微波的性质及实际应用

合集下载

大学物理实验 微波光学特性及布拉格衍射

大学物理实验 微波光学特性及布拉格衍射
98.237
极小
类别
Xi=i
Xi=i*i
yi=Xi+1
Yi^2=Xi+1^2
Xiyi
1
1
1
22.823
520.889
22.823
2
2
4
37.225
1385.700
74.45
3
3
9
53.685
2882.079
161.055

6
14
113.733
4788.668
258.328
平均
2
4.67
37.911
1596.223
根据记录数据,画出单缝衍射强度与衍射角度的关系曲线。并根据微波衍射强度一级极小角度和缝宽 ,计算微波波长 和其百分误差(表中 、 是相对于0刻度两边对应角度的电压值)。
3.微波的双缝干涉
按需要调整双缝干涉板的缝宽。将双缝缝干射板安置在支座上时,应使双缝板平面与载物圆台上 指示线一致。转动小平台使固定臂的指针在小平台的 处。此时相当于微波从双缝干涉板法线方向入射。这时让活动臂置小平台 处,调整信号使液晶显示器显示较大,然后在 线的两侧,每改变1~3度读取一次液晶显示器的读数,并记录下来,然后就可以画出双缝干涉强度与角度的关系曲线。并根据微波衍射强度一级极大角度和缝宽 ,计算微波波长 和其百分误差。
由已知的晶格常数a和微波波长λ,估算出(100)面和(110)面衍射极大的入射角;调整发射喇叭和接收喇叭的天线正对,调节衰减器;
将模型固定在载物台上,晶面法线与刻度盘0°重合,发射臂指针的读数即为入射角,将接受臂转至0°另一侧同一度数,即得到入射角等于反射角。在理论峰值附近寻找电流最大的入射角。。
原始数据记录及分析:

微波的波长

微波的波长

微波的波长微波是指频率为300MHz-300GHz的电磁波,是无线电波中一个有限频带的简称,即波长在1米(不含1米)到1毫米之间的电磁波,是分米波、厘米波、毫米波的统称。

微波频率比一般的无线电波频率高,通常也称为“超高频电磁波”。

微波作为一种电磁波也具有波粒二象性.微波量子的能量为1 99×l0 -25~1.99×10-22j.微波的性质微波的基本性质通常呈现为穿透、反射、吸收三个特性。

对于玻璃、塑料和瓷器,微波几乎是穿越而不被吸收。

对于水和食物等就会吸收微波而使自身发热。

而对金属类东西,则会反射微波。

一、穿透性微波比其它用于辐射加热的电磁波,如红外线、远红外线等波长更长,因此具有更好的穿透性。

微波透入介质时,由于介质损耗引起的介质温度的升高,使介质材料内部、外部几乎同时加热升温,形成体热源状态,大大缩短了常规加热中的热传导时间,且在条件为介质损耗因数与介质温度呈负相关关系时,物料内外加热均匀一致。

二、选择性加热物质吸收微波的能力,主要由其介质损耗因数来决定。

介质损耗因数大的物质对微波的吸收能力就强,相反,介质损耗因数小的物质吸收微波的能力也弱。

由于各物质的损耗因数存在差异,微波加热就表现出选择性加热的特点。

物质不同,产生的热效果也不同。

水分子属极性分子,介电常数较大,其介质损耗因数也很大,对微波具有强吸收能力。

而蛋白质、碳水化合物等的介电常数相对较小,其对微波的吸收能力比水小得多。

因此,对于食品来说,含水量的多少对微波加热效果影响很大。

三、热惯性小微波对介质材料是瞬时加热升温,能耗也很低。

另一方面,微波的输出功率随时可调,介质温升可无惰性的随之改变,不存在“余热”现象,极有利于自动控制和连续化生产的需要。

微波的产生微波能通常由直流电或50MHz交流电通过一特殊的器件来获得。

可以产生微波的器件有许多种,但主要分为两大类:半导体器件和电真空器件。

电真空器件是利用电子在真空中运动来完成能量变换的器件,或称之为电子管。

微波材料的制备及应用研究

微波材料的制备及应用研究

微波材料的制备及应用研究微波技术是一种广泛应用于通信、雷达、加热等领域的高频电磁波。

而微波材料作为一种特殊的材料,其在微波技术中具有非常重要的作用。

微波材料的制备及应用研究一直是当前研究的热点。

本文将从微波材料的基本概念、制备方法、性质特点及应用等方面进行论述。

一、微波材料的基本概念微波材料是一种在微波频段具有特定电磁特性的材料。

微波电磁波是一种波长在1mm~1m之间的电磁波。

微波材料的种类非常多,其中主要包括但不限于金属、绝缘体、半导体、合金、复合材料等。

微波材料种类的不同,其电磁波的特性也会有所不同。

二、微波材料的制备方法1、化学合成法化学合成法是制备微波材料最常用的方法之一。

具体而言,是通过溶胶凝胶法、水热法、共沉淀法等方法将一些金属氧化物中的金属离子进行还原或析出,制备出具有特定结构、组成、尺寸的微波吸收材料。

2、物理制备法物理制备法包括等离子体喷涂(PLS)、电弧等离子熔喷(PII)、射频磁控溅射(RF sputtering)等技术,这些技术可以用来制备金属、合金、氧化物、纳米复合材料等微波材料。

3、复合材料法在微波吸收材料的制备中,通过选用不同的功能材料,将其与基本材料进行复合,形成具有特殊微波吸收特性的复合材料。

其中,功能材料可以是一些导电性较强的石墨、碳纤维等材料;基本材料可以是一些无机盐、聚合物等材料。

三、微波材料的性质特点1、电磁波吸收特性强微波材料的电磁波吸收特性可以很好地应用于防雷和防电磁干扰等领域。

由于微波材料的吸波带宽较大,且在特定的吸波点处具有较高的吸收值,可以方便地选择合适的吸波频率。

2、热稳定性好由于微波材料的吸波作用发生在电磁波的能量转化成热能时,因此具有良好的热稳定性。

在高温环境下,微波材料的吸波效果不会大幅度降低,因此在一些特殊场合下使用更加稳定可靠。

3、机械性能优异微波材料作为一种特殊的材料,往往需要具有较好的机械性能。

由于其在特殊的应用领域中需要承受一定的机械负荷,因此往往要求具有较高的弹性、耐磨损、抗拉伸等特性。

微波的在生活中应用及原理

微波的在生活中应用及原理

微波的在生活中应用及原理1. 应用领域广泛•烹饪领域:微波炉是最常见的微波应用之一。

通过向食物中施加微波辐射,可以迅速加热食物,节省烹饪时间。

此外,微波炉还可以解冻食物,蒸汽蔬菜和煮熟坚果。

•通信领域:微波技术在通信领域得到广泛应用。

微波信号能够在大气层的某些频率范围内进行传输,被用于卫星通信、无线通信、卫星广播等领域。

•医疗领域:医学领域使用微波技术进行诊断和治疗。

例如,通过使用微波成像技术,可以检测和诊断肿瘤。

此外,微波还用于物理治疗,例如通过热疗治疗肿瘤。

•雷达技术:雷达是一种使用微波辐射并接收其反射信号来探测目标的技术。

雷达的应用范围广泛,包括气象预报、空中和海上监视、导航系统等。

2. 微波的原理微波是一种电磁波,其频率范围在300 MHz到300 GHz之间,波长约为1 mm 到1 m之间。

微波具有以下特点:•高频率:相比于无线电波、可见光和红外线等其他类型的电磁波,微波波长较短,频率较高。

这种高频率使得微波在传输和处理信息时更加高效。

•穿透力强:微波可以穿透许多以及不导电材料,例如塑料、玻璃、陶瓷等。

这使得微波在烹饪和通信领域的应用更为方便和广泛。

•与水分子相互作用:微波与水分子之间存在相互作用。

水分子具有极性,在外加微波辐射下,水分子会不断地定向旋转。

这种运动导致了水分子之间的摩擦和碰撞,转化为热能。

这正是微波炉加热食物的原理。

3. 微波炉的工作原理微波炉利用微波与水分子相互作用的原理来加热食物。

其工作原理如下:1.微波炉内部有一个称为磁控管的装置,该装置产生微波的电磁场。

2.微波在磁控管中产生,并通过一个称为波导的管道传输到微波炉的内腔。

3.微波炉的内腔由金属材料制成,可以反射和保持微波。

4.当微波通过食物时,微波与水分子相互作用,导致水分子的定向旋转和摩擦。

这种运动将能量转化为热能,使食物加热。

5.微波在金属内壁上反射,确保微波被完全吸收和利用,而不会逃离微波炉。

6.微波炉内部还配备了一个旋转的托盘,以确保食物均匀加热。

微波加热的原理

微波加热的原理

微波加热的原理微波加热是一种常见的加热方式,它利用微波的特殊性质来加热食物和其他物体。

微波加热的原理是通过微波与被加热物质分子之间的相互作用来产生热量,从而使被加热物质温度升高。

在本文中,我们将详细介绍微波加热的原理及其应用。

首先,让我们来了解一下微波的性质。

微波是一种电磁波,其波长在毫米到米的范围内。

微波具有穿透性,能够穿过一些材料,如玻璃、陶瓷和塑料,但被水分子、脂肪分子和一些其他极性分子吸收。

这种特性使得微波能够有效地加热含有水分和脂肪的食物。

当微波通过食物时,它会与其中的水分子、脂肪分子等极性分子发生作用。

这些分子会试图跟随微波的变化而快速转动,这种转动导致了分子之间的摩擦,从而产生热量。

这就是微波加热的基本原理,微波与分子的相互作用导致分子的运动,进而产生热量。

除了食物,微波加热还被广泛应用于其他领域,如材料加工、医疗设备等。

在材料加工中,微波加热可以快速、均匀地加热材料,提高生产效率。

在医疗设备中,微波加热被用于治疗肿瘤等疾病。

微波加热的原理虽然简单,但是在实际应用中需要注意一些问题。

首先,由于微波的穿透性,需要使用适当的容器来加热食物,以防止微波泄漏。

其次,由于微波加热是通过分子的运动来产生热量的,因此加热不均匀是一个常见的问题。

为了解决这个问题,可以采用旋转盘、搅拌等方式来促进食物的均匀加热。

总的来说,微波加热是一种高效、快速的加热方式,其原理是通过微波与被加热物质分子的相互作用来产生热量。

微波加热不仅在食品加工领域有着广泛的应用,还在其他领域发挥着重要作用。

然而,在实际应用中需要注意微波泄漏和加热不均匀等问题。

通过对微波加热原理的深入了解,我们可以更好地应用微波加热技术,提高生产效率,改善生活质量。

微波的作用原理及应用领域

微波的作用原理及应用领域

微波的作用原理及应用领域1. 微波的作用原理微波是指波长在1mm至1m之间的电磁波,在电磁波谱中位于射频波和红外线之间。

微波是一种高频电磁波,具有短波长和高频率的特点。

微波的作用原理主要是基于电磁波通过物质的相互作用产生的热效应。

一般情况下,微波具有以下作用原理:•电磁场的辐射作用:微波通过产生电磁场的辐射,与物质中的电荷相互作用,并产生相应的热效应。

这种作用原理常用于微波炉中,通过微波的辐射作用对食物进行加热。

•电磁场的激励作用:微波可以激励物质内部的分子和原子共振,使其产生相应的运动和振动,从而改变物质的性质和状态。

这种作用原理常用于微波通信中,通过微波的激励作用进行信号传输。

•电磁场的反射和散射作用:微波在物体表面的反射和散射会产生电磁波的相位变化,从而引起能量耗散和传递。

这种作用原理常用于无线电天线和雷达系统中,通过微波的反射和散射作用进行信号接收和目标探测。

2. 微波的应用领域微波作为一种高频电磁波,在科学研究和工业应用中有着广泛的应用领域。

以下是微波的主要应用领域:2.1 通信领域微波在通信领域中应用广泛,主要包括以下几个方面:•微波通信:微波通信是指通过微波的辐射和激励作用进行信息传输和通信。

由于微波具有较高的频率和较长的传输距离,因此在卫星通信、雷达通信和无线通信等领域有着重要的应用。

•微波天线:微波天线是指接收和发射微波信号的天线设备。

微波天线主要用于卫星通信、雷达系统和军事通信等领域,能够实现远距离的信号接收和目标探测。

2.2 加热领域微波的辐射作用可以产生热效应,因此在加热领域中有着广泛的应用:•微波炉:微波炉是一种使用微波辐射来加热食物的家用电器。

微波炉通过产生的微波辐射对食物中的水分子进行运动和振动,从而产生热效应,使食物快速加热。

•工业加热处理:微波的加热效果快速且均匀,因此在工业领域中被广泛应用于材料的干燥、烘焙和加热处理等过程。

2.3 医疗领域微波在医疗领域中有着多种应用方式,主要包括以下几个方面:•物理治疗:微波被广泛用于物理治疗中,如微波热疗和微波电疗等。

微波实验报告

微波实验报告微波实验报告引言:微波是一种电磁波,波长在1mm到1m之间,频率范围为300MHz到300GHz。

微波在通信、雷达、医学、食品加热等领域有着广泛的应用。

本实验旨在通过实际操作和观察,了解微波的特性和应用。

实验一:微波传播特性实验目的:观察微波在不同介质中的传播特性。

实验器材:微波发生器、微波接收器、不同介质样品(如玻璃、木头、金属等)。

实验步骤:1. 将微波发生器和接收器连接好,并设置合适的频率和功率。

2. 将不同介质样品放置在微波传播路径上,观察微波的传播情况。

实验结果:观察到微波在不同介质中的传播情况不同。

在玻璃中,微波能够较好地传播,而在金属中,微波会被完全反射或吸收。

实验二:微波反射和折射实验目的:观察微波在不同介质间的反射和折射现象。

实验器材:微波发生器、微波接收器、反射板、折射板。

实验步骤:1. 将微波发生器和接收器连接好,并设置合适的频率和功率。

2. 将反射板放置在微波传播路径上,观察微波的反射情况。

3. 将折射板放置在微波传播路径上,观察微波的折射情况。

实验结果:观察到微波在反射板上会发生反射,反射角等于入射角。

在折射板上,微波会发生折射,根据折射定律,入射角和折射角之间存在一定的关系。

实验三:微波干涉实验目的:观察微波的干涉现象。

实验器材:微波发生器、微波接收器、干涉板。

实验步骤:1. 将微波发生器和接收器连接好,并设置合适的频率和功率。

2. 将干涉板放置在微波传播路径上,观察微波的干涉情况。

实验结果:观察到微波在干涉板上会出现明暗相间的干涉条纹。

根据干涉现象的特点,可以推测微波是一种具有波动性质的电磁波。

实验四:微波加热实验目的:观察微波对物体的加热效果。

实验器材:微波发生器、微波接收器、食物样品。

实验步骤:1. 将微波发生器和接收器连接好,并设置合适的频率和功率。

2. 将食物样品放置在微波传播路径上,观察微波对食物的加热效果。

实验结果:观察到微波对食物样品有较好的加热效果,食物在微波的作用下能够迅速加热。

微波技术的原理及应用范围

微波技术的原理及应用范围1. 微波技术的原理微波技术是一种利用微波能量进行通信、遥测、雷达和加热等应用的技术。

其原理主要基于以下几个方面:1.1 微波的定义微波是指频率范围在300MHz至300GHz之间的无线电波。

相比于较低频率的无线电波,微波具有更短的波长和更高的频率。

微波能量可以在空气和某些物质中传播,由此带来了微波技术的应用。

1.2 微波的传播特性微波在空气和物质中的传播特性与传统的无线电波有很大的不同。

微波在大气中的传播损耗较低,几乎不受天气的影响。

在物质中的传播特性受到物质的介电常数和导电性质的影响。

这些特性使得微波可以在不同环境中进行远距离的传输并且能够穿透一些物质。

1.3 微波的发射和接收微波的发射和接收需要使用专门的设备和天线。

发射设备通过电源提供能量,将电能转化为微波能量并发射出去。

接收设备通过天线接收传输中的微波信号,并将其转化回电能进行处理和分析。

2. 微波技术的应用范围微波技术的应用范围非常广泛,包括通信、雷达、遥测以及加热等领域。

以下是微波技术的一些典型应用:2.1 微波通信微波通信是微波技术最常见的应用之一。

利用微波进行通信可以实现高速、高带宽的数据传输,特别适用于需要远距离传输和大容量数据传输的场景。

微波通信广泛应用于卫星通信、无线电通信以及移动通信等领域。

2.2 微波雷达雷达是利用无线电波进行探测和跟踪的技术,而微波雷达则是利用微波进行探测和跟踪。

微波雷达具有高分辨率、远距离、不受天气影响等优势,被广泛应用于航空、航天、军事等领域。

2.3 微波遥测微波遥测是通过微波技术对远程目标进行监测和测量的方法。

利用微波遥测可以实现对距离较远的目标进行精确的测量,并且可以在复杂环境下进行测量。

微波遥测在天文学、地球物理学、气象学等领域发挥着重要作用。

2.4 微波加热微波加热是利用微波能量对物体进行加热的技术。

微波加热可以实现快速、均匀的加热效果,并且可以在短时间内加热到较高温度。

微波的工作原理特点及应用

微波的工作原理特点及应用1. 微波的工作原理微波是指波长为1mm至1m之间的电磁波,其频率范围在300MHz至300GHz之间。

微波经常被用于通信、雷达、杀菌、加热等领域中,其工作原理与传统的电磁波有所不同。

微波的工作原理主要涉及以下几个方面:•微波的产生:微波通常通过微波发生器产生,常见的发生器包括磁控管发生器、半导体发生器以及谐振腔发生器等。

这些发生器会将直流电源转换为高频的微波信号。

•微波的传输:微波在传输过程中会受到传输介质的影响,常见的传输介质包括空气、电缆、波导等。

由于微波的特殊性质,其在传输过程中遇到障碍物时会出现反射、折射等现象。

•微波的接收:微波的接收一般通过天线进行,天线将微波能量转换为电信号。

常见的微波接收器包括天线接收器和微波谐振腔接收器等。

2. 微波的特点微波具有以下几个显著的特点:•高频率和短波长:微波的频率范围高于无线电波,其具有更高的传输速度和更短的波长。

这使得微波具有较强的穿透力和高分辨率的能力。

•高方向性:微波具有较高的方向性,可以通过天线进行精确的定向传输和接收。

这使得微波在通信和雷达等领域中具有重要的应用价值。

•容易被吸收和反射:微波在传输过程中容易被吸收和反射,这使得微波在杀菌和加热等领域中得到广泛应用。

3. 微波的应用微波在许多领域中都有广泛的应用,以下列举了几个典型的应用:•通信:微波被广泛用于无线通信领域,如卫星通信、无线电通信等。

微波的高频率和短波长使其能够提供更高的传输速度和更稳定的信号质量。

•雷达:微波被广泛应用于雷达系统中,用于检测和跟踪目标。

微波的高方向性和较高的分辨率使其在雷达系统中具有重要的地位。

•工业加热:微波加热技术已经在食品加工、化工及材料加工等领域得到广泛应用。

微波的能量可以使材料内部迅速升温,提高加热效率和产品质量。

•医疗领域:微波在医疗领域中也得到了应用,如肿瘤治疗、医疗成像等。

微波的穿透力使其可以被用于治疗和诊断。

综上所述,微波具有独特的工作原理和显著的特点,使其在通信、雷达、加热和医疗等领域中得到广泛应用。

简明微波知识点总结

简明微波知识点总结一、微波的产生微波是电磁波的一种,其频率范围通常定义为300MHz至300GHz。

微波的产生主要有以下几种方式:1. 电子运动产生的微波:当高速电子在磁场或者电场中运动时,会产生微波辐射。

这种产生微波的方式叫做“同步辐射”,是一种重要的微波源。

2. 电子射频振荡器产生的微波:电子射频振荡器是一种专门用来产生微波的设备,其工作原理是通过调谐某些特定的谐振频率,使得电子在强电场中振荡产生微波。

3. 微波管放大器:微波管放大器是一种设备,通过将微波信号输入到管中,然后通过电磁场的作用来放大微波信号。

4. 光学激光器产生的微波:激光器可以通过频率加倍或者调制的方式产生微波。

二、微波的特点微波具有一些独特的特性,使得它在很多领域有着广泛的应用:1. 穿透性强:微波在穿透物质时,能力比可见光和红外线更强。

这使得微波可以穿透一些通常不透明的物质,如水、塑料、衣物等。

2. 热效应:微波在物质中的能量损耗主要表现为产生热效应,这种热效应可以被应用于微波加热、烤箱等领域。

3. 反射和折射:微波在遇到边界时,会发生反射和折射现象。

这种特性被广泛应用于雷达、卫星通信等领域。

4. 定向传播:微波可以通过定向天线进行传播,这使得微波通信有着更多的灵活性和可靠性。

三、微波的应用由于微波具有穿透性强、热效应明显、定向传播等特点,使得它在很多领域有着广泛的应用:1. 通信领域:微波被广泛应用于通信领域,如无线电、卫星通信、雷达等。

通过微波通信技术,可以实现远距离、高速、高效率的信息传输。

2. 医疗领域:微波被应用于医学诊断和治疗领域。

如微波成像技术、微波治疗设备等,已经成为现代医疗的重要技术手段。

3. 加热领域:微波加热技术被广泛应用于食品加热、工业加热等领域。

由于微波在物质中的能量损耗主要表现为产生热效应,因此可以实现快速、均匀的加热效果。

4. 安全检测领域:微波成像技术被应用于安全检测领域,如机场安检、建筑结构探测等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录摘要 (1)关键词 (1)Abstract (1)Key Words (1)引言 (1)1.微波概述 (1)2.微波的传输 (1)3.微波的性质 (2)3.1穿透性 (2)3.2选择性加热 (2)3.3热惯性小 (3)3.4似光性和似声性 (3)3.5非电离性 (3)3.6信息性 (3)4.微波的产生 (3)5.微波的应用 (4)5.1微波加热 (4)5.2雷达与通信 (4)5.3医疗卫生 (5)5.4微波萃取 (5)5.5武器战争方面 (5)结论 (6)参考文献 (6)微波的性质及其实际应用摘 要:微波作为电磁波的一种,频率范围介于光波和广播电视所采用的无线电波之间,它兼有两者的性质又区别于两者,有自己的特点. 关键词:微波;波导;电磁波;微波热效应The shallow properties and applications of microwave Abstract : Microwave is a kind of electromagnetic wave that frequency ranges from radio waves to television waves, it has the properties and difference in both ,and has its own characteristics.Key words: microwave; waveguide; electromagnetic wave; microwave heating effect引言1864年,英国科学家麦克斯韦在总结前人研究电磁现象的基础上,建立了完整的电磁波理论。

随着人们对电磁波的研究逐步加深,电磁波的性质已被人们了解。

作为电磁波频率波段的微波在通信,食品,医疗等方面,也得到了广泛的应用。

本文就主要介绍微波的一些基本概念和应用。

1.微波概述微波是指频率为300MHz-3000GHz 的电磁波,是无线电波中一个有限频带的简称,即波长在1米(不含1米)到0.1毫米之间的电磁波,是分米波、厘米波、毫米波和亚毫米波的统称。

微波频率比一般的无线电波频率高,通常也称为“超高频电磁波[1]”。

微波作为一种电磁波也具有波粒二象性。

2.微波的传输微波是电磁波中的一段,因此它的规律性满足麦克斯韦方程组和介质的性能方程: •=ρ∇D0•=∇B=-t∂∇⨯∂B E =+t ∂∇⨯∂D H j (1) 并且D ,B ,j 满足:=εD E =μB H =γj E (2) 对于空气和导体的界面,由上述关系可以得到边界条件(左侧均为空气中场量)0t =E n n =/σεEt =H i 0n =H (3)方程组(3)表明,在导体附近电场必须垂直于导体表面,而磁场则应当平行于导体表面。

圆形或矩形截面的空心导体管构成波导,它是传输微波最常用的传输线之一[2]。

3.微波的性质微波的基本性质通常呈现为穿透、反射、吸收三个特性.对于玻璃、塑料和瓷器,微波几乎是穿越而不被吸收。

对于水和食物等就会吸收微波而使自身发热。

而对金属类东西,则会反射微波。

从电子学和物理学观点来看,微波这段电磁频谱具有不同于其他波段的如下重要特点:3.1穿透性微波比其它用于辐射加热的电磁波,如红外线、远红外线等波长更长,因此具有更好的穿透性。

微波透入介质时,由于介质损耗引起的介质温度的升高,使介质材料内部、外部几乎同时加热升温,形成体热源状态,大大缩短了常规加热中的热传导时间,且在条件为介质损耗因数与介质温度呈负相关关系时,物料内外加热均匀一致。

3.2选择性加热物质吸收微波的能力,主要由其介质损耗因数来决定。

介质损耗因数大的物质对微波的吸收能力就强,相反,介质损耗因数小的物质吸收微波的能力也弱。

由于各物质的损耗因数存在差异,微波加热就表现出选择性加热的特点。

物质不同,产生的热效果也不同。

水分子属极性分子,介电常数较大,其介质损耗因数也很大,对微波具有强吸收能力。

而蛋白质、碳水化合物等的介电常数相对较小,其对微波的吸收能力比水小得多。

因此,对于食品来说,含水量的多少对微波加热效果影响很大。

3.3热惯性小微波对介质材料是瞬时加热升温,能耗也很低。

另一方面,微波的输出功率随时可调,介质温升可无惰性的随之改变,不存在“余热”现象,极有利于自动控制和连续化生产的需要。

3.4似光性和似声性微波波长很短,比地球上的一般物体(如飞机,舰船,汽车建筑物等)尺寸相对要小得多,或在同一量级上。

使得微波的特点与几何光学相似,即所谓的似光性。

因此使用微波工作,能使电路元件尺寸减小;使系统更加紧凑;可以制成体积小,波束窄方向性很强,增益很高的天线系统,接受来自地面或空间各种物体反射回来的微弱信号,从而确定物体方位和距离,分析目标特征。

由于微波波长与物体(实验室中无线设备)的尺寸有相同的量级,使得微波的特点又与声波相似,即所谓的似声性。

例如微波波导类似于声学中的传声筒;喇叭天线和缝隙天线类似与声学喇叭,萧与笛;微波谐振腔类似于声学共鸣腔。

3.5非电离性微波的量子能量还不够大,不足与改变物质分子的内部结构或破坏分子之间的键。

再有物理学知道,分子原子和原子核在外加电磁场的周期力作用下所呈现的许多共振现象都发生在微波范围,因而微波为探索物质的内部结构和基本特性提供了有效的研究手段。

另一方面,利用这一特性,还可以制作许多微波器件。

3.6信息性由于微波频率很高,所以在不大的相对带宽下,其可用的频带很宽,可达数百甚至上千兆赫兹,这是低频无线电波无法比拟的。

这意味着微波的信息容量大,所以现代多路通信系统,包括卫星通信系统,几乎无例外都是工作在微波波段。

另外,微波信号还可以提供相位信息,极化信息,多普勒频率信息。

这在目标检测,遥感目标特征分析等应用中十分重要。

4.微波的产生微波能通常由直流电或50Hz交流电通过特殊的器件来获得。

可以产生微波的器件有许多种,但主要分为两大类:半导体器件和电真空器件。

半导体器件主要有体效应二极管和雪崩二极管。

电真空器件是利用电子在真空中运动来完成能量变换的器件,或称之为电子管.在电真空器件中能产生大功率微波能量的有磁控管、多腔速调管、微波三、四极管、行波管等。

在目前微波加热领域特别是工业应用中使用的主要是磁控管及速调管[3]。

5.微波的应用在现代科学技术高度发展的形势下,微波的应用领域,除了人们十分熟悉的微波通信之外,还涉及到医药卫生,公路建设、航空航天、环境保护、能量传送等各个方面,以及人们的生活之中。

而且在节约能源、提高生产效率、改进产品质量及改善劳动条件方面都取得明显的经济效益和社会效益。

5.1微波加热介质材料由极性分子和非极性分子组成,在电磁场作用下,这些极性分子从原来的随机分布状态转向依照电场的极性排列取向。

而在高频电磁场作用下,这些取向按交变电磁的频率不断变化,这一过程造成分子的运动和相互摩擦从而产生热量。

此时交变电场的场能转化为介质内的热能,使介质温度不断升高。

微波炉利用微波加热的原理,微波提取也是利用微波加热的原理.微波加热有加热速度快,加热均匀,节能高效,低温杀菌、无污染的特点,在食品加工方面应用广泛。

5.2雷达与通信微波的最重要应用是雷达和通信。

雷达不仅用于国防,同时也用于导航、气象测量、大地测量、工业检测和交通管理等方面。

通信应用主要是现代的卫星通信和常规的中继通信。

由于微波的频率极高,波长又很短,其在空中的传播特性与光波相近,也就是直线前进,遇到阻挡就被反射或被阻断,因此微波通信的主要方式是视距通信,超过视距以后需要中继转发。

一般说来,由于地球幽面的影响以及空间传输的损耗,每隔50公里左右,就需要设置中继站,将电波放大转发而延伸。

这种通信方式,也称为微波中继通信或称微波接力通信。

长距离微波通信干线可以经过几十次中继而传至数千公里仍可保持很高的通信质量。

微波通信由于其频带宽、容量大、可以用于各种电信业务的传送,如电话、电报、数据、传真以及彩色电视等均可通过微波电路传输。

微波通信具有良好的抗灾性能,对水灾、风灾以及地震等自然灾害,微波通信一般都不受影响。

但微波经空中传送,易受干扰,在同一微波电路上不能使用相同频率于同一方向,因此微波电路必须在无线电管理部门的严格管理之下进行建设[4]。

5.3医疗卫生在医学领域微波可以用来治疗各种病症,为患者解除痛苦和精神负担。

一种极其细小的微波发生器,可以直接从小孔送入人体内,直接杀死癌细胞,可用于治疗胃、食道等处的癌症或脓肿。

若把极细的微波发生线圈直接送到血管里,就可以除去血管管壁的多余物质,使血管内壁变得光滑和富有弹性。

利用微波对蛋白质的热凝固作用,便肿瘤组织细胞凝固坏死。

现行的微波凝固疗法是在超声波的引导下,将针状电极从体外经皮肤直接插入肿瘤组织,通过电极放射的微波使肿瘤组织凝固,杀死肿瘤细胞。

该方法因无需做开腹手术,对患者身体的损伤较小,治疗费用也很低,受到医生和患者的欢迎。

5.4微波萃取利用微波能来提高萃取率的一种最新发展起来的新技术。

它的原理是在微波场中,吸收微波能力的差异使得基体物质的某些区域或萃取体系中的某些组分被选择性加热,从而使得被萃取物质从基体或体系中分离,进入到介电常数较小、微波吸收能力相对差的萃取剂中;微波萃取具有设备简单、适用范围广、萃取效率高、重现性好、节省时间、节省试剂、污染小等特点。

目前,除主要用于环境样品预处理外,还用于生化、食品、工业分析和天然产物提取等领域。

5.5武器战争方面微波武器在应用上一个很重要的作用就是对付电子设备。

现代战争中的电子设备,是各种武器在搜索目标、进行攻击中必不可少的制导体系,具有十分奇异的功能,采取其他武器很难对付它。

而微波武器则不然,由于它本身就是一种发射出的电磁波,很容易对电子振荡起到干扰和破坏作用,并能够导致整个电子工作系统的瘫痪,从而使武器系统丧失进攻和防御的能力。

随着科技的发展,各种隐身武器相继问世。

这些新型武器能够有效地避开雷达、红外等传感器的探测和跟踪。

然而,这些隐身武器遇到微波武器的高能波束就会遭殃。

涂敷在这些武器上的“隐身衣”,是一些特殊的涂料,会在很短的时间内被加热而导致毁坏,甚至可以在瞬间熔化。

这样的结果会使整个隐身武器遭到摧毁。

结论当然,微波的性质还远远不止这些,这就需要我们更加深入的去学习,去研究,掌握它们的性质,使它们更好的为人们服务。

参考文献[1]闫润卿,李英惠.微波技术基础[M].北京:北京理工大学出版社,1997:1~2.[2]郭硕鸿.电动力学[M].北京:高等教育出版社,2008:132~133.[3]王魁香,韩炜,杜小波.新编近代物理实验[M].北京:科学出版社,2007:103~104.[4]张瑜.电磁波空间传播[M].西安电子科技大学,2007:158~159.。

相关文档
最新文档