数据结构实验二叉树的遍历
数据结构实验五(二叉树的建立及遍历)题目和源程序

实验5:二叉树的建立及遍历(第十三周星期三7、8节)一、实验目的1.学会实现二叉树结点结构和对二叉树的基本操作。
2.掌握对二叉树每种操作的具体实现,学会利用递归方法编写对二叉树这种递归数据结构进行处理的算法。
二、实验要求1.认真阅读和掌握和本实验相关的教材内容。
2.编写完整程序完成下面的实验内容并上机运行。
3.整理并上交实验报告。
三、实验内容1.编写程序任意输入二叉树的结点个数和结点值,构造一棵二叉树,采用三种递归遍历算法(前序、中序、后序)对这棵二叉树进行遍历并计算出二叉树的高度。
2 .编写程序生成下面所示的二叉树,并采用中序遍历的非递归算法对此二叉树进行遍历。
四、思考与提高1.如何计算二叉链表存储的二叉树中度数为1的结点数?2.已知有—棵以二叉链表存储的二叉树,root指向根结点,p指向二叉树中任一结点,如何求从根结点到p所指结点之间的路径?/*----------------------------------------* 05-1_递归遍历二叉树.cpp -- 递归遍历二叉树的相关操作* 对递归遍历二叉树的每个基本操作都用单独的函数来实现* 水上飘2009年写----------------------------------------*/// ds05.cpp : Defines the entry point for the console application.//#include "stdafx.h"#include <iostream>typedef char ElemType;using namespace std;typedef struct BiTNode {ElemType data;//左右孩子指针BiTNode *lchild, *rchild;}BiTNode, *BiTree;//动态输入字符按先序创建二叉树void CreateBiTree(BiTree &T) {char ch;ch = cin.get();if(ch == ' ') {T = NULL;}else {if(ch == '\n') {cout << "输入未结束前不要输入回车,""要结束分支请输入空格!" << endl;}else {//生成根结点T = (BiTNode * )malloc(sizeof(BiTNode));if(!T)cout << "内存分配失败!" << endl;T->data = ch;//构造左子树CreateBiTree(T->lchild);//构造右子树CreateBiTree(T->rchild);}}}//输出e的值ElemType PrintElement(ElemType e) { cout << e << " ";return e;}//先序遍历void PreOrderTraverse(BiTree T) { if (T != NULL) {//打印结点的值PrintElement(T->data);//遍历左孩子PreOrderTraverse(T->lchild);//遍历右孩子PreOrderTraverse(T->rchild);}}//中序遍历void InOrderTraverse(BiTree T) {if (T != NULL) {//遍历左孩子InOrderTraverse(T->lchild);//打印结点的值PrintElement(T->data);//遍历右孩子InOrderTraverse(T->rchild);}}//后序遍历void PostOrderTraverse(BiTree T) { if (T != NULL) {//遍历左孩子PostOrderTraverse(T->lchild);//遍历右孩子PostOrderTraverse(T->rchild);//打印结点的值PrintElement(T->data);}}//按任一种遍历次序输出二叉树中的所有结点void TraverseBiTree(BiTree T, int mark) {if(mark == 1) {//先序遍历PreOrderTraverse(T);cout << endl;}else if(mark == 2) {//中序遍历InOrderTraverse(T);cout << endl;}else if(mark == 3) {//后序遍历PostOrderTraverse(T);cout << endl;}else cout << "选择遍历结束!" << endl;}//输入值并执行选择遍历函数void ChoiceMark(BiTree T) {int mark = 1;cout << "请输入,先序遍历为1,中序为2,后序为3,跳过此操作为0:";cin >> mark;if(mark > 0 && mark < 4) {TraverseBiTree(T, mark);ChoiceMark(T);}else cout << "此操作已跳过!" << endl;}//求二叉树的深度int BiTreeDepth(BiTNode *T) {if (T == NULL) {//对于空树,返回0并结束递归return 0;}else {//计算左子树的深度int dep1 = BiTreeDepth(T->lchild);//计算右子树的深度int dep2 = BiTreeDepth(T->rchild);//返回树的深度if(dep1 > dep2)return dep1 + 1;elsereturn dep2 + 1;}}int _tmain(int argc, _TCHAR* argv[]){BiTNode *bt;bt = NULL; //将树根指针置空cout << "输入规则:" << endl<< "要生成新结点,输入一个字符,""不要生成新结点的左孩子,输入一个空格,""左右孩子都不要,输入两个空格,""要结束,输入多个空格(越多越好),再回车!"<< endl << "按先序输入:";CreateBiTree(bt);cout << "树的深度为:" << BiTreeDepth(bt) << endl;ChoiceMark(bt);return 0;}/*----------------------------------------* 05-2_构造二叉树.cpp -- 构造二叉树的相关操作* 对构造二叉树的每个基本操作都用单独的函数来实现* 水上飘2009年写----------------------------------------*/// ds05-2.cpp : Defines the entry point for the console application.//#include "stdafx.h"#include <iostream>#define STACK_INIT_SIZE 100 //栈的存储空间初始分配量#define STACKINCREMENT 10 //存储空间分配增量typedef char ElemType; //元素类型using namespace std;typedef struct BiTNode {ElemType data; //结点值BiTNode *lchild, *rchild; //左右孩子指针}BiTNode, *BiTree;typedef struct {BiTree *base; //在栈构造之前和销毁之后,base的值为空BiTree *top; //栈顶指针int stacksize; //当前已分配的存储空间,以元素为单位}SqStack;//构造一个空栈void InitStack(SqStack &s) {s.base = (BiTree *)malloc(STACK_INIT_SIZE * sizeof(BiTree));if(!s.base)cout << "存储分配失败!" << endl;s.top = s.base;s.stacksize = STACK_INIT_SIZE;}//插入元素e为新的栈顶元素void Push(SqStack &s, BiTree e) {//栈满,追加存储空间if ((s.top - s.base) >= s.stacksize) {s.base = (BiTree *)malloc((STACK_INIT_SIZE+STACKINCREMENT) * sizeof(BiTree));if(!s.base)cout << "存储分配失败!" << endl;s.top = s.base + s.stacksize;s.stacksize += STACK_INIT_SIZE;}*s.top++ = e;}//若栈不空,则删除s的栈顶元素,并返回其值BiTree Pop(SqStack &s) {if(s.top == s.base)cout << "栈为空,无法删除栈顶元素!" << endl;s.top--;return *s.top;}//按先序输入字符创建二叉树void CreateBiTree(BiTree &T) {char ch;//接受输入的字符ch = cin.get();if(ch == ' ') {//分支结束T = NULL;} //if' 'endelse if(ch == '\n') {cout << "输入未结束前不要输入回车,""要结束分支请输入空格!(接着输入)" << endl;} //if'\n'endelse {//生成根结点T = (BiTNode * )malloc(sizeof(BiTree));if(!T)cout << "内存分配失败!" << endl;T->data = ch;//构造左子树CreateBiTree(T->lchild);//构造右子树CreateBiTree(T->rchild);} //Create end}//输出e的值,并返回ElemType PrintElement(ElemType e) {cout << e << " ";return e;}//中序遍历二叉树的非递归函数void InOrderTraverse(BiTree p, SqStack &S) {cout << "中序遍历结果:";while(S.top != S.base || p != NULL) {if(p != NULL) {Push(S,p);p = p->lchild;} //if NULL endelse {BiTree bi = Pop(S);if(!PrintElement(bi->data))cout << "输出其值未成功!" << endl;p = bi->rchild;} //else end} //while endcout << endl;}int _tmain(int argc, _TCHAR* argv[]){BiTNode *bt;SqStack S;InitStack(S);bt = NULL; //将树根指针置空cout << "老师要求的二叉树序列(‘空’表示空格):""12空空346空空空5空空,再回车!"<< endl << "请按先序输入一个二叉树序列(可另输入,但要为先序),""无左右孩子则分别输入空格。
数据结构实验报告——中序遍历二叉树

实验报告一,实验目的:·掌握二叉树的链式存储结构;·掌握构造二叉树的方法;·加深对二叉树的中序遍历的理解;二,实验方法:·用递归调用算法中序遍历二叉树。
三,实验步骤:·通过链式存储建立一颗二叉树。
·设计一个算法实现中序遍历二叉树。
四,具体实验步骤:#include<stdio.h>#include<stdlib.h>#define LEFT 0#define RIGHT 1#define TRUE 1#define FALSE 0typedef struct _BTNODE{char c;struct _BTNODE *lchild;struct _BTNODE *rchild;}BTNODE,*PBTNODE;void PrintBTree(PBTNODE p,int depth);void ConstructBTree(PBTNODE p);void InorderTraverse(PBTNODE p);void main(){PBTNODE p;p=(PBTNODE)calloc(1,sizeof(BTNODE));printf("Input the data:");ConstructBTree(p);PrintBTree(p,0);printf("Now InorderTraverse:");InorderTraverse(p);printf("\nPress any key to continue...");getchar();}void PrintBTree(PBTNODE p,int depth){int i;if(p==NULL){return;}else{for(i=0;i<depth;i++){printf("--");}printf(">");printf("%c\n",p->c);PrintBTree(p->lchild,depth+1);PrintBTree(p->rchild,depth+1);}}void ConstructBTree(PBTNODE p){int side;char c;side=LEFT;while(TRUE){scanf("%c",&c);if(c=='\n'){//printf("EOF\n");return;}// printf("%d\n",c);switch(c){case '|':break;case')':return;case',':side=RIGHT;break;case'(':if(side==LEFT){if(p->lchild==NULL){p->lchild=(PBTNODE)calloc(1,sizeof(BTNODE));}ConstructBTree(p->lchild);}else{if(p->rchild==NULL){p->rchild=(PBTNODE)calloc(1,sizeof(BTNODE));}ConstructBTree(p->rchild);}break;default:if(side==LEFT){p->lchild=(PBTNODE)calloc(1,sizeof(BTNODE));p->lchild->c=c;}else{p->rchild=(PBTNODE)calloc(1,sizeof(BTNODE));p->rchild->c=c;}}}}void InorderTraverse(PBTNODE p){if(p==NULL){return;}else{InorderTraverse(p->lchild);printf("[%c] ",p->c);InorderTraverse(p->rchild);}return;}五,实验过程:·输出:Input the date;·输入:1(2(3,4),5(6,7));·输出:Now InorderTraverse:【3】【2】【4】【1】【6】【5】【7】;六,上机实验体会:·体会到熟练掌握各种程序算法的重要性;·通过上机练习,充分理解了链式建立二叉树的算法;·形象的了解二叉树的结构,能够熟练的进行先序,中序,后序遍历二叉树。
数据结构二叉树遍历实验报告

数据结构二叉树遍历实验报告数据结构二叉树遍历实验报告一、引言本文档旨在详细介绍二叉树遍历的实验过程和结果。
二叉树是一种在计算机科学领域常用的数据结构,通过遍历二叉树可以获取树中的所有节点数据。
本实验将分别介绍前序遍历、中序遍历和后序遍历这三种常见的遍历方法。
二、实验目的本实验的目的是通过实际操作,加深对二叉树遍历方法的理解,并验证这些遍历方法的正确性和效率。
三、实验环境本实验使用的环境如下:●操作系统: Windows 10●开发工具: Visual Studio Code●编程语言: C++四、实验步骤1.创建二叉树数据结构1.1 定义二叉树节点的结构,包含数据和左右子节点指针。
1.2 创建一个二叉树类,包含插入节点、删除节点、查找节点等方法。
1.3 使用已有的数据集构建二叉树,确保树的结构合理。
2.前序遍历前序遍历是先访问根节点,然后递归地遍历左子树和右子树。
2.1 以递归方式实现前序遍历。
2.2 以迭代方式实现前序遍历。
3.中序遍历中序遍历是先遍历左子树,然后访问根节点,最后遍历右子树。
3.1 以递归方式实现中序遍历。
3.2 以迭代方式实现中序遍历。
4.后序遍历后序遍历是先遍历左子树,然后遍历右子树,最后访问根节点。
4.1 以递归方式实现后序遍历。
4.2 以迭代方式实现后序遍历。
五、实验结果1.前序遍历结果:[节点1数据] [节点2数据] [节点4数据] [节点5数据] [节点3数据]2.中序遍历结果:[节点4数据] [节点2数据] [节点5数据] [节点1数据] [节点3数据]3.后序遍历结果:[节点4数据] [节点5数据] [节点2数据] [节点3数据] [节点1数据]六、实验分析通过实验结果可以看出,不同的遍历顺序得到的节点顺序也不同。
前序遍历先访问根节点,中序遍历先遍历左子树,后序遍历先遍历右子树。
根据需要,可以选择合适的遍历方法来处理二叉树的节点数据。
七、结论本实验验证了前序遍历、中序遍历和后序遍历的正确性,并且对比了它们的不同。
实现二叉树的各种遍历算法实验报告

if(a[i]>kmax) kmax = a[i]; return kmax; } /** 求二叉树的节点个数 **/ int Nodes(BTNode *b) { if(b==NULL)
2.2:( 1 )实现二叉树的先序遍历 ( 2)实现二叉树的中序遍历 ( 3)实现二叉树的后序遍历
三 实验内容 :
3.1 树的抽象数据类型 : ADT Tree{
.专业 .整理 .
下载可编辑
数据对象 D: D 是具有相同特性的数据元素的集合 。 数据关系 R: 若 D 为空集 , 则称为空树 ;
若 D 仅含有一个数据元素 ,则 R 为空集 , 否则 R={H} , H 是如 下二元关系 :
if(b!=NULL) {
printf("%c",b->data); if(b->lchild!=NULL || b->rchild!=NULL) {
printf(" ("); DispBTNode(b->lchild); if(b->rchild != NULL)printf(" , "); DispBTNode(b->rchild); printf(" )"); } } } /** 深度 **/ int BTNodeDepth(BTNode *b)
下载可编辑
实现二叉树的各种遍历算法实验报告
一 实验题目 : 实现二叉树的各种遍历算法 二 实验要求 :
2.1:(1 ) 输出二叉树 b ( 2)输出 H 节点的左右孩子节点值 ( 3)输出二叉树 b 的深度 ( 4)输出二叉树 b 的宽度 ( 5)输出二叉树 b 的节点个数 ( 6)输出二叉树 b 的叶子节点个数 ( 7)释放二叉树 b
二叉树的遍历(先序遍历、中序遍历、后序遍历全)实验报告

实验目的编写一个程序,实现二叉树的先序遍历,中序遍历,后序遍历。
实验内容编程序并上机调试运行。
编写一个程序,实现二叉树的先序遍历,中序遍历,后序遍历。
编写程序/***********二叉树的遍历**************/#include<stdio.h>#include<stdlib.h>typedef struct BiTNode{char data;struct BiTNode *lchild,*rchild;}BiTNode,*BiTree;/*************************************************///按先序次序构建的二叉树链表void CreatBiTree(BiTree *T){char ch;if((ch=getchar())==' ')*T=NULL;else{*T=(BiTNode*)malloc(sizeof(BiTNode));if(!(*T))exit(1);(*T)->data=ch;CreatBiTree(&(*T)->lchild);CreatBiTree(&(*T)->rchild);}}/*************************************************/ //先序遍历--递归算法void PreOrderTraverse(BiTree T){if(T){printf("%c",T->data);PreOrderTraverse(T->lchild);PreOrderTraverse(T->rchild);}}/*************************************************/ //中序遍历--递归算法void InOrderTraverse(BiTree T){if(T){InOrderTraverse(T->lchild);printf("%c",T->data);InOrderTraverse(T->rchild);}}/*************************************************/ //后序遍历--递归算法void PostOrderTraverse(BiTree T){if(T){PostOrderTraverse(T->lchild);PostOrderTraverse(T->rchild);printf("%c",T->data);}}/*************************************************/ //main函数void main(){BiTree T;printf("请按先序次序输入二叉树中结点的值,空格字符表示空树:\n" );CreatBiTree(&T);printf("\n");printf("先序遍历为:\n");PreOrderTraverse(T);printf("\n\n");printf("中序遍历为:\n");InOrderTraverse(T);printf("\n\n");printf("后序遍历为:\n");PostOrderTraverse(T);printf("\n\n");getchar();}运行程序:结果分析:按先序输入的二叉树为ABC^^DE^G^^F^^^(^为空格)该二叉树画成树形为:其先序遍历为:ABCDEGF其中序遍历为:CBEGDFA其后序遍历为:CGEFDBA可以看出运行结果是正确的。
二叉树的遍历算法实验报告

二叉树的遍历算法实验报告二叉树的遍历算法实验报告引言:二叉树是计算机科学中常用的数据结构之一,它是由节点组成的层次结构,每个节点最多有两个子节点。
在实际应用中,对二叉树进行遍历是一项重要的操作,可以帮助我们理解树的结构和节点之间的关系。
本文将介绍二叉树的三种遍历算法:前序遍历、中序遍历和后序遍历,并通过实验验证其正确性和效率。
一、前序遍历前序遍历是指先访问根节点,然后按照先左后右的顺序遍历左右子树。
具体的实现可以通过递归或者使用栈来实现。
我们以递归方式实现前序遍历算法,并进行实验验证。
实验步骤:1. 创建一个二叉树,并手动构造一些节点和它们之间的关系。
2. 实现前序遍历算法的递归函数,函数的输入为根节点。
3. 在递归函数中,首先访问当前节点,然后递归调用函数遍历左子树,最后递归调用函数遍历右子树。
4. 调用前序遍历函数,输出遍历结果。
实验结果:经过实验,我们得到了正确的前序遍历结果。
这证明了前序遍历算法的正确性。
二、中序遍历中序遍历是指按照先左后根再右的顺序遍历二叉树。
同样,我们可以使用递归或者栈来实现中序遍历算法。
在本实验中,我们选择使用递归方式来实现。
实验步骤:1. 继续使用前面创建的二叉树。
2. 实现中序遍历算法的递归函数,函数的输入为根节点。
3. 在递归函数中,首先递归调用函数遍历左子树,然后访问当前节点,最后递归调用函数遍历右子树。
4. 调用中序遍历函数,输出遍历结果。
实验结果:通过实验,我们得到了正确的中序遍历结果。
这证明了中序遍历算法的正确性。
三、后序遍历后序遍历是指按照先左后右再根的顺序遍历二叉树。
同样,我们可以使用递归或者栈来实现后序遍历算法。
在本实验中,我们选择使用递归方式来实现。
实验步骤:1. 继续使用前面创建的二叉树。
2. 实现后序遍历算法的递归函数,函数的输入为根节点。
3. 在递归函数中,首先递归调用函数遍历左子树,然后递归调用函数遍历右子树,最后访问当前节点。
4. 调用后序遍历函数,输出遍历结果。
数据结构_二叉树的遍历_课程设计

8
if(bt!=NULL)/*二叉树 bt 非空*/ { inorder(bt->lchild);/*中序遍历 bt 的左子树*/ printf("%c",bt->data);/*访问结点 bt*/ inorder(bt->rchild);/*中序遍历 bt 的右子树*/ } } void postorder(bitree *bt)/*后序序遍历二叉树*/ { if(bt!=NULL) { postorder(bt->lchild); postorder(bt->rchild); printf("%c",bt->data); } }
3.2.2 二叉树的中序递归遍历算法
void inorder(bitree *bt)/*中序序遍历二叉树*/ { if(bt!=NULL)/*二叉树 bt 非空*/ { inorder(bt->lchild);/*中序遍历 bt 的左子树*/ printf("%c",bt->data);/*访问结点 bt*/ inorder(bt->rchild);/*中序遍历 bt 的右子树*/ } }
图 1 “菜单”界面
图2
创建二叉树
5
图 3 二叉树的先序遍历
图4
二叉树的中序输出
6
图 5 二叉树的后序输出
五:实验总结 虽然做的过程中出现很多错误。但是最后还是一一纠正了,并在其中发现了自 身的不足,补学补差。最后终于完成了。
六:源程序附录
#include<stdio.h> #include<stdlib.h> typedef char datatype; typedef struct node { datatype data;/*数据元素*/ struct node *lchild,*rchild;/*指向左,右孩子*/ }bitree; bitree *root;/*二叉树结点类型定义*/ bitree *creatbitree(bitree *root)/*创建二叉树*/ { char ch;
数据结构实验三——二叉树基本操作及运算实验报告

《数据结构与数据库》实验报告实验题目二叉树的基本操作及运算一、需要分析问题描述:实现二叉树(包括二叉排序树)的建立,并实现先序、中序、后序和按层次遍历,计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目,以及二叉树常用运算。
问题分析:二叉树树型结构是一类重要的非线性数据结构,对它的熟练掌握是学习数据结构的基本要求。
由于二叉树的定义本身就是一种递归定义,所以二叉树的一些基本操作也可采用递归调用的方法。
处理本问题,我觉得应该:1、建立二叉树;2、通过递归方法来遍历(先序、中序和后序)二叉树;3、通过队列应用来实现对二叉树的层次遍历;4、借用递归方法对二叉树进行一些基本操作,如:求叶子数、树的深度宽度等;5、运用广义表对二叉树进行广义表形式的打印。
算法规定:输入形式:为了方便操作,规定二叉树的元素类型都为字符型,允许各种字符类型的输入,没有元素的结点以空格输入表示,并且本实验是以先序顺序输入的。
输出形式:通过先序、中序和后序遍历的方法对树的各字符型元素进行遍历打印,再以广义表形式进行打印。
对二叉树的一些运算结果以整型输出。
程序功能:实现对二叉树的先序、中序和后序遍历,层次遍历。
计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目。
对二叉树的某个元素进行查找,对二叉树的某个结点进行删除。
测试数据:输入一:ABC□□DE□G□□F□□□(以□表示空格),查找5,删除E预测结果:先序遍历ABCDEGF中序遍历CBEGDFA后序遍历CGEFDBA层次遍历ABCDEFG广义表打印A(B(C,D(E(,G),F)))叶子数3 深度5 宽度2 非空子孙数6 度为2的数目2 度为1的数目2查找5,成功,查找的元素为E删除E后,以广义表形式打印A(B(C,D(,F)))输入二:ABD□□EH□□□CF□G□□□(以□表示空格),查找10,删除B预测结果:先序遍历ABDEHCFG中序遍历DBHEAGFC后序遍历DHEBGFCA层次遍历ABCDEFHG广义表打印A(B(D,E(H)),C(F(,G)))叶子数3 深度4 宽度3 非空子孙数7 度为2的数目2 度为1的数目3查找10,失败。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南昌大学实验报告
学生姓名:李木子学号:8000113146 专业班级:软工133 实验类型:□验证□综合□设计□创新实验日期:实验成绩:
一、实验项目名称
二叉树的遍历
二、实验目的
学会链式二叉树的结构体定义,创建与前序中序后序遍历
三、实验基本原理
四、主要仪器设备及耗材
电脑,VC6.0
五、实验步骤
/**************************************/
/* 链式二叉树的创建与遍历 */
/**************************************/
/**************************************/
/* 链式二叉树的结构体定义 */
/**************************************/
#include<stdio.h>
#include<malloc.h>
typedef char datatype ;
typedef struct BinTreeNode{
datatype data ;
struct BinTreeNode *lchild ;
struct BinTreeNode *rchild ;
} BinTreeNode ;
/**************************************/
/* 链式二叉树函数声明 */
/**************************************/
BinTreeNode * CreateTree(void);
void PreOrder( BinTreeNode * t );
void InOrder( BinTreeNode * t );
void PostOrder( BinTreeNode * t );
/**************************************/
/* 链式二叉树创建函数 */
/**************************************/
BinTreeNode * CreateTree(void)
{
char ch ;
BinTreeNode * t ;
ch=getchar();
if(ch=='#')
t=NULL;
else if( ch=='\n');
else
{
t=( BinTreeNode*)malloc(sizeof( BinTreeNode ));
t->data =ch ;
t->lchild=CreateTree();
t->rchild=CreateTree();
}
return t ;
}
/**************************************/
/* 链式二叉树递归前序遍历函数 */
/**************************************/
void PreOrder( BinTreeNode * t )
{
if(t)
{
printf("%c\t",t->data);
PreOrder( t->lchild );
PreOrder( t->rchild );
}
}
/**************************************/ /* 链式二叉树递归中序遍历函数 */
/**************************************/ void InOrder( BinTreeNode * t )
{
if(t)
{
InOrder( t->lchild );
printf("%c\t",t->data);
InOrder( t->rchild );
}
}
/**************************************/ /* 链式二叉树递归后序遍历函数 */
/**************************************/ void PostOrder( BinTreeNode * t )
{
if(t)
{
PostOrder( t->lchild );
PostOrder( t->rchild );
printf("%c\t",t->data);
}
}
/**************************************/ /* 主函数 */
/**************************************/ int main()
BinTreeNode * t ;
printf("创建二叉树\n");
t=CreateTree();
printf("前序遍历二叉树\n");
PreOrder( t );
printf("\n");
printf("中序遍历二叉树\n");
InOrder( t );
printf("\n");
printf("后序遍历二叉树\n");
PostOrder( t );
printf("\n");
return0;
}
六、实验数据及处理结果
七、思考讨论题或体会或对改进实验的认识
八、参考资料
[1]《数据结构(c语言版)(第三版)》,李云清,人民邮电出版社
[2]《C语言程序设计》,苏小红,高等教育出版社。