线运动.3、如右图所示,空间存在着水平向左的匀强电场E 和垂直纸面向里的匀强磁场B ,一个质量为m 、带电荷量为q 的小环套在不光滑的足够长的竖直绝缘杆上,自静止开始下滑,则( )A .小环的加速度不断减少,直至为零B .小环的加速度先增大后减小,最终为零C .速度先增大后减小,最终为零D .小环的动能不断增加,直至某一最大值4、如图所示,在磁感应强度为B 的水平匀强磁场中,有一足够长的绝缘细棒OO ’,在竖直面内垂直于磁场方向放置,细棒与水平面夹角为α,一质量为m 、带电荷量为q 的圆环A 套在OO ’棒上,圆环与棒间的动摩擦因数为μ,且μ<tan α.现让圆环A 由静止开始下滑.试问圆环在下滑过程中:(1)圆环A 的最大加速度为多大?获得最大加速度时的速度为多大?(2)圆环A 能够达到的最大速度为多大?5、如右图所示,MN是一固定在水平地面上足够长的绝缘平板(右侧有挡板),整个空间有平行于平板向左、场强为E的匀强电场,在板上C点的右侧有一个垂直于纸面向里、磁感应强度为B的匀强磁场,一个质量为m、带电荷量为一q的小物块,从C点由静止开始向右先做加速运动再做匀速运动.当物体碰到右端挡板后被弹回,若在碰撞瞬间撤去电场,小物块返回时在磁场中恰做匀速运动,已知平板NC部分的长度为L,物块与平板间的动摩擦因数为μ,求:(1)小物块向右运动过程中克服摩擦力做的功;(2)小物块与右端挡板碰撞过程损失的机械能;(3)最终小物块停在绝缘平板上的位置.三、带电粒子在分离电场和磁场中的运动命题规律:带电粒子在电场和磁场的组合场中运动.根据粒子在运动过程中的受力情况,确定运动轨迹,计算粒子的运动时间、位移等物理量.6、如右图所示,在y>0的空间中存在匀强电场,场强沿y轴负方向;在y<0的空间中,存在匀强磁场,磁场方向垂直xy平面(纸面)向外.一电荷量为q、质量为m的带正电的运动粒子,经过y轴上y=h处的点P1时速率为v0,方向沿x轴正方向,然后,经过x轴上x=2h处的P2点进入磁场,并经过y轴上y=-2h处的P3点.不计重力.求:(1)电场强度的大小;(2)粒子到达P2时速度的大小和方向;(3)磁感应强度的大小;(4)粒子从P1点运动到P3点所用时间.7、如图所示,在坐标系Oxy的第一象限中存在沿y轴正方向的匀强电场,场强大小为E.在其他象限中存在匀强磁场,磁场方向垂直于纸面向里.A是y轴上的一点,它到坐标原点0的距离为h;C 是x轴上的一点,到0的距离为l,一质量为m、电荷量为q的带负电的粒子以某一初速度沿x轴方向从A点进入电场区域,继而通过C点进入磁场区域,并再次通过A点,此时速度方向与y轴正方向成锐角.不计重力作用.试求:(1)粒子经过C点时速度的大小和方向;(2)磁感应强度的大小B.四、带电粒子在重力场、电场、磁场中做圆周运动命题规律:带电粒子在重力、电场力、洛伦兹力的作用下做圆周运动.若粒子做匀速圆周运动,重力和电场力平衡,洛伦兹力提供向心力.若粒子在圆形轨道上运动,粒子一般做非匀速圆周运动,根据圆周运动的特点,确定轨道所受压力或其他物理量.8、一个带电微粒在图示的正交匀强电场和匀强磁场中在竖直面内做匀速圆周运动。

带电粒子在复合场中的运动(9大题型)(学生版) 25学年高二物理同步题型分类讲与练(人教版选修二)

带电粒子在复合场中的运动(9大题型)(学生版) 25学年高二物理同步题型分类讲与练(人教版选修二)

重难点突破:带电粒子在复合场中的运动知识点1 带电粒子在复合场中的运动1、复合场分类(1)叠加场:重力场、磁场、电场中三者或任意两者共存的场。

(2)组合场:电场与磁场各位于一定的区域内,并不重叠(相邻或相离),或电场、磁场交替出现。

2、受力分析(1)受力分析的顺序:先场力(包括重力、电场力、磁场力),后弹力,再摩擦力,最后其他力。

(2)是否考虑粒子重力①对于微观粒子,如电子、质子、离子等,因为一般情况下其重力与电场力或洛伦兹力相比太小,故可以忽略;而对于一些实际物体,如带电小球、液滴、尘埃等一般应当考虑其重力。

②在题目中有明确说明是否要考虑重力的,按题目要求处理。

③不能直接判断是否要考虑重力的,在进行受力分析与运动分析时,要结合运动状态确定是否要考虑重力。

(3)场力分析①重力场:G mg =,方向竖直向下。

重力做功:W mgh =,重力做功改变物体的重力势能。

=,正电荷受力方向与场强方向相同;负电荷受力方向与场强方向相反。

静电力做功:②静电场:F qE=,静电力做功改变带电粒子的电势能。

W qU=,方向:符合左手定则。

洛伦兹力不做功,带电粒子的动能不变。

③磁场:F qvB知识点2 带电粒子在组合场中运动的问题1、题型分析组合场是由电场和磁场或磁场和磁场组成的,互不重叠,分别位于某一边界的两侧,因而带电粒子在每个区域时仅受到一个场力的作用,且粒子在运动过程中从前一个场的区域出射时的速度即为进入下一个场的区域时的初速度,利用这一特点即可找到与两个场相关联的物理量。

解答带电粒子在电场中偏转的问题,一般是将带电粒子在电场中的运动沿垂直于电场方向和平行于电场方向分解。

2、带电粒子在电、磁组合场中运动知识点3 带电粒子在叠加场中运动的问题1、题型分析叠加场是指在同一空间区域有重力场、电场、磁场中的两种场或三种场互相并存叠加的情况。

常见的叠加场有:电场与重力场的叠加,磁场与电场的叠加,磁场、电场、重力场的叠加等。

带电粒子在复合场中的运动

带电粒子在复合场中的运动一、知识梳理1.复合场的分类(1)叠加场:电场、磁场、重力场共存,或其中某两场共存.(2)组合场:电场与磁场各位于一定的区域内,并不重叠,或相邻或在同一区域电场、磁场交替出现.2.带电粒子在复合场中的运动形式当带电粒子在复合场中所受的合外力为0时,粒子将做匀速直线运动或静止。

当带电粒子所受的合外力与运动方向在同一条直线上时,粒子将做变速直线运动. 当带电粒子所受的合外力充当向心力时,粒子将做匀速圆周运动。

当带电粒子所受的合外力的大小、方向均是不断变化的时,粒子将做变加速运动,这类问题一般只能用能量关系处理。

3. 题型分析:带电粒子在匀强电场、匀强磁场中可能的运动性质在电场强度为E 的匀强电场中 在磁感应强度为B 的匀强磁场中 初速度为零做初速度为零的匀加速直线运动保持静止初速度垂直场线 做匀变速曲线运动(类平抛运动) 做匀速圆周运动 初速度平行场线 做匀变速直线运动 做匀速直线运动特点受恒力作用,做匀变速运动洛伦兹力不做功,动能不变“电偏转”和“磁偏转"的比较垂直进入匀强磁场(磁偏转)垂直进入匀强电场(电偏转)情景图受力 F B =qv 0B ,大小不变,方向总指向圆心,方向变化,F B 为变力F E =qE ,F E 大小、方向不变,为恒力运动规律 匀速圆周运动r =mv 0Bq,T =错误!类平抛运动v x =v 0,v y =Eqm tx =v 0t ,y =错误!t 2运动时间 t =错误!T =错误!t =错误!,具有等时性动能 不变变化4。

常见模型(1)从电场进入磁场电场中:加速直线运动⇓磁场中:匀速圆周运动电场中:类平抛运动⇓磁场中:匀速圆周运动(2)从磁场进入电场磁场中:匀速圆周运动⇓错误!电场中:匀变速直线运动磁场中:匀速圆周运动⇓错误!电场中:类平抛运动二、针对练习1.在某一空间同时存在相互正交的匀强电场和匀强磁场,匀强电场的方向竖直向上,磁场方向如图。

复合场问题课件


拓展二 对叠加场问题的处理
什么时候带电体要考虑重力,什么时候不考虑重 力?
提示:电子、质子、α 粒子等微观粒子一定不用考虑 重力,像带电小球、液滴等宏观物体需要考虑重力.
1.直线运动. (1)不计重力,粒子垂直进入正交的电磁场中的直 线运动必为匀速直线运动.例如速度选择器. (2)只在重力、电场力、洛伦兹力三力作用下的直 线运动也必为匀速直线运动. 2.复合场中做圆周运动,洛伦兹力充当向心力.重力和 电场力平衡.
知识点 复合场问题 提炼知识 1.叠加场:电场、磁场、重力场共存,或其中某两场 共存. 2.带电粒子在叠加场中的运动形式. (1)静止或匀速直线运动. 当带电粒子在叠加场中所受合外力为零时,将处于静 止状态或做匀速直线运动.
(2)匀速圆周运动. 当带电粒子所受的重力与电场力大小相等,方向相反 时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的 平面内做匀速圆周运动. 3.组合场:电场与磁场各位于一定的区域内,并不重 叠,一般为两场相邻或在同一区域电场、磁场交替出现. 带电粒子可能依次通过几个情况不同的组合场区域, 其运动情况随区域发生变化,其运动过程由几种不同的运 动阶段组成.
【典例 2】 如图所示的坐标系,x 轴沿 水平方向,y 轴沿竖直方向.在 x 轴上方空间 的第一、第二象限内,既无电场也无磁场; 在第三象限,存在沿 y 轴正方向的匀强电场 和垂直 xOy 平面(纸面)向里的匀强磁场;一质量为 m、 电荷量为 q 的带电质点,从 y 轴上 y=h 处的 P1 点以一定 的水平初速度沿 x 轴负方向进入第二象限,然后经过 x 轴上 x=-2h 处的 P2 点进入第三象限,带电质点恰好能 做匀速圆周运动.之后经过 y 轴上 y=-2h 处的 P3 点进入 第四象限.已知重力加速度为 g.求:

复合场1

山东省济北中学2011级高二物理学案专题:带电粒子在复合场中的运动1编制:潘涛审核:孙强姓名:日期:教师寄语:生命之灯因热情而点燃,生命之舟因拼搏而前行【学习目标】掌握带电粒子在复合场中的运动问题的处理方法【知识要点】一、认识复合场复合场是指在空间某区域存在重力场、电场、磁场,分为分界场和叠加场分界场是指在不同的区域存在不同的场,粒子在每一个区域里的运动的运动情况一般不同。

叠加场是某区域同时存在几种场,如磁场与电场共存的场.或电场与重力场共存的场,或磁场与重力场共存的场,或磁场、电场、重力场共存的场。

二、带电粒子在三种场中受力、运动的区别1、重力场重力:大小,方向重力做功特点:重力是否考虑的问题:电子、质子、离子等微观粒子无特殊说明一般不计重力;带电小球、尘埃、油滴、液滴等带电颗粒无特殊说明一般计重力;如果有具体数据.可通过比较确定是否考虑重力2、电场电场力:大小,方向电场力做功特点:典型问题:电偏---带电粒子在匀强电场中做类平抛运动的处理(运动的合成与分解)3、磁场洛仑兹力:大小,方向洛伦兹力做功特点:典型问题:磁偏---带电粒子在匀强磁场中做匀速匀速圆周运动的处理三、分界场问题的处理根据带电粒子在不同场中的受力及运动采用相对应的方法进行处理,注意各个运动过程的联系【典型例题】例1、如下图所示,在虚线所示宽度范围内,有场强为E的匀强电场,一正离子垂直于电,射出时的速度方向偏转了θ角,若把电场撤去,场方向射入电场,射入时的速度为v换上方向垂直纸面向外的匀强磁场,离子原样射入。

射出时速度方向偏转角度也是θ.不计重力,磁场的磁感应强度B是多少?例2.如图所示,在y>0的空间中存在匀强电场,场强沿y轴负方向;在y<0的空间中,存在匀强磁场,磁场方向垂直xy平面(纸面)向外,一电量为q、质量为m的带正电的运动粒子,经过y轴上y=h处的点P1时速率为v0,方向沿x轴正方向;然后,经过x轴上x =2h处的P2点进入磁场,并经过y轴上y=-2h处的P3点,不计重力.求:(1) 电场强度的大小;(2) 粒子到达P2时速度的大小和方向;(3) 磁感应强度的大小.【巩固练习】1、如图7所示,MN 为两个匀强磁场的分界面,两磁场的磁感应强度大小的关系为B 1=2B 2,一带电荷量为+q 、质量为m 的粒子从O 点垂直MN 进入B 1磁场,则经过多长时间它将向下再一次通过O 点( ) A.2πm qB 1 B.2πm qB 2 C.2πm q (B 1+B 2)D.πmq (B 1+B 2)2、一个带电粒子(不计重力)以初速度v 0垂直于电场方向向右射入匀强电场区域,穿出电场后接着又进入匀强磁场区域。

复合场1


小和方向)如果出现临界状态,要分析临 界条件。 ④恰当选择解决问题的方法:
1) 电场中的匀变速曲线运动通常进行运动分解 2) 磁场中匀速圆周运动,找圆心、几何关系求 半径等。
练习1.
Hale Waihona Puke 图10Ld B B
E
O
练习4.
课堂总结
复合场
分界场 按单一场处理 交替场(周期性) 叠加场
两大分析
准确规范画出轨迹图,找出准确的几何关系是关键!
今日作业: 1. 认真改错 2.完成下一学案
三、在交替场中的运动情况
先分清电场与磁场是如何组合的,再分析物体运动情况! (1)在匀强电场中匀变速直线运动或类平抛运动; (2)在匀磁电场中匀速圆周运动。
(1)先电场再电场:加速直线和偏转(类平抛)
(2)先电场再磁场: (3)先磁场再电场:
(4)先磁场再磁场:
解决组合场问题思路:
①弄清场的构成,正确进行受力分析,要特别 注意电场力和洛仑兹力的分析。 ②正确进行物体的运动状况分析,找出物体的 速度、位置及变化,分清运动过程。 ③找出过程之间的联系(一般是速度的大
准确规范画出轨迹图,找出准确的几何关系是关键!
二、在复合场中的受力情况
种类
重力 电场力 洛伦兹力
大小
mg qE qVB
方向
竖直向下 与场强平行 与电性有关 与V和B垂直
是否做功
W=mgh W=qU 永不做功
注意事项:
1、顺序: 一场、二弹、三摩擦 2、是否考虑重力的问题: (1)基本粒子一般不计重力 (2)带电小球、油滴等颗粒计重力 3、洛伦兹力的方向判断和大小计算
复合场
——交替场
山东省济北中学 高二物理组
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复合场1.复合场的分类: (1)叠加场:电场、磁场、重力场共存,或其中某两场共存. (2)组合场:电场与磁场各位于一定的区域内,并不重叠或相邻或在同一区域,电场、磁场交替出现.二、带电粒子在复合场中的运动形式1.静止或匀速直线运动当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动. 2.匀速圆周运动:当带电粒子所受的重力与电场力大小相等,方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动.3.较复杂的曲线运动:当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一直线上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线.4.分阶段运动:带电粒子可能依次通过几个情况不同的组合场区域,其运动情况随区域发生变化,其运动 过程由几种不同的运动阶段组成.1.[带电粒子在复合场中的直线运动]某空间存在水平方向的匀强电场带电小球沿如图所示的直线斜向下由A 点沿直线向B 点运动,此空间同时存在由A 指向B 的匀强磁场,则下列说法正确的是( ) A .小球一定带正电B .小球可能做匀速直线运动C .带电小球一定做匀加速直线运动D .运动过程中,小球的机械能增大2.[带电粒子在复合场中的匀速圆周运动]如图所示,一带电小球在一正交电场、磁场区域里做匀速圆周运动,电场方向竖直向下,磁场方向垂直纸面向里,则下列说法正确的是( ) A .小球一定带正电 B .小球一定带负电 C .小球的绕行方向为顺时针 D .改变小球的速度大小,小球将不做圆周运动3.[质谱仪原理的理解]如图所示是质谱仪的工作原理示意图.带电粒子被加速电场加速后,进入速度选择器.速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B 和E .平板S 上有可让粒子通过的狭缝P 和记录粒子位置的胶片A 1A 2.平板S 下方有磁感应强度为B 0的匀强磁场.下列表述正确的是( ) A .质谱仪是分析同位素的重要工具 B .速度选择器中的磁场方向垂直纸面向外 C .能通过狭缝P 的带电粒子的速率等于E /B D .粒子打在胶片上的位置越靠近狭缝P ,粒子的比荷越小4.[回旋加速器原理的理解]回旋加速器,工作原理示意图如图置于高真空中的D 形金属盒半径为R ,两盒间的狭缝很小,带电粒子穿过的时间可忽略.磁感应强度为B 的匀强磁场与盒面垂直,高频交流电频率为f ,加速电压为U .若A 处粒子源产生的质子质量为m 、电荷量为+q ,在加速器中被加速,且加速过程中不考虑相对论效应和重力的影响.则下列说法正确的是( ) A .质子被加速后的最大速度不可能超过2πRf B .质子离开回旋加速器时的最大动能与加速电压U 成正比 C .质子第2次和第1次经过两D 形盒间狭缝后轨道半径之比为2∶1 D .不改变磁感应强度B 和交流电频率f ,该回旋加速器的最大动能不变规律总结:带电粒子在复合场中运动的应用实例1.质谱仪: (1)构造:如图由粒子源、加速电场、偏转磁场和照相底片等构成. (2)原理:粒子由静止被加速电场加速,根据动能定理可得关系式qU =12mv 2.粒子在磁场中受洛伦兹力作用而偏转,做匀速圆周运动,根据牛顿第二定律得关系式qvB =m v 2r.由两式可得出需要研究的物理量,如粒子轨道半径、粒子质量、比荷. r =1B 2mUq ,m =qr 2B 22U ,q m =2U B 2r2. 2.回旋加速器: (1)构造:如图D 1、D 2是半圆形金属盒,D 形盒的缝隙处接交流电源,D 形盒处于匀强磁场中. (2)原理:交流电的周期和粒子做圆周运动的周期相等,粒子在圆周运动的过程中一次一次地经过D 形盒缝隙,两盒间的电势差一次一次地反向,粒子就会被一次一次地加速.由qvB =mv 2r , 图6得E km =q 2B 2r 22m ,可见粒子获得的最大动能由磁感应强度B 和D 形盒半径r 决定,与加速电压无关. 特别提醒 这两个实例都应用了带电粒子在电场中加速、在磁场中偏转(匀速圆周运动)的原理.3.速度选择器:(1)平行板中电场强度E 和磁感应强度B 互相垂直.这种装置能把具有一定速度的粒子选择出来,所以叫做速度选择器. (2)带电粒子能够沿直线匀速通过速度选择器的条件是qE =qvB ,即v =E B .4.磁流体发电机:(1)磁流体发电是一项新兴技术,它可以把内能直接转化为电能. (2)根据左手定则,如图中的B 是发电机正极. (3)磁流体发电机两极板间的距离为L ,等离子体速度为v ,磁场的磁感应强度为B ,则由qE =q U L =qvB 得两极板间能达到的最大电势差U =BLv .5.电磁流量计工作原理:如图9所示,圆形导管直径为d ,用非磁性材料制成,导电液体在管中向左流动,导电液体中的自由电荷(正、负离子),在洛伦兹力的作用下横向偏转,a 、b 间出现电势差,形成电场,当自由电荷 所受的电场力和洛伦兹力平衡时,a 、b 间的电势差就保持稳定,即:qvB =qE =q U d ,所以v =U Bd ,因此液体流量Q =Sv =πd 24·U Bd =πdU 4B. 带电粒子在叠加场中的运动:1.带电粒子在叠加场中无约束情况下的运动情况分类 (1)磁场力、重力并存:①若重力和洛伦兹力平衡,则带电体做匀速直线运动.②若重力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,故机械能守恒,由此可求解问题. (2)电场力、磁场力并存(不计重力的微观粒子):①若电场力和洛伦兹力平衡,则带电体做匀速直线运动.②若电场力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题. (3)电场力、磁场力、重力并存:①若三力平衡,一定做匀速直线运动.②若重力与电场力平衡,一定做匀速圆周运动.③若合力不为零且与速度方向不垂直,将做复杂的曲线运动,因洛伦兹力不做功,可用能量守恒或动能定理求解问题.2.带电粒子在叠加场中有约束情况下的运动:带电体在复合场中受轻杆、轻绳、圆环、轨道等约束的情况下,常见的运动形式有直线运动和圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,运用动能定理、能量守恒定律结合牛顿运动定律求出结果.例 1 如图带电平行金属板相距为2R ,在两板间有垂直纸面向里、磁感应强度为B的圆形匀强磁场区域 ,与两板及左侧边缘线相切.一个带正电的粒子(不计重力)沿两板间中心线O 1O 2从左侧边缘O 1点以某一速度射入,恰沿直线通过圆形磁场区域,并从极板边缘飞出,在极板间运动时间为t 0.若撤去磁场,质子仍从O 1点以相同速度射入,则经t 02时间打到极板上. (1)求两极板间电压U ; (2)若两极板不带电,保持磁场不变,该粒子仍沿中心线O 1O 2从O 1点射入,欲使粒子从两板左侧间飞出,射入的速度应满足什么条件?突破训练1 如图空间存在着垂直纸面向外的水平匀强磁场, 磁感应强度为B ,在y 轴两侧分别有方向相反的匀强电场,电场强度均为E ,在两个电场的交界处左侧,有一带正电的液滴a 在电场力和重力作用下静止,现从场中某点由静止释放一个带负电的液滴b ,当它的运动方向变为水平方向时恰与a 相撞,撞后两液滴合为一体,速度减小到原来的一半,并沿x 轴正方向做匀速直线运动,已知液滴b 与a 的质量相等,b 所带电荷量是a 所带电荷量的2倍,且相撞前a 、b 间的静电力忽略不计. (1)求两液滴相撞后共同运动的速度大小; (2)求液滴b 开始下落时距液滴a 的高度h .例2 如图甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两长为L 的平行金属极板MN 和PQ ,两极板中心各有一小孔S 1、S 2,两极板间电压的变化规律如图乙所示,正反向电压的大小均为U 0,周期为T 0.在t =0时刻将一个质量为m 、电荷量为-q (q >0)的粒子由S 1静止释放,粒子在电场力的作用下向右运动,在t =T 02时刻通过S 2垂直于边界进入右侧磁场区.(不计粒子重力,不考虑极板外的电场) (1)求粒子到达S 2时的速度大小v 和极板间距d . (2)为使粒子不与极板相撞,求磁感应强度的大小应满足的条件. (3)若已保证了粒子未与极板相撞,为使粒子在t =3T 0时刻再次到达S 2,且速度恰好为零,求该过程中粒子在磁场内运动的时间和磁感应强度的大小.突破训练2 如图所示装置中,区域Ⅰ和Ⅲ中分别有竖直向上和水平向右的匀强电场,电场强度分别为E 和E2;区域Ⅱ内有垂直向外的水平匀强磁场,磁感应强度为B .一质量为m 、带电荷量为q 的带负电粒子(不计重力)从左边界O 点正上方的M 点以速度v 0水平射入电场,经水平分界线OP 上的A 点与OP 成60°角射入区域Ⅱ的磁场,并垂直竖直边界CD 进入Ⅲ区域的匀强电场中.求: (1)粒子在区域Ⅱ匀强磁场中运动的轨迹半径; (2)O 、M 间的距离; (3)粒子从M 点出发到第二次通过CD 边界所经历的时间.突破训练3 如图甲所示,与纸面垂直的竖直面MN 的左侧空间中存在竖直向上的场强大小为E =2.5×102N/C 的匀强电场(上、下及左侧无界).一个质量为m =0.5kg 、电荷量为q =2.0×10-2 C 的可视为质点的带正电小球,在t =0时刻以大小为v 0的水平初速度向右通过电场中的一点P ,当t =t 1时刻在电场所在空间中加上一如图乙所示随时间周期性变化的磁场,使得小球能竖直向下通过D 点,D 为电场中小球初速度方向上的一点,PD 间距为L ,D 到竖直面MN 的距离DQ 为L /π.设磁感应强度垂直纸面向里为正.(g =10 m/s 2) (1)如果磁感应强度B 0为已知量,使得小球能竖直向下通过D 点,求磁场每一次作用时间t 0的最小值(用题中所给物理量的符号表示); (2)如果磁感应强度B 0为已知量,试推出满足条件的时刻t 1的表达式(用题中所给物理量的符号表示); (3)若小球能始终在电磁场所在空间做周期性运动,则当小球运动的周期最大时,求出磁感应强度B 0及运动的最大周期T 的大小(用题中所给物理量的符号表示).高考题组1.如图一半径为R 的圆表示一柱形区域的横截面(纸面).在柱形区域内加一方向垂直于纸面的匀强磁场,一质量为m 、电荷量为q 的粒子沿图中直线从圆上的a 点射入柱形区域,从圆上的b 点离开该区域,离开时速度方向与直线垂直.圆心O 到直线的距离为35R .现将磁场换为平行于纸面且垂直于直线的匀强电场,同一粒子以同样速度沿直线从a 点射入柱形区域,也从b 点离开该区域.若磁感应强度大小为B ,不计重力,求电场强度的大小.2.如图所示,两块水平放置、相距为d 的长金属板接在电压可调的电源上.两板之间的右侧区域存在方向垂直纸面向里的匀强磁场.将喷墨打印机的喷口靠近上板下表面,从喷口连续不断喷 出质量均为m 、水平速度均为v 0、带相等电荷量的墨滴.调节电源电压至U ,墨滴在电场区域恰能沿水平向右做匀速直线运动;进入电场、磁场共存区域后,最终垂直打在下板的M 点. (1)判断墨滴所带电荷的种类,并求其电荷量; (2)求磁感应强度B 的值; (3)现保持喷口方向不变,使其竖直下移到两板中间的位置.为了使墨滴仍能到达下板M 点,应将磁感应强度调至B ′,则B ′的大小为多少?3.有人设计了一种带电颗粒的速率分选装置,其原理如图所示,两带电金属板间有匀强电场,方向竖直向上,其中PQNM矩形区域内还有方向垂直纸面向外的匀强磁场.一束比荷(电荷量与质量之比)均为1k 的带正电颗粒,以不同的速率沿着磁场区域的水平中心线O ′O 进入两金属板之间,其中速率为v 0的颗粒刚好从Q 点处离开磁场,然后做匀速直线运动到达收集板,重力加速度为g ,PQ =3d ,NQ =2d ,收集板与NQ 的距离为l ,不计颗粒间的相互作用.求: (1)电场强度E 的大小; (2)磁感应强度B 的大小; (3)速率为λv 0(λ>1)的颗粒打在收集板上的位置到O 点的距离.4. 如图所示,坐标平面第Ⅰ象限内存在大小为E =4×105 N/C 、方向水平向左的匀强电场,在第Ⅱ象限内存在方向垂直纸面向里的匀强磁场.质荷比为m q =4×10-10 N/C 的带正电粒子从x 轴上的A 点以初速度v 0=2×107 m/s 垂直x 轴射入电场,OA =0.2 m ,不计重力.求: (1)粒子经过y 轴时的位置到原点O 的距离; (2)若要求粒子不能进入第三象限,求磁感应强度B 的取值范围(不考虑粒子第二次进入电场后的运动情况.)5.如图甲,在以O 为坐标原点的xOy 平面内,存在着范围足够大的电场和磁场,一个带正电小球在t =0时刻以v 0=3gt 0的初速度从O 点沿+x方向(水平向右)射入该空间,在t 0时刻该空间同时加上如图乙所示的电场和磁场,其中电场方向竖直向上,场强大小E 0=mg q ,磁场垂直于xOy 平面向外,磁感应强度大小B 0=πm qt 0,已知小球的质量为m ,带电荷量为q ,时间单位为t 0,当地重力加速度为g ,空气阻力不计.试求: (1)t 0末小球速度的大小; (2)小球做圆周运动的周期T 和12t 0末小球速度的大小; (3)在给定的xOy 坐标系中,大体画出小球在0到24t 0内运动轨迹的示意图;(4)30t 0内小球距x 轴的最大距离.►题组1. 在水平匀强电场和垂直纸面向里的匀强磁场中,有一竖直足够长固定绝缘杆MN ,小球P 套在杆上,已知P 的质量为m ,电荷量为+q ,电场强度为E ,磁感应强度为B ,P 与杆间的动摩擦因数为μ,小球由静止开始下滑直到稳定的过程中( ) A .小球的加速度一直减小B .小球的机械能和电势能的总和保持不变C .下滑加速度为最大加速度一半时的速度可能是v =2μqE -mg 2μqBD .下滑加速度为最大加速度一半时的速度可能是v =2μqE +mg 2μqB2. 如图所示,已知一带电小球在光滑绝缘的水平面上从静止开始经电压U 加速后,水平进入互相垂直的匀强电场E 和匀强磁场B 的复合场中(E 和B 已知),小球在此空间的竖直面内做匀速圆周运动,则 ( ) A .小球可能带正电 B .小球做匀速圆周运动的半径为r =1B 2UE g C .小球做匀速圆周运动的周期为T =2πEBg D .若电压U 增大,则小球做匀速圆周运动的周期增加3.如图空间的某个复合场区域内存在着方向相互垂直的匀强电场和匀强磁场.质子由静止开始经一加速电场加速后,垂直于复合场的界面进入并沿直线穿过场区,质子从复合场区穿出时的动能为E k .那么氘核同样由静止开始经同一加速电场加速后穿过同一复合场后的动能E k ′的大小是( )A .E k ′=E kB .E k ′>E kC .E k ′<E kD .条件不足,难以确定4.如图两块平行金属极板MN 水平放置,板长L =1 m .间距d =33 m ,两金属板间电压U MN =1×104 V ;在平行金属板右侧依次存在ABC 和FGH 两个全等的正三角形区域,正三角形ABC 内存在垂直纸面向里的匀强磁场B 1,三角形的上顶点A 与上金属板M 平齐,BC 边与金属板平行,AB 边的中点P 恰好在下金属板N 的右端点;正三角形FGH 内存在垂直纸面向外的匀强磁场B 2.已知A 、F 、G 处于同一直线上,B 、C 、H 也处于同一直线上.AF 两点的距离为23m .现从平行金属板MN 左端沿中心轴线方向入射一个重力不计的带电粒子,粒子质量m =3×10-10 kg ,带电荷量q =+1×10-4 C ,初速度v 0=1×105 m/s. (1)求带电粒子从电场中射出时的速度v 的大小和方向; (2)若带电粒子进入中间三角形区域后垂直打在AC 边上,求该区域的磁感应强度B 1; (3)若要使带电粒子由FH 边界进入FGH 区域并能再次回到FH 界面,求B 2应满足的条件.5. 如图一个质量为m 、电荷量为q 的正离子,在D 处沿图示方向以一定的速度射入磁感应强度为B 的匀强磁场中,磁场方向垂直纸面向里.结果离子正好从距A 点为d 的小孔C 沿垂直于电场方向进入匀强电场,此电场方向与AC 平行且向上,最后离子打在G 处,而G 处距A 点2d(AG ⊥AC ).不计离子重力,离子运动轨迹在纸面内.求: (1)此离子在磁场中做圆周运动的半径r ; (2)离子从D 处运动到G 处所需时间; (3)离子到达G 处时的动能.6.如图甲所示,水平直线MN 下方有竖直向上的匀强电场,现将一重力不计、比荷q m =106C/kg 的正电荷置于电场中的O 点由静止释放,经过π15×10-5 s 后,电荷以v 0=1.5×104 m/s 的速度通过MN 进入其上方的匀强磁场,磁场与纸面垂直,磁感应强度B 按图乙所示规律周期性变化(图乙中磁场以垂直纸面向外为正,以电荷第一次通过MN 时为t =0时刻).求: (1)匀强电场的电场强度E ; (2)图乙中t =4π5×10-5 s 时刻电荷与O 点的水平距离; (3)如果在O 点右方d =68 cm 处有一垂直于MN 的足够大的挡板,求电荷从O 点出发运动到挡板所需的时间.7.如图甲所示,在xOy 平面内有足够大的匀强电场,电场方向竖直向上,电场强度E =40 N/C ,在y 轴左侧平面内有足够大的瞬时磁场,磁感应强度B 1随时间t 变化的规律如图乙所示,15π s 后磁场消失,选定磁场垂直纸面向里为正方向.在y 轴右侧平面内还有方向垂直纸面向外的恒定的匀强磁场,分布在一个半径为r =0.3 m 的圆形区域(图中未画出),且圆的左侧与y 轴相切,磁感应强度B 2=0.8 T .t =0时刻,一质量m =8×10-4 kg 、电荷量q =2×10-4 C 的微粒从x 轴上x P =-0.8 m 处的P 点以速度v =0.12 m/s 向x 轴正方向入射.(g取10 m/s 2,计算结果保留两位有效数字) (1)求微粒在第二象限运动过程中离y 轴、x 轴的最大距离. (2)若微粒穿过y 轴右侧圆形磁场时,速度方向的偏转角度最大,求此圆形磁场的圆心坐标(x ,y ).1.答案 CD 解析 由于重力方向竖直向下,空间存在磁场,且直线运动方向斜向下,与磁场方向相同,故不受洛伦兹力作用,电场力必水平向右,但电场具体方向未知,故不能判断带电小球的电性,选项A 错误;重力和电场力的合力不为零,故不可能做匀速直线运动,所以选项B 错误;因为重力与电场力的合力方向与运动方向相同,故小球一定做匀加速直线运动,选项C 正确;运动过程中由于电场力做正功,故机械能增大,选项D 正确.2.答案 BC 解析 小球做匀速圆周运动,重力必与电场力平衡,则电场力方向竖直向上,结合电场方向可知小球一定带负电,A 错误,B 正确;洛伦兹力充当向心力,由曲线运动轨迹的弯曲方向结合左手定则可得绕行方向为顺时针方向,C 正确,D 错误.3.答案 ABC 解析 粒子在题图中的电场中加速,说明粒子带正电,其通过速度选择器时,电场力与洛伦兹力平衡,则洛伦兹力方向应水平向左,由左手定则知,磁场的方向应垂直纸面向外,选项B 正确;由Eq =Bqv 可知,v =E /B ,选项C 正确;粒子打在胶片上的位置到狭缝的距离即为其做匀速圆周运动的直径D =2mv Bq,可见D 越小,则粒子的比荷越大,D 不同,则粒子的比荷不同,因此利用该装置可以分析同位素,A 正确,D 错误.4.答案 AC 解析 粒子被加速后的最大速度受到D 形盒半径R 的制约,因v =2πR T=2πRf ,故A 正确;粒子离开回旋加速器的最大动能E km =12mv 2=12m ×4π2R 2f 2=2m π2R 2f 2,与加速电压U 无关,B 错误;根据R =mv Bq ,Uq =12mv 21,2Uq =12mv 22,得质子第2次和第1次经过两D 形盒间狭缝后轨道半径之比为2∶1,C 正确;因回旋加速器的最大动能E km =2m π2R 2f 2与m 、R 、f 均有关,D 错误.例1解析 (1)设粒子从左侧O 1点射入的速度为v 0,极板长为L ,粒子在初速度方向上做匀速直线运动L ∶(L -2R )=t 0∶t 02,解得L =4R 粒子在电场中做类平抛运动:L -2R =v 0·t 02 a =qE m R =12a (t 02)2 在复合场中做匀速运动:q U 2R =qv 0B 联立各式解得v 0=4R t 0,U =8R 2B t 0(2)设粒子在磁场中做圆周运动的轨迹如图所示,设其轨道半径为r ,粒子恰好从上极板左边缘飞出时速度的偏转角为α,由几何关系可知:β=π-α=45°,r +2r =R 因为R =12qE m (t 02)2,所以qE m =qv 0B m =8R t 20 根据牛顿第二定律有qvB =m v 2r ,解得v =22-1Rt 0 所以,粒子在两板左侧间飞出的条件为0<v <22-1R t 0突破训练1 解析 液滴在匀强磁场、匀强电场中运动,同时受到洛伦兹力、电场力和重力作用. (1)设液滴a 质量为m 、电荷量为q ,则液滴b 质量为m 、电荷量为-2q ,液滴a 平衡时有qE =mg ① a 、b 相撞合为一体时,质量为2m ,电荷量为-q ,速度为v ,由题意知处于平衡状态,重力为2mg ,方向竖直向下,电场力为qE ,方向竖直向上,洛伦兹力方向也竖直向上,因此满足qvB +qE =2mg ②由①、②两式,可得相撞后速度v =E B(2)对b ,从开始运动至与a 相撞之前,由动能定理有W E +W G =ΔE k ,即(2qE+mg )h =12mv 20 ③ a 、b 碰撞后速度减半,即v =v 02,则v 0=2v =2E B 再代入③式得h =mv 204qE +2mg =v 206g =2E 23gB2 例2 解析 (1)粒子由S 1至S 2的过程,根据动能定理得qU 0=12mv 2 ① 由①式得v = 2qU 0m ②设粒子的加速度大小为a ,由牛顿第二定律得q U 0d =ma ③ 由运动学公式得d =12a (T 02)2 ④联立③④式得d =T 04 2qU 0m ⑤(2)设磁感应强度的大小为B ,粒子在磁场中做匀速圆周运动的半径为R ,由牛顿第二定律得qvB =m v 2R⑥ 要使粒子在磁场中运动时不与极板相撞,需满足2R >L 2 ⑦ 联立②⑥⑦式得B <4L 2mU 0q(3)设粒子在两边界之间无场区向左匀速运动的过程所用时间为t 1,有d =v t 1 ⑧ 联立②⑤⑧式得t 1=T 04 ⑨ 若粒子再次到达S 2时速度恰好为零,粒子回到极板间应做匀减速运动,设匀减速运动的时间为t 2,根据运动学公式得d =v 2t 2 ⑩ 联立⑧⑨⑩式得t 2=T 02 ⑪ 设粒子在磁场中运动的时间为t t =3T 0-T 02-t 1-t 2 ⑫ 联立⑨⑪⑫式得t =7T 04⑬设粒子在匀强磁场中做匀速圆周运动的周期为T ,由⑥式结合运动学公式得T =2πm qB ⑭ 由题意可知T =t ⑮ 联立⑬⑭⑮式得B =8πm 7qT 0. 突破训练2 解析 (1)粒子的运动轨迹如图所示,其在区域Ⅰ的匀强电场中做类平抛运动,设粒子过A 点时速度为v ,由类平抛运动规律知v =v 0cos 60°粒子在匀强磁场中做匀速圆周运动,由牛顿第二定律得Bqv =m v 2R ,所以R =2mv 0qB (2)设粒子在区域Ⅰ的电场中运动时间为t 1,加速度为a .则有qE =ma ,v 0tan 60°=at 1,即t 1=3mv 0qE O 、M 两点间的距离为L =12at 21=3mv 202qE(3)设粒子在Ⅱ区域磁场中运动时间为t 2 则由几何关系知t 2=T 16=πm 3qB 设粒子在Ⅲ区域电场中运动时间为t 3,a ′=q E2m =qE 2m 则t 3=22v 0a ′=8mv 0qE 粒子从M 点出发到第二次通过CD 边界所用时间为t =t 1+t 2+t 3=3mv 0qE +πm 3qB +8mv 0qE =8+3mv 0qE +πm 3qB 例3解析 (1)粒子在磁场中运动时qvB =mv 2R T =2πR v 解得T =2πm qB =4×10-3 s (2)粒子的运动轨迹如图所示,t =20×10-3 s 时粒子在坐标系内做了两个圆周运动和三段类平抛运动,水平位移x =3v 0T =9.6×10-2m 竖直位移y =12a (3T )2 Eq =ma 解得y =3.6×10-2 m 故t =20×10-3 s 时粒子的位置坐标为: (9.6×10-2 m ,-3.6×10-2 m)(3)t =24×10-3 s 时粒子的速度大小、方向与t =20×10-3 s 时相同,设与水平方向夹角为α 则v =v 20+v 2yv y =3aT tan α=v y v 0 解得v =10 m/s 与x 轴正向夹角α为37°(或arctan 34)斜向右下方突破训练3 解析 (1)当小球仅有电场作用时:mg =Eq ,小球将做匀速直线运动.在t 1时刻加入磁场,小球在时间t 0内将做匀速圆周运动,圆周运动周期为T 0,若竖直向下通过D 点,由图甲分析可知: t 0=3T 04=3πm 2qB 0(2)PF -PD =R ,即: v 0t 1-L =R qv 0B 0=mv 20/R 所以v 0t 1-L =mv 0qB 0,t 1=L v 0+m qB 0(3)小球运动的速率始终不变,当R 变大时,T 0也增加,小球在电磁场中的运动的周期T 增加,在小球不飞出电磁场的情况下,当T 最大时有: DQ =2R =L π=2mv 0qB 0 B 0=2πmv 0qL ,T 0=2πR v 0=L v 0由图分析可知小球在电磁场中运动的最大周期: T =8×3T 04=6L v 0,小球运动轨迹如图乙所示. 1. 解析 粒子在磁场中做圆周运动.设圆周的半径为r ,由牛顿第二定律和洛伦兹力公式得qvB =m v 2r①式中v 为粒子在a 点的速度.过b 点和O 点作直线的垂线,分别与直线交于c 点和d 点.由几何关系知,线段ac 、bc 和过a 、b 两点的圆弧轨迹的两条半径(未画出)围成一正方形.因此ac =bc =r② 设cd =x ,由几何关系得ac =45R +x ③bc =35R +R 2-x 2 ④ 联立②③④式得r =75R ⑤ 再考虑粒子在电场中的运动.设电场强度的大小为E ,粒子在电场中做类平抛运动.设其加速度大小为a ,由牛顿第二定律和带电粒子在电场中的受力公式得qE =ma ⑥粒子在电场方向和直线方向运动的距离均为r ,由运动学公式得r =12at 2 ⑦ r =vt ⑧ 式中t 是粒子在电场中运动的时间.联立①⑤⑥⑦⑧式得E =14qRB 25m. 2.解析 (1)墨滴在电场区域做匀速直线运动,有q U d =mg ① 由①式得:q =mgd U ②由于电场方向向下,电荷所受电场力向上,可知:墨滴带负电荷.(2)墨滴垂直进入电场、磁场共存区域后,重力仍与电场力平衡,合力等于洛伦兹力,墨 滴做匀速圆周运动,有qv 0B =m v 20R ③ 考虑墨滴进入电场、磁场共存区域和下板的几何关系,可知。

相关文档
最新文档