最新初高中数学衔接超好教材(二)演示教学
新课改下做好初、高中数学教学衔接的几点建议

新课改下做好初、高中数学教学衔接的几点建议作者:李怀琴来源:《中学教学参考·下旬》 2014年第8期广西贺州高级中学(542800)李怀琴2012年下半年我校根据全省统一部署将全面使用高中课标教材,由于现行的初中和新课改下的高中在教材教法以及教学理念上存在较大的差异,这对于刚刚升入高中的学生来说,教学的内容衔接,教学方法的衔接以及学习方法的衔接将是一个重大的课题,因此本人认为抓好高中与初中数学教学的衔接,是实施好高中数学新课标教材的第一步。
一、高一新生学习困难的原因(一)学法的原因从跟学生交谈的结果分析,造成高一新生学习困难的原因之一是“学法的原因”。
初中教师讲得细,类型归纳得全,练得熟,学生习惯于你讲我听,不喜欢独立思考和对规律进行归纳总结,缺乏学习独立性。
到了高中,数学学习要求勤于思考,善于归纳总结规律,掌握数学思想方法,做到举一反三,触类旁通。
如果继续沿用初中学法,就会出现学习困难的问题。
尽管新教材降低了难度,但对一些学生仍无济于事,每做一题都会遇到困难,甚至一道题中会出现多处错误。
部分新生在心理上也发生了微妙的变化,产生了闭锁性,上课不爱举手发言,课内讨论气氛不够热烈。
部分新生存在“只看不想,只想不练,只练不思,只思不悟”的缺点,缺乏良好的心态,情绪浮躁。
(二)教材的原因通过对《新课程标准》的研究,我们发现造成高一新生学习困难的原因之二是“教材的原因”。
初中教材对内容进行了大幅度的调整,数学学习内容由“基本内容”、“拓展内容”和“专题研究与实践”三个部分组成。
而“拓展内容”是进入普通高级中学学生所必须修习的,但是有些初中学校对于这些“可教不考”的内容作了弱化和删减处理,这样就出现了初高中知识衔接上的缺漏。
初中教材内容通俗具体,对许多概念采用描述性定义,教材坡度较缓,直观性强,题型少且简单,多为常量,偏重知识的基础性和普及性;而高中内容注重逻辑性、抽象性,教材叙述严谨规范,知识难度加大且习题类型多,解题技巧灵活多变,计算繁冗复杂,多研究变量、字母。
初高中数学衔接教材(共28页)

创作编号:BG7531400019813488897SX创作者:别如克*初高中数学衔接教材目录引入乘法公式第一讲因式分解1.1 提取公因式1.2. 公式法(平方差,完全平方,立方和,立方差)1.3分组分解法1.4十字相乘法(重、难点)1.5关于x的二次三项式ax2+bx+c(a≠0)的因式分解.第二讲函数与方程2.1 一元二次方程2.1.1根的判别式2.1.2 根与系数的关系(韦达定理)2.2 二次函数2.2.1 二次函数y=ax2+bx+c的图象和性质2.2.2 二次函数的三种表示方式2.2.3 二次函数的简单应用第三讲三角形的“四心”乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式 22()()a b a b a b +-=-; (2)完全平方公式 222()2a b a ab b ±=±+. 我们还可以通过证明得到下列一些乘法公式:(1)立方和公式 2233()()a b a ab b a b +-+=+; (2)立方差公式 2233()()a b a ab b a b -++=-;(3)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++; (4)两数和立方公式 33223()33a b a a b ab b +=+++; (5)两数差立方公式 33223()33a b a a b ab b -=-+-. 对上面列出的五个公式,有兴趣的同学可以自己去证明. 例1 计算:22(1)(1)(1)(1)x x x x x x +--+++.解法一:原式=2222(1)(1)x x x ⎡⎤-+-⎣⎦=242(1)(1)x x x -++ =61x -.解法二:原式=22(1)(1)(1)(1)x x x x x x +-+-++ =33(1)(1)x x +-=61x -.例2 已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值. 解: 2222()2()8a b c a b c ab bc ac ++=++-++=.创作编号:BG7531400019813488897SX 创作者: 别如克*练 习1.填空:(1)221111()9423a b b a -=+( ); (2)(4m + 22)164(m m =++ );(3 ) 2222(2)4(a b c a b c +-=+++ ).2.选择题: (1)若212x mx k ++是一个完全平方式,则k 等于 ( )(A )2m (B )214m (C )213m (D )2116m (2)不论a ,b 为何实数,22248a b a b +--+的值( )(A )总是正数 (B )总是负数(C )可以是零 (D )可以是正数也可以是负数第一讲 因式分解因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法例1 分解因式:(1)x 2-3x +2; (2)x 2+4x -12; (3)22()x a b xy aby -++; (4)1xy x y -+-.解:(1)如图1.1-1,将二次项x 2分解成图中的两个x 的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x 2-3x +2中的一次项,所以,有x 2-3x +2=(x -1)(x -2).说明:今后在分解与本例类似的二次三项式时,可以直接将图1.1-1中的两个x 用1来表示(如图1.1-2所示).(2)由图1.1-3,得-1 -2 x x 图1.1-1 -1 -2 1 1 图1.1-2 -2 6 1 1 图1.1-3 -ay -by x x 图1.1-4x 2+4x -12=(x -2)(x +6). (3)由图1.1-4,得22()x a b xy aby -++=()()x ay x by -- (4)1xy x y -+-=xy +(x -y )-1=(x -1) (y+1) (如图1.1-5所示).课堂练习一、填空题:1、把下列各式分解因式:创作编号:BG7531400019813488897SX 创作者: 别如克*(1)=-+652x x __________________________________________________。
初升高数学衔接教材(完整)

第一讲 数与式1、 绝对值(1)绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩(2)绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. (3)两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离.2、绝对值不等式的解法 (1)含有绝对值的不等式①()(0)f x a a <>,去掉绝对值后,保留其等价性的不等式是()a f x a -<<。
②()(0)f x a a >>,去掉绝对值后,保留其等价性的不等式是()()f x a f x a ><-或。
③22()()()()f x g x f x g x >⇔>。
(2)利用零点分段法解含多绝对值不等式:①找到使多个绝对值等于零的点.②分区间讨论,去掉绝对值而解不等式.一般地n 个零点把数轴分为n +1 段进行讨论. ③将分段求得解集,再求它们的并集. 例1。
求不等式354x -<的解集例2.求不等式215x +>的解集例3.求不等式32x x ->+的解集例4。
求不等式|x +2|+|x -1|>3的解集.例5。
解不等式|x -1|+|2-x |>3-x .例6。
已知关于x 的不等式|x -5|+|x -3|<a 有解,求a 的取值范围. 练习解下列含有绝对值的不等式:(1)13x x -+->4+x(2)|x +1|<|x -2| (3)|x -1|+|2x +1|<4 (4)327x -<(5)578x +>3、因式分解 乘法公式(1)平方差公式 22()()a b a b a b +-=- (2)完全平方公式 222()2a b a ab b ±=±+ (3)立方和公式 2233()()a b a ab b a b +-+=+ (4)立方差公式 2233()()a b a ab b a b -++=-(5)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++ (6)两数和立方公式 33223()33a b a a b ab b +=+++ (7)两数差立方公式 33223()33a b a a b ab b -=-+-因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法 例1 分解因式:(1)x 2-3x +2; (2)2672x x ++(3)22()x a b xy aby -++; (4)1xy x y -+-.2.提取公因式法例2.分解因式:(1)()()b a b a -+-552(2)32933x x x +++3.公式法例3.分解因式: (1)164+-a (2)()()2223y x y x --+4.分组分解法例4.(1)x y xy x 332-+- (2)222456x xy y x y +--+- 5.关于x 的二次三项式ax 2+bx +c (a ≠0)的因式分解.若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式2(0)ax bx c a ++≠就可分解为12()()a x x x x --.例5.把下列关于x 的二次多项式分解因式:(1)221x x +-; (2)2244x xy y +-.练习(1)256x x -- (2)()21x a x a -++ (3)21118x x -+(4)24129m m -+ (5)2576x x +- (6)22126x xy y +-(7)()()3211262+---p q q p (8)22365ab b a a +- (9)()22244+--x x(10)1224+-x x (11)by ax b a y x 222222++-+-(12)91264422++-+-b a b ab a (13)x 2-2x -1(14) 31a +; (15)424139x x -+;(16)22222b c ab ac bc ++++; (17)2235294x xy y x y +-++-第二讲 一元二次方程与二次函数的关系1、一元二次方程 (1)根的判别式对于一元二次方程ax 2+bx +c =0(a ≠0),有:(1) 当Δ>0时,方程有两个不相等的实数根x 1,2=2b a-;(2)当Δ=0时,方程有两个相等的实数根x 1=x 2=-2b a; (3)当Δ<0时,方程没有实数根.(2)根与系数的关系(韦达定理)如果ax 2+bx +c =0(a ≠0)的两根分别是x 1,x 2,那么x 1+x 2=b a -,x 1·x 2=ca.这一关系也被称为韦达定理.2、二次函数2y ax bx c =++的性质1。
初高中数学衔接教材 第2课 数与式的运算(2)

一、比例与齐次式我们在式的运算中,常常会碰到比例关系或齐次等式、齐次分式,这就要求我们掌握比例关系具有哪些性质和它的一般转化方向;齐次式常常会同除以某一个数,转化过程在本质上起到消元作用,从而会出现整体思想.例1 已知三角形的三边长之比为3∶4∶5.求证:此三角形为直角三角形.例2 已知:a b =c d . 求证:(1)a -b b =c -d d ; (2)a +b b =c +d d ; (3)a b =c d =a +c b +d.例3 已知△ABC 中,有AB AD =AC AE ,求证:AD DB =AE EC.例4 已知:a +b =1且1b =2a,求a 和b .例5 已知y =2x (x ≠0). (1)求x 2-3xy +y 2xy +y2的值. (2)求证:x 2+32xy -y 2=0.例6 已知:x ∶y ∶z =1∶2∶3.求x 3-yz 2+3z 3xyz的值.二、二次根式一般地,形如a(a≥0)的代数式叫做二次根式.其运算性质如下:1.(a)2=a(a≥0).2.a2=|a|.3.ab=a·b(a≥0,b≥0).4. ba=ba(a>0,b≥0).例7将下列式子化为最简根式.(1)12b;(2)a2b(a≥0);(3)4x6y(x<0).例8试比较下列各组数的大小.(1)12-11和11-10;(2)26+4和22- 6.例9化简:(3+2)2 012·(3-2)2 013.例10化简:(1) 9-45;(2) x2+1x2-2(0<x<1).例11已知:x=3-23+2,y=3+23-2.求:3x2-5xy+3y2的值.例12已知:x>0,y>0,x+2xy-15y=0.求x-yx+xy的值.例13化简:x2+6x+9+x2-4x+4.1.若a b +c =b c +a =c a +b=k ,则k =________. 2.已知:x 2-3xy +2y 2=0,则x y=________. 3.已知x ∶y =1∶2,求:x 2-3xy +4y 2x 2+y 2的值.4.已知:x 2+5xy -6y 2=0,求:2x +3y 2x -y的值.5.已知三角形的三边之比为5∶12∶13.求证:此三角形为直角三角形.6.已知:a 2=b 2+c 2(a >0,b >0,c >0).(1)b a =12,求c a的值.(2)b a ≥12,求c a的取值范围.7.已知:a 2+b 2=c 2(a >0,b >0,c >0).(1)c a =2,求b a的值.(2)c a ≥2,求b a的取值范围.8.已知a ∶b ∶c =2∶3∶4,求a 2+b 2-c 22ab的值.9.化简下列各式.(1) 8-28;(2)12+1+13+2+14+3+…+1100+99.10.已知:x =3-52,求x 2x 4+x 2+1的值.11.计算:23×6-(2-5)2+15+2.12.已知:x =a +1a (a >0),化简:x +2+x -2x +2-x -2.答案精析例1 证明 设三角形的三边分别为a ,b ,c ,∵a ∶b ∶c =3∶4∶5,设a =3k ,b =4k ,c =5k ,k >0,∵a 2+b 2=9k 2+16k 2=(5k )2=c 2,∴三角形为直角三角形.例2 证明 (1)∵a b =c d ,∴a b -1=c d -1,a -b b =c -d d . (2)∵a b +1=c d +1,∴a +b b =c +d d . (3)设a b =c d =k ,则a =kb ,c =kd , a +c b +d =kb +kd b +d=k ,∴a b =c d =a +c b +d . 例3 证明 ∵AB AD =AC AE ,由例2可知:AB -AD AD =AC -AE AE ,∴DB AD =EC AE ,即AD DB =AE EC. 例4 解 ∵1b =2a =1+2a +b =3,∴b =13,a =23. 例5 (1)解 原式=1-3y x +(y x )2y x +(y x)2=-16. (2)证明 原式=x 2[1+32(y x )-(y x )2]=0. 例6 解 设x =k ,y =2k ,z =3k ,原式=k 3-2k ·(3k )2+3(3k )3k ·2k ·3k =323. 例7 解 (1)23b (2)a b (3)-2x 3y .例8 解 (1)∵12+11>11+10>0,∴112+11<111+10,∴12-11<11-10. (2)∵22-6=222+6,又∵4>22,∴24+6<222+6=22- 6. 例9 解 原式=(3+2)2 012(3-2)2 012(3-2)=3- 2.例10 解 (1)原式=22-45+52=(2-5)2=|2-5|=5-2. (2)原式=(x -1x )2=|x -1x |=1x-x (∵0<x <1). 例11 解 xy =1,x +y =10,原式=289.例12 解 x +2xy -15y =0,(x +5y )(x -3y )=0,∵x +5y >0,∴x =9y ,原式=23. 例13 解 原式=|x +3|+|x -2|=⎩⎪⎨⎪⎧ -2x -1 (x ≤-3)5 (-3<x <2)2x +1 (x ≥2).强化训练1.122.2或1 3.解 由y =2x ,得:原式=x 2-3x ×(2x )+4(2x )2x 2+(2x )2=115. 4.解 由条件得:x =-6y 或x =y ,∴原式=913或5. 5.证明 设a ∶b ∶c =5∶12∶13,则a =5k ,b =12k , c =13k (k >0) a 2+b 2=(25+144)k 2=(13k )2=c 2.所以三角形为直角三角形.6.解 (1)c a =32 (2)0<c a ≤327.解 (1)c 2a 2=2,1+(b a )2=2,(b a )2=1,b a=1(∵a >0,b >0) (2)c 2a 2≥2,1+b 2a 2≥2,(b a )2≥1,b a≥1(∵a >0,b >0). 8.解 设a =2k ,b =3k ,c =4k ,原式=-14. 9.解 (1)7-1;(2)910.解 x 2=7-352,1x 2=7+352,x 2+1x2=7,原式=1x 2+1x 2+1=18.11.解 原式=23×2×3-|5-2|+(5-2)=2.12.解 x +2=(a +1a )2=a +1a ,x -2=|a -1a|, a >1时,x -2=a -1a ,原式=a +1a +(a -1a )a +1a-(a -1a )=a .a =1时,x =2,原式=1. 0<a <1时,x -2=1a -a ,原式=a +1a +1a -a a +1a +a -1a =1a .∴原式=⎩⎪⎨⎪⎧ a a >11 a =11a 0<a <1。
2024年初高中衔接数学-第2节+因式分解进阶+课件

一般地,分组分解大致分三步:
1. 将原式适当分组 2. 对每一组进行因式分解 3. 将经过处理的式子再分解
练习:
(1) x3 + x2 -y3-y2 = (1) abc +ab+bc+ac+ a+b+c+1 =
进阶:拆项、添项法
因式分解:
1. x3+x2+x-3= x3-1+x2-1+x-1
2. x4+4= x4+4x2+4-4x2
拆项:把多项式的某项拆成两项的和或差. 添项:把代数式添上两个互为相反数的项.
进阶:主元法
因式分解:2x3-x2z-4x2y+2xyz+2xy2-y2z=
解:原式=-(x2-2xy+y2)z+2x3-4x2y+2xy2=-(x2-2xy+y2)z+2x(x2-2xy+y2) =(2x-z)(x-y)2
-8x4y+6x3y2-3x3y=-__x_3y_(_8_x_-__6_y_+__3_).
复习:公式法
1. a2-b2=(a+b)·(a-b) 2. a2+2ab+b2=(a+b)2 3. a2-2ab+b2=(a-b)2 4. a3+b3=(a+b)·(a2-ab+b2) 5. a3-b3=(a-b)·(a2+ab+b2) 6. a3+3a2b+3ab2+b3=(a+b)3 7. a3-3a2b+3ab2-b3=(a-b)3 8. a2+b2+c2+2ab+2ac+2bc=(a+b+c)2
口诀:首尾化积,十字相乘,求和凑中,横向书写
进阶:双十字相乘法(二次六项式)
(1) x2+2xy-3y2+3x+y+2= (x-y+1)(x+3y+2)
最新初高中数学衔接教材[新课标人教A版](学生版)(适用黑龙江)名师优秀教案
(适用黑龙江)名师优秀教案](https://img.taocdn.com/s3/m/1adcd4cf6294dd88d0d26b36.png)
初高中数学衔接教材【学生版】{新课标人教A版}典型试题举一反三理解记忆成功衔接第一部分初中数学与高中数学衔接紧密的知识点第二部分分章节讲解第一部分初中数学与高中数学衔接紧密的知识点1 绝对值:⑴在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
⑵正数的绝对值是他本身,负数的绝对值是他的相反数,0的绝对值是0,即⑶两个负数比较大小,绝对值大的反而小⑷两个绝对值不等式:;或2 乘法公式:⑴平方差公式:⑵立方差公式:⑶立方和公式:⑷完全平方公式:,⑸完全立方公式:3 分解因式:⑴把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。
⑵方法:①提公因式法,②运用公式法,③分组分解法,④十字相乘法。
4 一元一次方程:⑴在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。
⑵解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。
⑶关于方程解的讨论①当时,方程有唯一解;②当,时,方程无解③当,时,方程有无数解;此时任一实数都是方程的解。
5 二元一次方程组:(1)两个二元一次方程组成的方程组叫做二元一次方程组。
(2)适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。
(3)二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。
(4)解二元一次方程组的方法:①代入消元法,②加减消元法。
6 不等式与不等式组(1)不等式:①用符不等号(>、≠、<)连接的式子叫不等式。
②不等式的两边都加上或减去同一个整式,不等号的方向不变。
③不等式的两边都乘以或者除以一个正数,不等号方向不变。
④不等式的两边都乘以或除以同一个负数,不等号方向相反。
(2)不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。
②一个含有未知数的不等式的所有解,组成这个不等式的解集。
③求不等式解集的过程叫做解不等式。
(3)一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。
初高中数学衔接课(高一)PPT课件图文(2024)

02
展示正弦函数、余弦函数、正切函数的图像,分析三角函数的
周期性、奇偶性、单调性等性质。
三角恒等变换
03
介绍三角恒等式,如和差化积、积化和差等公式,以及它们在
三角函数计算中的应用。
13
数列与数学归纳法
2024/1/29
数列的概念及表示方法
阐述数列的定义、数列的通项公式及递推公式等基础知识 。
等差数列与等比数列
详细讲解等差数列和等比数列的定义、性质及求和公式。
数学归纳法及其应用
介绍数学归纳法的原理及步骤,通过实例演示数学归纳法 在证明数列问题中的应用。
14
04
初高中数学衔接关键点分析
2024/1/29
15
思维方式转变
从具象到抽象
初中数学以具象思维为主,而高 中数学则更强调抽象思维,需要 学生逐渐适应并培养抽象思维能
力。
从静态到动态
初中数学问题多为静态的,而高 中数学则涉及更多动态变化的问 题,需要学生理解并掌握变量之
间的关系。
从单一到多元
初中数学知识点相对单一,而高 中数学知识点更加多元化,需要 学生建立多元化的知识体系和思
维方式。
2024/1/29
16
学习方法调整
2024/1/29
课前预习与课后复习
高中数学内容相对复杂,需要学生做好课前预习和课后复习,加 深对知识点的理解和记忆。
教材内容
涵盖初中数学与高中数学衔接部 分的核心知识点,包括函数、方 程、不等式、数列、概率统计等
。
2024/1/29
教材结构
按照知识模块进行划分,每个模块 包含知识点讲解、例题分析、练习 题等内容,便于学生理解和掌握。
辅助资源
初高中数学知识点的衔接问题-PPT课件-图文

9.引导学生转变观念、改进学法,提升思维能力 (1)指导学生正确对待学习中遇到的新困难和新问题. (2)教师应注意培养学生的预习习惯,提高听课效率.高中课堂内容多,难度大,需要学生在课前进行预习,以缓解教师授课速度快,课堂容量大,学生接受知识吃力等问题.. (3)在高初中衔接过程中,单凭教师的力量不能解决同学们的所有疑问,这就需要利用同学中的良好资源,开展探讨,互帮互助,这也是新课程倡导的合作学习,探究学习的一种形式.正如哲学家萧伯纳所说:“如果你有一种思想,我有一种思想,我们进行交换,每人可以有两种思想.” (4)荷兰著名数学教育家弗赖登塔尔指出:“反思是数学思维活动的核心和动力.”
(5)重视培养良好的演算、验算习惯,提高运算能力.学习数学离不开运算,运算是数学学习的基础. (6)数学是关于思维的科学,学习数学的过程就是数学思维形成与发展的过程.高一新生其思维习惯正由直觉形象型向抽象经验型过渡,因此,必须重视抓紧培养. 例如,在学习高一教材《函数》时,我们可借助于二次函数. 首先,画出下列函数的图像,由图像观察函数的值域 ①y=x2-2x ②y=x2-2x,x∈[0,+∞) ③y=x2-2x,x∈(-∞,4) ④y=x2-2x,x∈[0,4) ⑤y=x2-2x,x∈[2,4] ⑥y=x2-2x,x∈[-1,0] ⑦y=x2-2x,x∈[a,a+1] ⑧y=(x-a)2-1,x∈[2,4] 这样不仅有助于函数概念和性质的学习,还有助于数形结合,化归转化等重要数学思想的培养,从而提高学生的思维能力.
5.思维方式方面 初中学习更多的是记忆与模仿,而高中学习更重要的是发散思维和创新意识.高中强调数学能力和数学思想的运用,其中运算能力、逻辑推理能力、空间想像能力和分析问题、解决问题的能力都有很高的要求.高中数学中渗透四大数学思想方法,即数形结合思想、函数与方程的思想、分类讨论、化归与转化.这些虽然在初中教学中有所体现,但在高中教学中反映得更充分. 例如解决ax2+4x+6>0这样简单的不等式时,首先要讨论a是否为零,如果不为零,还要讨论a是正数还是负数,这需要学生有分类讨论的思想意识(高一新生往往做不好).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
()Leabharlann 我们在初中已经学习过了下列一些乘法公式:
(1)平方差公式
(a b)( a b) a2 b2 ;
(2)完全平方公式
(a b)2 a2 2 a b 2.b
我们还可以通过证明得到下列一些乘法公式:
(1)立方和公式
(a b) (a2 a b 2 b) 3 a ;3 b
(2)立方差公式
1.1.3 二次根式
1.1. 4 分式 1.2 分解因式
2.1 一元二次方程 2.1.1 根的判别式
2.1.2 2.2 2.2.1 2.2.2
根与系数的关系(韦达定理) 二次函数 二次函数 y=ax2+bx+c 的图像和性质 二次函数的三种表示方式
2.2.3 二次函数的简单应用
2.3 方程与不等式
2.3.1 二元二次方程组解法
| a | 0, a 0,
a, a 0.
绝对值的几何意义 :一个数的绝对值,是数轴上表示它的点到原点的距离. 两个数的差的绝对值的几何意义 : a b 表示在数轴上,数 a 和数 b 之间的距离.
例 1 解不等式: x 1 x 3 >4.
解法一 :由 x 1 0,得 x 1;由 x 3 0 ,得 x 3 ;
(2)如果 a b 5,且 a 1,则 b= ________;若 1 c 2,则 c= ________.
2.选择题: 下列叙述正确的是
( A )若 a b ,则 a b
( C)若 a b ,则 a b
3.化简: |x- 5|- |2x-13|( x> 5).
( B)若 a b ,则 a b ( D)若 a b ,则 a b
初高中数学衔接教材
现有初高中数学知识存在以下“脱节”
1.立方和与差的公式初中已删去不讲,而高中的运算还在用。
2.因式分解初中一般只限于二次项且系数为“ 1”的分解,对系数不为“ 1”的涉及不多,而且对
三次或高次多项式因式分解几乎不作要求,但高中教材许多化简求值都要用到 ,如解方程、不等式等。
3.二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中函数、不等式常用 的解题技巧。
2.3.2 一元二次不等式解法
3.1 相似形 3.1.1 .平行线分线段成比例定理 3.1.2 相似形 3.2 三角形 3.2.1 三角形的“四心” 3.2.2 几种特殊的三角形 3.3 圆 3.3.1 直线与圆,圆与圆的位置关系 3.3.2 点的轨迹
1.1 数与式的运算
1.1 .1.绝对值
1
绝对值的代数意义 :正数的绝对值是它的本身, 负数的绝对值是它的相反数, 零的绝对值仍是零. 即 a, a 0,
(a b) (a2 a b 2 b) 3 a ;3 b
(3)三数和平方公式
(a b c)2 a2 b2 2c 2 ( a b
(4)两数和立方公式
(a b)3 a3 3 a2 b 3 a2b ;3b
b c ;) a c
2
(5)两数差立方公式
(a b)3 a3 3 a2 b 3 a2b .b
对上面列出的五个公式,有兴趣的同学可以自己去证明. 例 1 计算: ( x 1)(x 1)(x2 x 1)(x2 x 1) .
,而高中这部分内容视为重难点。
8.几何部分很多概念(如重心、垂心等)和定理(如平行线分线段比例定理,射影定理,相交弦
定理等)初中生大都没有学习,而高中都要涉及。
另外,像配方法、换元法、待定系数法初中教学大大弱化,不利于高中知识的讲授。
目
录
1.1 数与式的运算 1.1.1 绝对值 1.1.2 乘法公式
4.初中教材对二次函数要求较低,学生处于了解水平,但二次函数却是高中贯穿始终的重要内容。
配方、作简图、求值域、解二次不等式、判断单调区间、求最大、最小值,研究闭区间上函数最值等等
是高中数学必须掌握的基本题型与常用方法。
5.二次函数、二次不等式与二次方程的联系,根与系数的关系(韦达定理)在初中不作要求,此
解法一: 原式 = (x2 1) ( x2 1)2 x2
= (x2 1)(x4 x2 1)
= x6 1. 解法二: 原式 = (x 1)(x2 x 1)(x 1)(x2 x 1)
= (x3 1)(x3 1)
= x6 1.
例 2 已知 a b c 4 , ab bc ac 4 ,求 a2 b2 c2 的值.
解: a2 b2 c2 (a b c) 2 2( ab bc ac) 8 .
练习
1.填空:
( 1) 1 a2
1 b2
1 (b
1 a) (
94
23
( 2) (4m
)2 16m2 4m (
);
);
( 3) (a 2b c) 2 a2 4b2 c2 (
).
2.选择题:
(1)若 x2 1 mx k 是一个完全平方式,则 k 等于 2
又 x≥3, 点 B 之间的距离 |PB|,即 |PB|=|x-3|.
所以,不等式 ,
由|AB|=2,可知 点 P 在点 C(坐标为 0)的左侧、或点 P 在点 D(坐标为 4)的右侧.
练习
x<0,或 x>4.
1.填空:
(1)若 x 5 ,则 x=_________;若 x
4 ,则 x=_________.
类题目仅限于简单常规运算和难度不大的应用题型,而在高中二次函数、二次不等式与二次方程相互转
化被视为重要内容,高中教材却未安排专门的讲授。
6.图像的对称、平移变换,初中只作简单介绍,而在高中讲授函数后,对其图像的上、下;左、
右平移,两个函数关于原点,轴、直线的对称问题必须掌握。
7.含有参数的函数、方程、不等式,初中不作要求,只作定量研究 方程、不等式、函数的综合考查常成为高考综合题。
①若 x 1,不等式可变为 ( x 1) ( x 3) 4 ,
即 2x 4 >4,解得 x<0,
又 x<1,
∴x<0;
②若 1 x 2 ,不等式可变为 (x 1) (x 3) 4 ,
即 1>4,
∴不存在满足条件的 x;
③若 x 3,不等式可变为 (x 1) ( x 3) 4 ,
即 2x 4 > 4, 解得 x>4.
(
)
( A ) m2
(B) 1 m2 4
(C) 1 m2 3
(2)不论 a , b 为何实数,
2
a
2
b
2a
4b
8 的值
(D) 1 m2 16
(
)
( A )总是正数
( B)总是负数
( C)可以是零
( D)可以是正数也可以是负数
1.1.3.二次根式
一般地,形如 a (a 0) 的代数式叫做 二次根式 .根号下含有字母、且不能够开得尽方的式子称为