步进电机选型案例

合集下载

步进电机选型计算实例

步进电机选型计算实例

步进电机选型计算实例
1、首先确认电机的型号:步进电机;。

2、确定电机的转数,步距,最小脉宽,电压,转矩等参数;
3、根据电机的转矩,转速和步距计算所需的最大功率;
4、根据最大功率,选择合适的驱动器;
5、根据选择的驱动器,选择电机,确定电机的型号,电压,转矩,功率,转速,步距,最小脉宽等参数;
6、根据所需电流和抗静电等环境要求进行电机最终选型;
7、对电机进行实际测试,确保电机能够满足系统的要求;
8、完成实验,确认电机选型正确,步进电机计算实例选择完成。

步进电机伺服电机工作原理通用课件

步进电机伺服电机工作原理通用课件
机器人中的关节、手臂等部位通常由伺服电机驱 动,通过控制伺服电机的转动角度和速度,实现 机器人的精确运动控制。
03 伺服电机在自动化生产线中的应用
自动化生产线中的高精度定位、物料搬运等环节 常常使用伺服电机作为驱动元件,实现高精度的 定位和运动控制。
05
总结与展望
工作原理总结
步进电机工作原理
步进电机是一种将电脉冲信号转换成角位移或线位移的机 电元件,通过控制输入的脉冲数量和频率,实现电机的步 进转动。
步进电机在运行过程中不会出现丢步现象,具有较高的可靠性。
02
伺服电机工作原理
伺服电机简介
伺服电机是一种能够精确控制其转动角度和速度 01 的电机,广泛应用于各种自动化设备和控制系统

伺服电机通常由定子和转子组成,定子中包含控 02 制磁场方向的线圈,而转子则包含永磁体。
伺服电机具有高精度、快速响应、高动态性能等 03 特点,能够实现精确的位置控制和速度控制。
伺服电机工作原理
伺服电机是一种将输入的电信号转换成角位移或线位移的 机电元件,通过控制输入的电压或电流,实现电机的连续 转动。
两者比较
步进电机和伺服电机在工作原理上存在一定的差异,步进 电机通过控制脉冲数量和频率实现步进转动,而伺服电机 通过控制输入的电压或电流实现连续转动。
应用前景展望
01
步进电机应用前景
通过改变输入到伺服电机的电流或电压的大小和方向,可以精确控制电 机的转动速度和方向,从而实现精确的位置和速度控制。
伺服电机的控制系统通常由控制器、驱动器和电机组成,控制器负责发 送控制信号,驱动器负责将控制器发出的信号转换为能够驱动电机的能 量,而电机则负责执行控制器的指令,实现精确的转动控制。

步进电机控制PLC课程设计

步进电机控制PLC课程设计

步进电机控制PLC课程设计一、课程目标知识目标:1. 学生能理解步进电机的原理、结构和应用场景;2. 学生能掌握PLC在步进电机控制中的编程方法和技巧;3. 学生了解步进电机与PLC接口的硬件连接和调试方法;4. 学生掌握步进电机速度、位置和加速度等参数的调整方法。

技能目标:1. 学生能运用所学知识,设计并实现简单的步进电机控制程序;2. 学生具备调试和优化步进电机控制系统的能力;3. 学生能够结合实际需求,选择合适的PLC和步进电机进行项目设计。

情感态度价值观目标:1. 培养学生对自动化控制技术的兴趣,激发学生学习热情;2. 培养学生团队协作、沟通表达的能力,提高学生的综合素质;3. 培养学生严谨、务实的科学态度,树立正确的价值观。

课程性质:本课程为实践性较强的课程,旨在让学生在实际操作中掌握步进电机控制技术。

学生特点:学生具备一定的电气基础和PLC编程知识,对步进电机控制有一定了解。

教学要求:结合实际案例,以任务驱动的方式进行教学,注重培养学生的动手能力和创新能力。

通过本课程的学习,使学生能够将理论知识应用于实际项目中,提高学生的综合应用能力。

二、教学内容1. 步进电机原理与结构- 步进电机的分类、工作原理- 步进电机的结构特点及参数2. PLC在步进电机控制中的应用- PLC与步进电机的连接方式- 步进电机控制程序编写方法- PLC编程软件的使用3. 步进电机控制系统的设计与实现- 系统硬件设计:PLC选型、步进电机选型、接口电路设计- 系统软件设计:步进电机控制算法、PLC程序设计4. 步进电机控制系统的调试与优化- 系统调试方法与步骤- 常见问题及解决方法- 系统性能优化策略5. 实践项目案例分析- 案例一:简易步进电机控制系统设计- 案例二:复杂步进电机控制系统设计教学内容安排与进度:第一周:步进电机原理与结构第二周:PLC在步进电机控制中的应用第三周:步进电机控制系统的设计与实现第四周:步进电机控制系统的调试与优化第五周:实践项目案例分析及讨论教材章节关联:本教学内容与教材中“第三章 步进电机控制技术”和“第四章 PLC控制技术”相关章节紧密关联。

电机选型案例

电机选型案例

电机选型案例本篇文章介绍了两个电机选型案例,第一个是皮带输送线电机选型,第二个是直线导轨电机选型。

第一个案例中,设计要求是传送20Kg物料X 2,传送速度1m/s,加速时间0.15s,已知条件为摩擦系数=0.2,机械效率=90%,滚子直径=200mm。

首先计算负载,然后计算皮带拉力和辊筒转矩,最后计算功率和电机转矩,得出选用1.9N·m的电机,并进行校验。

第二个案例中,设计要求是传送50Kg的负载,运行速度1m/s,加速时间0.25s,已知条件为直线导轨摩擦系数0.1,带轮直径100mm。

首先计算负载,然后计算同步轮转矩和电机功率,得出两种方案,一种是选择18NM的步进电机,另一种是加减速器,取i=2.5.在改写方面,可以将一些公式和计算过程进行简化,让文章更易读懂。

同时,可以将每个案例的设计要求和已知条件进行分段,以便读者更好地理解。

根据题目要求,我们需要设计一个托盘加速到一定速度的系统,以下是设计过程:1.确定托盘的惯量托盘的惯量可以通过托盘质量和直径来计算,即 $J_{托盘}=\frac{1}{2}M(\frac{D}{2})^2$。

代入数据得到 $J_{托盘}=kg·mm^2$。

2.确定加速度根据题目要求,托盘需要在 0.5 秒内加速到 0.5 m/s 的速度,因此加速度为 $a=\frac{V}{t}=1m/s^2$。

3.确定所需扭矩根据丝杠的导程和直径,可以计算出每秒钟丝杠转动的圈数为 $n=\frac{v}{P}=\frac{0.5}{0.01}=50$,因此所需扭矩为$T_{总}=J_{托盘}·\frac{a}{n}=·\frac{1}{50}=1764N·mm$。

4.确定电机输出扭矩和功率根据传动比和所需扭矩,可以计算出电机输出扭矩为$T_{电机}=T_{总}/i=1764/5=352.8N·mm$。

根据机械效率为0.9,可以计算出电机输出功率为 $P_{电机}=T_{电机}·\omega_{电机}/0.9=352.8·2π·40/60/0.9=148.7W$。

步进电机驱动器参数原理

步进电机驱动器参数原理

MR4细分步进电机驱动器使用手册Version2.0版权所有不得翻印【使用前请仔细阅读本手册,以免损坏驱动器】目录一、产品简介 (1)二、电气、机械和环境指标 (1)三、驱动器接口和接线介绍 (2)四、电流、细分拨码开关设定 (5)五、供电电源选择 (6)六、适配电机选配 (6)七、典型接线案例 (8)八、保护功能 (9)九、常见问题 (9)十、产品保修条款 (10)MR4步进电机驱动器一、产品简介1.1概述MR4步进电机驱动器是一款具有大力矩输出特性,适用于高转速场合的细分步进电机驱动器,与同类产品相比具有极高的性价比。

MR4采用了正弦波电流控制技术,与市面上流行的大多数同类步进电机驱动器相比,电机的噪声和发热均有明显改善。

本款步进电机驱动器采用自然散热,驱动电压为DC18V至DC50V,具备极佳的过电压和高速反电动势保护能力,是当前市场在售步进电机驱动器之中返修率故障率最低的产品之一。

MR4步进电机驱动器拥有二进制和五进制多达十六种细分选择,具有脉冲+方向和双脉冲选择功能,用户只需改变驱动器内部的跳线,即可由出厂设置的脉冲+方向模式变更为双脉冲模式。

驱动器上的八位拨码开关(SW1-SW8),用来设置动态电流(三位八档),静态电流(SW4)和细分选择(SW5-SW8)。

SW4可选择停止时全流或半流,如选择半流,脉冲停止约0.2秒后电机电流将减至设定值的60%,发热量将降至全流的一半以下,以保证电机不因发热出现损坏。

1.2MR4特点◆高速大转矩特性◆光电隔离差分信号输入,响应频率最高200K ◆供电电压可达50VDC◆细分精度高达十六种,2倍及5倍细分均可选◆正弦波电流控制技术电机发热低◆外形尺寸小(118*75*32mm)◆静止时电流自动减半◆具有过压、欠压,过流等保护功能◆脉冲、方向、使能可5-24V输入◆脉冲/方向或双脉冲模式切换1.3MR4应用领域适用于各种类型自动化设备或仪器,如雕刻机、打标机、切割机、激光照排、绘图仪、数控机床、机械手,包装机械,纺织机械等,具有极高的性价比和特性优势。

PLSY指令的应用详解

PLSY指令的应用详解
二步进控制系统的组成1主要由以下三部分组成控制器plcmcu定位控制模块步进电机和工作台fx2n24vy0y2dc24vpulpuldirdirenaena步进电机雷塞3nd883伺服驱动器外观图2硬件接线步进电机步进驱动器和plc间的硬件接线三步进电机工作原理步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件
=360°/(3x4x1)=30°
四、步进驱动器原理
从步进电机的转出原理可以得出,要使步进电机正常运行,必须按规律控制步进电机的每一相绕组得电。步进驱动器接受外部的信号是方向信号DIR脉冲信号CP。另外步进电机在停止时,通常有一相得电,电机的转子被锁住,所以当需要转子松开时,可以使用脱机信号FREE.
158实训柜两相混合式步进电机控制
PLSY:16位连续执行型脉冲输出指令DPLSY:32位连续执行型脉冲输出指令
FXPLC的PLSY指令的编程格式:
PLSY K1000 D0 Y0
*K1000:指定的输出脉冲频率,可以是T,C,D,数值或是位元件组合如K4X0
*D0:指定的输出脉冲数,可以是T,C,D,数值或是位元件组合如K4X0,当该值为0时,输出脉冲数不受限制
你好!我给你几个要点:
1,你要知道步进马达的工作原理。
控制方式是脉冲控制,而不是电平控制;
控制信号一般为低电平信号,而不是高电平;
度量单位,也就是如何衡量步进马达行走的距离---步进角,就是一个脉冲马达转动的角度。步进马达的步进角一般为1.8°。0.9°,0.72°,0.36°,0.0288°,等等。步进角越小,则步进马达的控制精度越高。我们根据步进角可以控制马达行走的精确距离。比如说,步进角0.72°,马达旋转一周需要的脉冲数为360/0.72=500脉冲,也就是对步进马达驱动器发出500个脉冲信号,马达才旋转一周。

电机选型案例

电机选型案例

小白进阶篇—电机选型案例集主讲:小丸子教育—泽雨老师目的:掌握不同电机在不同工况下的选型问题 课程内容:1,皮带输送线电机选型设计要求: 20Kg 物料X 2 传送速度1m/s 加速时间0.15s已知条件: 摩擦系数=0.2 机械效率=90% 滚子直径=200mm1. 计算功率s rad mm s mm mm s m D V T P MN R F T NF F NN N ssm Kg s m K a m f F /102002/10002002/14.282843112131338015.0/120/102.0g 402=••=••=•=•=•=⨯==⨯+==+=⨯+⨯⨯=•+=πππππ)(辊筒辊筒辊筒负载负载辊筒皮带拉力负载负载皮带拉力负载ωωWWW P K P KW r T P MN M N T mm smm r n n i i T T W s rad M N T P 3823829.02862.1286.09550min/14409.1154.2815200/1000min/1440284/104.28==⨯=•==•=•=•==•====⨯•=•=ηω电机实际电机电机电机负载电机传动比负载电机辊筒负载负载校验:π设计要求; M=50Kg运行速度1m/s 加速时间0.25s直线导轨摩擦系数0.1 带轮直径100mm[]Ns m Kg ssm Kg s m Kg am g m F 250/)25.015010501.0(25.0/150/10501.022=•⨯+⨯⨯=⨯+⨯⨯=•+••=μ负载srad s rad mm smm s r mmsmm D V T P m N m N mm N R F T /20/2100/1000/100/10005.1205.025050250=••=•=•=•=•=⨯=⨯=•=ππππ同步轮负载负载负载负载负载同步轮负载负载ωω方案一:选择18NM 的步进电机Ws r M N P W mmsmm M N P T P 4.11302min/60min/600183602100/100018=⨯⨯•==⨯•⨯•==•=πππ无减速器最大转速电机负载电机电机电机电机ωωω方案二:加减速器MN i T T NM i s s r r i •=•===⨯=2085.214.3min /60/220min/600电机输出的步进电机力矩为考虑到频矩特性,取静为调试留出余量,取π已知条件:丝杠质量m=2Kg 负载+滑台质量M=20Kg 进给速度V=0.2m/s 丝杠导程5mm丝杠公称16mm加速时间0.2s直线导轨摩擦系数0.1传动机械效率0.9步骤:1.确定丝杠惯量222g 64m 2181mm K R D m J •=•=•=丝杠2. 负载直线运动质量等价转动惯量22)π(导程负载P M J •=上式二级公式推导过程ππ2221212222Pw v R PR w v w v m J w J v m =•=••=•=•2213)25(20mm kg kg J •=••=π负载22000077.076mkg mm kg J J J •=•=+=负载丝杠总3.确定惯性矩)π(加速时间导程总惯性矩t P v J T •••=2公式推导:加速时间角加速度角速度加速时间角速度角加速度角加速度总惯性矩ππt P v Pvw t w J T ••=•==•=22βββmN sm s m m kg T •=••••=096.0)2.0005.02/2.0(000076.02π惯性矩单位换算;[][]mN m N m s m Kg s m Kg s m m m Kg T •=•=••=⎥⎦⎤⎢⎣⎡•=⎥⎦⎤⎢⎣⎡••••••=096.0096.0/096.0096.02.0005.022.0000077.022222π惯性矩4. 直线摩擦里等价旋转扭矩π导程摩擦力2P mg T ••=μ公式推导;πππ导程摩擦力导程摩擦力导程摩擦力222P mg T RP mg R T R P mg R T •==•=μμμ[][][]mN mm N mm N mm N mmKg s m s mm m Kg mm s m Kg P mg T •=•=•=•***=••***=⎥⎦⎤⎢⎣⎡••***=***=•=016.09.159.152510201.0/2510201.02510201.025/10201.02222πππππ导程摩擦力μ5.计算功率、 、Ws rad m N P s rad s rad s r s r r mm P v w m N m N m N T T T wT P 9.309.0/251111.0/2.251/240/402/40/5200mm/s 112.0016.0096.0=*•==•=*===•=•+•=+=•=ππ导程惯性矩摩擦力总总η6.结论总结22000076.0403mkg mm kg J J J •=•=+=负载丝杠总m N m N m N T T T •=•+•=+=112.0016.0096.0惯性矩摩擦力总Ws rad m N w T P 9.309.0/2.251112.09.0=*•=•=总m in/2400m in /60/40r s s r n =*=转速转盘质量M=100Kg 转盘直径D=840mm 要求转速0.2r/s 机械效率0.9电机启动时间0.5s1. 确定转盘惯量221R M J •=转盘角加速度转盘惯性矩β•=J T22882000042010021mm Kg mm Kg J •=**=)(惯性矩2/8.05.02*/2.0s rad ss r t w ππ启动角加速度===β [][]mN m N m N m s m Kg s m Kg s m Kg s rad m Kg J T •=•=•=⎥⎦⎤⎢⎣⎡••=⎥⎦⎤⎢⎣⎡•=⎥⎦⎤⎢⎣⎡•*=*•=•=2.222.2215584.22155840.22155840.228.0820000.8/8.0820000.82222222ππ角加速度转盘惯量惯性矩β2. 确定功率[][]WW s m N s m N rad m N s r m N wT P 9.348.022.02.22/8.022.02.228.022.02.228.022.02.228.02/2.02.22=**=•**=⎥⎦⎤⎢⎣⎡•**=**•=**•=•=πππππ惯性矩负载功率η3. 确定传动比2501min /3000min /12min /300060/2.0==*=r r r s s r n n 电机转盘4. 传动比分配:锥齿轮5,减速器505. 确定电机输出扭矩 mN T i T T •====088.0250/2.222501电机负载电机6.确定电机输出功率负载功率电机P K P •>5.1=KWW P 4.529.345.1=*>实际设计要求托盘+发动机质量:M=200Kg 加速时间:t=0.5S 升速:V=0.5m/s 丝杠导程:P=10mm 丝杠直径:D=45mm质心距离导轨:L=300mm 直线导轨间距:b=150mm 直线导轨摩擦系数=0.1 丝杠质量:m=8.5Kg1. 确定丝杠的顶升力 μ•++=N a F a g M F 2)(2/1/s m t v a ==NF Nm m N F L F mm N F F F LF L F d a g m N N N NN N N N 88002440015.0660********2)(2121==•=•=•==•+•=•+N F f N 8802=•=μNN N f a g M F a 30808802200=+=++•=)(2.轴向力等价扭矩πππ导程轴向力导程轴向力导程轴向力222P F T RP F R T R P F R T a a a •==•=[][]mN m N mm N mmN T •=•**=•*=*=9.42100010308021030802103080πππ轴向力3.确定丝杠转速sr r mm s mm r mm s m r mm s m P v n /50//1010005.0//105.0/10/5.0=⎥⎦⎤⎢⎣⎡*=⎥⎦⎤⎢⎣⎡===导程s rad s rad s r /100/250/50ππ*=*=5. 确定功率 1)确定外载功率Ws m N s rad m N w T P 15013149.4/1009.4=⎥⎦⎤⎢⎣⎡•*=*•=•=π外载功率2)确定丝杠加速扭矩222215245g 5.88181mm Kg mm K D m J •=•*=•=丝杠[][][]mN m s m Kg s m Kg s mm Kg ss rad mm Kg t w J J T •=••=•=•*=**•=•=•=43.0/43.0/1000000430400/5.010021525.0/1002152222222ππ丝杠丝杠丝杠惯性βWs m N s rad m N w T P 135135/10043.0=⎥⎦⎤⎢⎣⎡•=*•=•=π丝杠惯性矩丝杠惯量W PK P KW s r M N n T P m N m N T T T W W W P P P 21809.0/16352.1/635.19550/300021.5955021.543.078.416351351500=⨯=•==⨯•=•==•+•=+==+=+=η总实际总总丝杠惯性矩等价轴向力总丝杠惯性矩等价轴向力总验算:工装板数量:6个工装板质量:15Kg/个倍速链型号:BS30停留工装板数量:4传送工装板数量:2工装板长度:480mm/个倍速链质量:0.4Kg/m 线体长:10m线体速度:10m/min摩擦系数如下倍速链重量如下选型步骤:1. 确定倍速链受摩擦产生的拉力gf L L C f L C A f L A f L C H F c W r W W a W c W W ••++••++••+••+=1000)(1.1)(21221)(2.008.01.0/4.0/5.74215/g 1064156421=====•==•===r c a W WW f f f mKg C m Kg m Kg H m K m Kg A mL mLNs m m m Kg m m Kg m Kg m m Kg m m Kg m Kg F 213/1008.010/4.01.12.06)/4.0/10(1.06/1008.04/4.0/5.72=•⎥⎦⎤⎢⎣⎡•••+••++••+••+=)(确定扭矩m N mm N D F T p •=*=•=6282132链条确定转速及传动比srad s r w s r smm mm D v n p /62/95.0/95.06056min /10000=•==••=•=πππ 25min/60min /1500==r r i 确定功率W s rad NM wT P 36/66=•=•=链条。

步进电机选型的三种方法

步进电机选型的三种方法

电机选型—丝杆步进电机选型、电机插件使用方法目的:熟悉丝杆电机使用模型,掌握3种计算方式,并对其中原理进行分析,掌握电机基本参数和公式并且利用电机选型软件验证课程内容:已知:总负载m=20kg,速度V=0.1m/s,1610导程P=10mm,导轨摩擦系数为μ=0.11、扭矩匹配的三种方法方法一:J(惯量)=M(P/2π)^2=20kg*0.00000254=0.0000507kgm^2=0.507丝杆惯量J=1/8MD²=0.256总惯量=旋转惯量+直动惯量=0.507+0.256=0.8加速时间0.2sω=2πN/60=6.28*600/60=62.8rad/s角加速度β=ω/t=62.8rad/s/0.2s=314rad/s^2T加速=j*β=0.00008kgm^2*314rad/s^2=0.025NMf=μmg=0.1*20kg*10N/kg=20NT(匀速)=F*Pb/2π=20N*0.01M/2/3.14=0.032NMT(总)=T(匀速)+T(加速)=0.032NM+0.025NM=0.06NM 方法二:方法三:f=μmg=0.1*20kg*10N/kg=20NT(匀速)=F*Pb/2π=20N*0.01M/2/3.14=0.032NM T加速=5*T=0.16NM2、转速匹配转速N=V*60*1000/Pb=0.1m/s*60*1000/10mm=600r/min200-600rpm3、电机惯量匹配电机惯量J=0.00008kgm^2/20=0.000004kgm^2=0.04*10^-4课后作业:已知:总负载m=100kg,速度V=0.2m/s,导程Pb=?,计算所需步进电机参数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、计算公式(基于机床)
1.传动比
i=
aL0
3600 dp
,i传动比,L0丝杆导程,dp为脉冲当量,可以为系统精度
2.负载力矩
(1)切削负载力矩T(C N.m)
TC
=
FaL0
2phi
,L0导程,m,Fa为在切削状态下,
N,丝杆的轴向负载力,h为进给系统效率,0.9,i传动比;
(2)摩擦负载力矩Tபைடு நூலகம்N.m) m
Tap
=
(J m
+
Jd ) *
nmax 9.55*ta
nmax为运动部件以最快速度运动时电机的最高转速,r / min;
J m 为电机的转动惯量,kg.cm2;Jd 为机械系统折算到电机轴上的负载惯量,
ta为加速时间,s
4计算折算到电机轴上的加速力矩 加速力矩Ta就是电机轴上所需的加速力矩。两种情况:一是机床移动部件空载快速启动, Tq ,二是在切削的Tt。 (1)空载时启动加速力矩T(q N.m)的计算Tq =Tap + TKJ = Tap + Tu +Tf (2)切削时的加速力矩Tt(N.m)的计算T t =Tat + TGJ = Tat + Tc +Tf
2
, Tt
2
=
Tt ; 0.3 ~ 0.5
(3)选较大值为步进电机的最大静力矩。
验算
(1)启动频率的计算f max
=
1000Vmax 60dp
;
(2)运行频率的计算fGmax
=
1000VG max 60dp
例子
行程200mm;快速运动Vmax=1200mm/min;最大切削进给 速度VGmax250mm/min,溜板和刀架的质量为61.22KG, 脉冲当量0.005mm,导程L0=6mm,主电机功率7.5kw, 机床回转直径400mm,主轴计算为85r/mim
Tap
=
Tap
=
(J m
+
Jd ) *
nmax 9.55*ta
=1.51
Jm
=
0.9 p2
*
61.22
骣 ççç桫11200000
2
÷÷÷÷
=9.9kg.cm 2 ,J d
=
4.6kg.cm2
Tq = Tap + TKJ =Tap + Tu + Tf =1.51+ 0.11=1.62N.m
3*Tap / h = 4.86N.m / 0.85 = 5.71N.m
(1)i =
aL0 = 1.5 * 6 =5
3600dp 360 * 0.005
(2)折算到电机轴上的各种负载力矩
TC
=
FL
a0 = 2phi
2
*
2370.34 * 6 3.14 * 0.85
*
5
=532N.mm
?
0.53N.m
Tu =
Fu 0L0
2phi
=
2
*
390 * 6 3.14 * 0.85
Tu
=
Fa0L
2phi
,Fa0为不切削的状态下,导轨摩擦力,N;
(3)预紧附加力矩
Tf =
FpL0 (1
2phi
-
h
2 0
)
Fp预紧力,L0丝杆导程,m,丝杆副h0 =0.98
(4)折算到电机轴上的负载力矩T(N.m)
空载(快进)TKJ =Tu + Tf; 切削(工进)TGJ = TC + Tf
3计算电机轴上的加速力矩Tap(N .m )
*
5
=
88N.mm =
0.088N.m
( ) Tf =
FpL0 (1
2phi
-
h
2 0
)
=
790 * 6 2 * 3.14 * 5
1-
0.942
=
0.018N.m
TKJ = TU + TF = 0.088 + 0.018 = 0.106 ? 0.11N.m TGJ = TC + Tf =0.53 + 0.018=0.548N.m
步进电机选型案例
一、基本概念
1.惯量 2.负载力矩 3.系统精度 4.步距角 5.脉冲当量 6.电机最大静力矩(保持力矩) 7.电机相数、拍数 7.传动比
二、选型计算流程
1.根据使用方的精度定减速比(电机相数、丝杆已确 定); 2.计算负载的惯量; 3.计算负载力矩,包括摩擦负载、加速负载、净负载; 4.根据负载力矩初选步进电机,核算负载惯量与转子惯 量的比值; 5.核算两个矩频特性; 6.核算ok,电机确定。
5.确定步进电机最大静力矩、最大启动频率、最大运行频率
(1)最大静力矩TS的确定分三步进行 进给传动系统的空载启动力矩Tq和表1的关系,计算空载启动
需要的步进电机的最大静力矩TS 1
(2)根据计算得到进给传动系统在切削状态下的负载力矩T,采用下式计算系统在切削 t
状态下,所需的步进电机的最多静力矩T t
相关文档
最新文档