刚体动力学解析
刚体动力学

●
刚体基本动力学量
现在取 Axyz 坐标系为一个平动参考系 , 则刚体上的 R 点相对速度为 v r R =× R
dV
【定理】刚体相对动量为 p r =× mt R C
证明:pr =∫ v r R dV =∫ × R R dV
=×∫ R R dV =×m t RC(证毕)
⇒ L'A =∫ R2 I − R R ⋅ R dV =[∫ R2 I − R R R dV ]⋅
= J A⋅
(证毕)
1 1 ' 【定理】刚体相对动能为 T r = ⋅L A= ⋅J A⋅ 2 2
证明: T r=
1 1 2 v r R dV = ∫ v r⋅v r R dV ∫ 2 2 1 1 × R ⋅ v R dV = R × v r ⋅ R dV ∫ ∫ r 2 2
【推论】匀质刚体如果有一过 A 的镜像对称面,则过 A 且 与该镜像面垂直的轴是主轴;如果过 A 有两个正交的 镜像面,则两镜像面过 A 点的法线以及镜像面的交线 构成主轴系;匀质旋转体的旋转轴和任意与之正交的 两正交轴构成主轴系 . (请自己根据定义证明) 【定理】假定角速度在主轴坐标系下表示为
d d' J A⋅ 是矢量, J A⋅ = J A⋅× J A⋅ dt dt
⇒⋯⇒ J A⋅ = J XZ X J YZ Y J ZZ Z = ˙ Z ˙
d e ⋅M A ⇒ Z⋅ J A⋅= J ZZ = ≡M Z ¨ Z dt
2
J lk = J kl
(证毕)
因为:
lk =kl , Rl R k = Rk Rl
注:一般把 Jlk 称为惯量系数,由于对称性,只有 6 个是独立的 注:如果 AXYZ 不是固连在刚体上的坐标系,则 R 相对 AXYZ 有 转动,那么在 AXYZ 上看到的质量分布一般会随时间改变, 故在这个坐标系中惯量系数依赖于时间 . 注:如果 AXYZ 不是固连在刚体上的坐标系,在少数有良好对称性 的情况下 AXYZ 上看到的质量分布可能不随时间改变,此时在 这个坐标系中惯量系数是常数 .
第7.5节刚体平面运动的动力学

第7.5节 刚体平面运动的动力学7.5.1 10m 搞得烟筒因底部损坏而倒下来,求其上端到达地面时的线速度。
设倾倒时底部未移动。
可近似认为烟筒为均质杆。
解:烟筒的长度l =10m 。
设烟筒上端到达地面的瞬间,烟筒绕其底部的转动角速度为ω。
在倾倒过程中,只受重力作用,做的功为:mg ⋅½l 。
由刚体定轴转动的动能定理:lgmlI I l mg 323122121=∴==⋅ωω烟筒上端到达地面时的线速度为:s m gl l v /2.17108.933≈⨯⨯===ω7.5.2 用四根质量各为m 长度各为l 的均质细杆制成正方形框架,可围绕其中一边的中点在竖直平面内转动,支点O 是光滑的.最初,框架处于静止且AB 边沿竖直方向,释放后向下摆动,求当AB 边达到水平时,框架质心的线速度C v。
以及框架作用于支点的压力N .解:先求正方形框架对通过其质心且与其垂直的转轴(质心轴)的转动惯量:框架的质心位于框架的中心,即两条对角线的交点上。
每根细杆对其本身的质心轴的转动惯量:21210ml I =,细杆的质心与框架的质心的距离为l 21,由平行轴定理:2342210])([4ml l m I I c =⋅+⋅=再由平行轴定理,得框架对通过0点的转轴的转动惯量:237221)(4ml l m I I c =⋅+=(1)求框架质心的线速度v c框架在下摆过程中,只有重力做功,机械能守恒。
选取杆AB 达到水平时框架质心位置位势能零点,得:gll v l h m M I Mgh c lgc c 7321712212214===∴===ωωω(2)求框架对支点的压力N以框架为研究对象,它受到重力M g 和支点的支撑力N 的作用,由质心运动定理:c a M g M N =+取自然坐标系,τ沿水平方向,n 铅直向上,得投影方程:βτττc n c c n n Mh Ma N mgmg mg N mg l gl m h v M Ma Mg N n===+=⇒=⋅===-7372472421732744:ˆ:ˆ在铅直位置时,外力矩为0,故角加速度β=0,==〉N τ = 07.5.3 由长为l ,质量各为m 的均质细杆组成正方形框架,其中一角连于光滑水平转轴O ,转轴与框架所在平面垂直.最初,对角线OP 处于水平,然后从静止开始向下自由摆动.求OP 对角线与水平成450时P 点的速度,并求此时框架对支点的作用力.解:先求正方形框架对通过其质心且与其垂直的转轴(质心轴)的转动惯量:框架的质心位于框架的中心,即两条对角线的交点上。
《刚体动力学 》课件

牛顿第二定律
物体的加速度与作用在物 体上的力成正比,与物体 的质量成反比。
牛顿第三定律
对于任何两个相互作用的 物体,作用力和反作用力 总是大小相等,方向相反 ,作用在同一条直线上。
刚体的平动
刚体的平动是指刚体在空间中 的位置随时间的变化而变化, 而刚体的形状和大小保持不变
的运动。
刚体的平动具有三个自由度 ,即三个方向的平动。
05
刚体的动力学方程
刚体的动力学方程
牛顿第二定律
刚体的加速度与作用力成正比,与刚体质量 成反比。
刚体的转动定律
刚体的角加速度与作用力矩成正比,与刚体 对转动轴的转动惯量成反比。
刚体的动量方程
刚体的动量变化率等于作用力对时间的积分 。
刚体的自由度与约束
自由度
描述刚体运动的独立变量,如平动自由度和转动 自由度。
约束
限制刚体运动的条件,如固定约束、滑动约束等 。
约束方程
描述刚体运动受约束的数学表达式。
刚体的动力学方程的求解方法
解析法
通过代数运算求解动力学方程,适用于简单问 题。
数值法
通过迭代逼近求解动力学方程,适用于复杂问 题。
近似法
通过近似模型求解动力学方程,适用于实际问题。
06
刚体动力学中的问题与实例 分析
人工智能和机器学习的发展将为刚体 动力学的研究提供新的思路和方法, 有助于解决复杂动力学问题。
感谢您的观看
THANKS
船舶工程
在船舶工程中,刚体动力学 用于研究船舶的航行稳定性 、推进效率以及船舶结构的 安全性等。
兵器科学与技术
在兵器科学与技术领域,刚 体动力学用于研究弹药的发 射动力学、火炮的射击精度 和稳定性等。
第七章 刚体动力学(讲义)

MO = ∑ MO ( Fi ) = ∑ (ri × Fi )
i =1 i =1
n
n
注意,主矩的的计算与参考点的选取有关。例如,将参考点由 O 改成 O′ ,于是
MO = ∑ ri × Fi = ∑
i =1 i =1
n
n
(ri′ + OO′) × Fi = ∑ (ri′ × Fi ) + OO′ × ∑ Fi
R = ∑ Fi
i =1
n
这是个自由矢量,它只给出矢量的大小和方向,不过问作用点的位置。 对力系的矩也可作类似的讨论。对于共点力系,合力的矩等于各个力对同一点的矩的矢量 和,即
MO ( F) = r × F = r × ∑ Fi = ∑ (r × Fi )
i =1 i =1
n
n
一般的力系中不一定存在合力,因此也就谈不上求合力的矩。但是每个力相对于同一参考 点的力矩是矢量,我们可以求这些矢量的和,并称为主矩,记为 MO ,即有
(II)刚体绕质心的转动:
dLc = ∑ ric × Fi (对质心的角动量定理) dt i
第一个式子求质心运动等同于质点动力学,可以解出刚体的平动运动部分(三个方程解三个运 动变量) 。第二个式子又可求出刚体的转动角速度 ω ( L 与 ω 有一定的关系) ,于是刚体的运动 就完全确定了。由角动量定理求刚体的转动角速度是重点讨论的内容。 7.2 作用在刚体上的力和力矩 通常矢量指的是所谓自由矢量(free vector) :只有大小和方向,它可以平行自由移动。 作为物理量的矢量则不然,例如,力矢量 F ,为了完全确定这个力,还要说明力的作用点, 若用 r 表示作用点的话,则要有两个矢量 F 和 r ,这个力才完全被确定下来。这种矢量被称为定 位矢量(bound vector) 。除了力矢量是定位矢量外,质点的速度和加速度等也是定位矢量的例 子。 还有一种矢量,称为滑动矢量(sliding vector) ,它可在包含该矢量的一直线上自由移动。 例如,作用在刚体上的力(见下面的讨论) 。
4-2刚体的转动-刚体动力学解析

mB g
1 m A mB mC 2 m Am B g T1 1 m A m B mC 2
物体B由静止出发作匀速直线运动
2mB gy v 2ay 1 m A mB mC 2
考虑滑轮与轴承间的摩擦力
由初始条件 : t 0时, 0 0, 0 0得 :
0
3g d sind 2l 0
3g (1 cos ) 2l
例4:一半径为R,质量为m的匀质圆盘,平放在粗 糙的水平桌面上。设盘与桌面间摩擦系数为 , 令圆盘最初以角速度 0绕通过中心且垂直盘面的 轴旋转,问它经过多少时间才停止转动?
2m1m2 T1 T2 g m2 m1
m2 m1 a g m2 m1
上题中的装置叫阿特伍德机,是一种可用来测 量重力加速度g的简单装置。因为在已知m1、 m2 、 r和J的情况下,能通过实验测出物体1和2的加速度a, 再通过加速度把g算出来。在实验中可使两物体的m1 和 m2 相近,从而使它们的加速度 a 和速度 v都较小, 这样就能角精确地测出a来。
例2.质量为 m A 的物体A静止在光滑的水 平面上,它和一轻绳相连接,此绳跨过一半 径为R、质量为 mC 的园柱形滑轮C,并系在 另一质量为 m B 的物体B上,滑轮与轴承间 A 的摩擦力不计.问: C (1)两物体的线加 速度? 水平和铅直 B 两段绳的张力? (2)B由静止下落距离y时速率? (3)若滑轮与轴承间的摩擦力矩为 M ,再 求线加速度及绳的张力.
1 1 2 a RT2 RT1 M J mC R mC Ra 2 R 2 ( 4)
解(1)(2)(4),即可得 a,T
《刚体动力学》课件

单击此处输入你的项正文,文字是您思想的提炼。
应用场景:碰撞、打击、爆炸等 角动量定理 角动量定理
定义:角动量是物体转动惯量和角速度的乘积 单击此处输入你的项正文,文字是您思想的提炼。
角动量定理公式:L=Iω
单击此处输入你的项正文,文字是您思想的提炼。
应用场景:行星运动、陀螺仪等
刚体的滚动和滑动摩擦
刚体滚动:刚体在平面内绕固定点转动,滚动摩擦力产生的原因和影响
刚体滑动摩擦:刚体在平面内滑动时产生的摩擦力,滑动摩擦系数与接触面材料和粗糙度等因素 的关系
刚体滚动和滑动摩擦的应用实例:例如,汽车轮胎与地面之间的滚动摩擦力,以及机械零件之间 的滑动摩擦力等
刚体滚动和滑动摩擦的实验研究:通过实验研究刚体滚动和滑动摩擦力的影响因素和规律,为实 际应用提供理论支持
04
刚体动力学基本原理
牛顿第二定律
定义:物体加速度的大小跟作用 力成正比,跟物体的质量成反比
应用:解释物体运动状态变化的 原因
添加标题
添加标题
公式:F=ma
添加标题
添加标题
注意事项:只适用于宏观低速运 动的物体
动量定理和角动量定理
定义:动量是物体质量与速度的乘积
单击此处输入你的项正文,文字是您思想的提炼。
刚体动力学研究内容
刚体的定义和性质 刚体运动的基本形式 刚体动力学的基本方程 刚体动力学的研究方法
刚体动力学发展历程
早期发展:古代力学对刚体的研究 经典力学时期:牛顿、伽利略等经典力学大师对刚体动力学的研究 弹性力学时期:弹性力学的发展对刚体动力学的影响 现代发展:计算机技术和数值模拟方法在刚体动力学中的应用
课程内容:刚体 的平动、转动、 碰撞等动力、力学等相关专 业的本科生和研 究生
刚体运动的基本原理与动力学分析

刚体运动的基本原理与动力学分析刚体运动是物理学中的重要概念,研究刚体的基本原理和动力学分析对于理解力学运动规律具有重要意义。
本文将从刚体的定义、刚体运动的基本原理,以及刚体的动力学分析等方面展开论述。
一、刚体的定义刚体是指在力的作用下,保持形状和体积不变的物体。
刚体的特点是不易变形,内部各点之间的相对位置保持不变。
二、刚体运动的基本原理1. 平动和转动刚体运动可以分为平动和转动两种形式。
平动是指刚体上所有点按照相同方向和相同距离运动,转动是指刚体绕着某个轴旋转。
2. 受力和力矩刚体的运动受到外力的作用,外力可以分为接触力和非接触力。
接触力是指物体之间直接接触施加的力,非接触力是指物体间通过场的相互作用施加的力,如重力和电磁力等。
另外,刚体的转动还受到力矩的影响。
力矩是由作用力与力臂的乘积,用来描述力对刚体的转动效果。
力矩的方向由右手定则确定,大小等于力的大小与力臂的长度之积。
3. 刚体的运动学方程刚体的运动学方程描述了刚体在运动过程中各个部分的位置、速度和加速度之间的关系。
根据牛顿第二定律和运动学关系可以得到刚体的运动学方程。
三、刚体的动力学分析1. 平动的动力学分析刚体的平动运动可以通过牛顿第二定律进行动力学分析。
根据牛顿第二定律可知,刚体所受的合外力等于刚体的质量与加速度的乘积。
2. 转动的动力学分析刚体的转动运动需要通过力矩和转动惯量进行动力学分析。
根据牛顿第二定律可知,刚体所受的合外力矩等于刚体的转动惯量与角加速度的乘积。
此外,刚体的角动量和动能也是进行动力学分析的重要物理量。
角动量等于刚体的转动惯量与角速度的乘积,动能等于刚体的转动惯量与角速度的平方的乘积的一半。
四、刚体运动的应用刚体运动的研究在工程、医学等领域有广泛应用。
例如在机械工程中,对机械零件的运动进行分析可以用于设计和优化机械结构;在生物医学中,对人体骨骼系统的运动学和动力学分析可以用于疾病的诊断和康复治疗。
总结:刚体运动的基本原理和动力学分析是研究力学运动规律中的重要内容。
动力学中的刚体运动分析

动力学中的刚体运动分析动力学是物理学的一个分支,研究物体在受到力的作用下的运动规律。
刚体运动是动力学中的一个重要内容,刚体是指形状不会发生变化的物体,它的各个部分在同一时间内有相同的速度和加速度。
本文将对动力学中的刚体运动进行详细分析。
一、刚体的基本概念刚体是一个理想化的物体,它具有以下基本特征:1. 完全刚性:刚体的所有部分都是刚性连接的,不会发生形状上的变化。
2. 不可伸缩:刚体的各个部分不会发生伸缩变形。
3. 不可旋转:刚体在运动过程中不会发生自转。
刚体可以用来模拟很多实际物体,如棍子、车辆等,通过对刚体的运动进行研究,我们可以更好地理解物体在力的作用下的运动规律。
二、刚体运动的基本性质刚体运动具有以下几个基本性质:1. 平动:刚体上的任意两点都具有相同的位移和速度。
2. 定点旋转:刚体绕固定轴线作定点旋转运动,其各个部分仅有的位移是纯粹的旋转位移。
3. 平面运动:刚体运动可以限制在一个平面内进行。
三、刚体运动的描述刚体的运动可以通过位置、速度和加速度三个方面的描述来进行分析。
1. 位置描述:刚体的位置可以通过选择一个坐标系以确定刚体的位置矢量来描述。
常用的坐标系有直角坐标系和极坐标系。
2. 速度描述:刚体的速度可以通过位置的变化率来描述,即位置矢量对时间的导数。
刚体的速度矢量与位矢的方向相同。
3. 加速度描述:刚体的加速度可以通过速度的变化率来描述,即速度矢量对时间的导数。
刚体的加速度矢量与速度矢量的方向相同。
四、刚体的运动方程刚体的运动可以通过牛顿运动定律以及动力学中的一些基本定理来描述。
1. 牛顿第二定律:刚体受到的合外力等于其质量与加速度的乘积,即F=ma。
2. 刚体的角动量定理:刚体的角动量的变化率等于合外力对刚体的力矩,即L=dL/dt=τ。
3. 刚体的动能定理:刚体的动能的变化率等于合外力对刚体的功,即dK/dt=P。
根据这些定律和公式,我们可以对刚体的运动进行定量的描述和计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Mo
mg
l cos
6
A
Io
1 ml 2 12
m( l )2 6
1 9
ml 2
Mo 3g cos
Io 2l
2 o2 2
o
B
C
mg
oC l l l 236
17
Mo 3g cos d
Io 2l
dt
又因
d
dt
d d
d
dt
d d
3g cos
2l
d
3gcosd
0
0 2l
绳中张力Tmg! 用隔离体法:
对m: mg-T=ma
对柱: TR=I a=R
解得 =2mg/[(2m+M)R]
T=Mmg/(2m+M)
M •R
T m
mg
16
例题1.6 均匀细棒(m、长l)AB可绕o轴转 动,Ao= l/3。求棒从水平位置静止开始转过
角 时的角加速度和角速度。
解 重力集中在质心,其力矩为
IO=m.02 +2m(2l2) +3m(2l)2 +4ml2 +5m(2l2) =30ml2 2m
l
ml
l 3m
o
4m
l
5m
12
例题1.2 质量连续分布: I r 2dm
(1)均质细直棒(质量m、长l),求通过质心C且
垂直于棒的轴转动的转动惯量。
解
记住!
l
Ic
2 x2m dx 1 ml2
l l
12
2
C dm o x dx x
若棒绕一端o转动,由平行轴
定理, 则转动惯量为
o
Io
1 12
ml
2
m(
l 2
)2
1 3
ml 2
13
(2)均质细圆环(m, R)对中心轴的转动 惯量:
Ic
R2dm mR2
环
(3)均质圆盘(m,R)对中心轴 的转动惯量:
Ic
R
r
0
2m
R 2
2rdr
1 2
Firi sini fijri sini miri2
Z
i
合外力矩
M
fij
o
ri
i
mii
Fi
i j
合内力矩
0
i
I(转动惯量)
M I
刚体定轴转动定理
6
三. 转动惯量 1.转动惯量的物理意义
M
I
F ma
质量m—物体平动惯性大小的量度。
转动惯量I—物体转动惯性大小的量度。
7
2.转动惯量的计算
撤去外力矩时,
-Mr=I2 , 2=- /t2
(2)
代入t1=10s , t2=100s , =(100×2)/60=10.5rad/s,
得
I=17.3kg.m2 。
15
例题1.4 匀质柱体(M、R) 边缘用细绳 挂一质量为m的物体。求柱体的角加速度 及绳中的张力。
解 对柱体,由M=I有
mg.R=I
完成积分得 3gsin
l
A
o
C
B
讨论: (1)当=0时, =3g/2l, =0 mg
(2)当=90°时, =0, 3g
l
18
例题1.7 匀质圆盘(m、R)以o转动。将
盘置于粗糙的水平桌面上,摩擦系数为µ, 求圆盘经多少时间、转几圈将停下来?
解 摩擦力矩:
M
R
0
r
g
m
R
2
2rdr
2 mgR
Io d Ic
o
C M
9
I r2dm
(r r )dm
V
V
Hale Waihona Puke V (rc V (rcIc
l 2
)(rc 2l
rc
Ml 2 2l
l )dm
l 2 )dm
V rcdm
Ic是转轴过质心的转动惯量,于是
I I Ml2 c
Ic
I
l
rc
r
l
=0
10
例题1.1 质量离散分布: I=Δmi ri2
o
力矩的大小: 方向:
M =F rsin
rF
=Fd
d
r
F
注意: 对定轴转动, (1)只有 在垂直于转轴平面内的力才会
Mz
F
产生力矩; 平行于转轴的力是
不会产生力矩的。
(2)力矩的方向沿转轴。
5
2.刚体定轴转动定理
mi: 切向方程:
Fi sini fij sini miai miri
Firi sini fijri sini miri2
(1)质量离散分布刚体
I=Δmi ri2
即:刚体的转动惯量等于刚体上各质点的质量 乘以它到转轴距离的平方的总和。
(2)质量连续分布刚体
I r 2dm
式中: r为刚体上的质元dm到转轴的距离。
8
3.平行轴定理
Io=Ic+Md2
Ic 通过刚体质心的轴的转动 惯量
M 刚体系统的总质量 d 两平行轴(o,c)间的距离
1.刚体的平动和转动
如果刚体内任何两点的连线在运动中始终保持平 行,这样的运动就称为平动。
平动刚体内各质点的运动状态完全相同。
平动刚体可视为质点。质心是平动刚体的代表。
2
如果刚体内的每个质点都绕同一直线(转 轴)作圆周运动,这种运动便称为转动。
转轴固定不动定轴转动。 刚体一般运动可看作是平
动和转动的结合。
2.定轴转动的描述
d , d
dt
dt
r
定轴转动刚体上各质点的线
量(速度、加速度)不同。 但各质点的角量(如角位移、
角速度和角加速度)相同。
3
若角加速度 =c(恒量),则有
o t
ot
1 2
t 2
r
2 o2 2
4
二. 刚体的定轴转动
1.力矩
M
力F 对o点的力矩定义为:
M=r×F
3
I 1 mR 2 2
水平桌面
o
dr r
M 4g
I
3R
19
M 4g
I
3R
求圆盘经多少时间、转几圈将停下来?
由= o+ t = 0得
t o 3RO 4g
又由2-o2=2, 水平桌面
停下来前转过的圈数为
o
dr r
N o2 3o2 R 2 2 16 g
mR2
R
dm
r dr
14
M I 刚体定轴转动定理
例题1.3 一转轮在20N.m的外力矩作用下, 10s内转速均匀地由零增大到100rev/min。撤去 外力矩,它经100s停止。求转轮的转动惯量。
解 由 M=I , = o+ t
有外力矩时,
20-2M0=r=II1,1,1=1=/t/1t1(因(因o=o=0)0) (1)
第3章
Dynamics of Rigid Body
刚体力学基础
(6)
力矩的瞬时、时间、空间累积效应
1
§3.1 力矩的瞬时效应刚体的定轴转动 一. 刚体运动学
刚体—运动中形状和大小都保持不变的物体。 (a)刚体上各质点之间的距离保持不变。 (b)刚体有确定的形状和大小。 (c)刚体是由许多质点(质元)组成的质点系。
(1)轻杆连成的正三角形顶点各有一质点
m,此系统对通过质心C且垂直于三角形平面的
轴的转动惯量为
Ic 3 mr 2 ml 2 ,(r
3 l) 3
m
通过o点且垂直于三角形
l
l
平面的轴的转动惯量为
·c
mr
m
IO= ml2+ml2 =2ml2
o
l
=ml2 +(3m)r2=2ml2
11
(2)用轻杆连接五个质点, 转轴垂直于质 点所在平面且通过o点, 转动惯量为