信号与系统第四章拉普拉斯变换连续时间系统的s域分析

合集下载

信号与系统 第四章 拉普拉斯变换、连续系统的S域分析

信号与系统 第四章 拉普拉斯变换、连续系统的S域分析

f
(t)

1
2


F
(
)e
j
t
d
2、拉普拉斯变换是将时间函数f (t)分解为无
穷多项复指数信号e st之和。其中s = +j
s称为复频率。
f
(t)

1
2j


F (s)e st ds
3、拉普拉斯变换是傅立叶变换的推广。
4、复平面( s平面)
以复频率 s = +j 的实部 和虚部 j 为
t
所以其收敛域为s 平
面上 a 的部分.
四、一些常用函数的拉氏变换
设 f (t)为有始函数,讨论单边拉氏变换
1、阶跃函数
L
u(t)


0
estd t
即 u(t ) 1

est


s 0
( 0)
1 s
2、指数函数
s
L eat eatestd t
f
(t)

1
2


F
(
)e
j
t
d
2、当函数不满足绝对可积条件时
将f(t)乘以衰减因子e-t ( 为 一实常数 ) ,恰当 地选取 的值 就有可以使 f(t) e-t 变得绝对可
积,即 其中 e t称为收敛因子
F f (t)e t

F1( )


f
(t )e t e j t dt
Lt 1 s2
L t2

2 s3
L tn

n! s n1
4、冲激函数 (t)

04四章 连续时间信号与系统的S域分析

04四章 连续时间信号与系统的S域分析

相应的傅里叶逆变换为
• Fb(s)称为f(t)的双边拉氏变换(或象函数),f(t)称为 Fb(s) 的双边拉氏逆变换(或原函数)。
二、双边拉氏变换的收敛域
能使
收敛的S值的范围。
若f(t)绝对可积,则 F(jω)=F(s)|σ=0 或F(jω)= F(s)|s= jω
S平面与零点、极点
N (s) F ( s) D( s )
例5.1-5求复指数函数(式中s0为复常数)f(t)=es0t(t)的 象函数
• 解: L[e (t )] 0 e e dt 0 e
s0 t s0t st



( s s0 ) t
dt
1 , Re[ s] Re[ s0 ] s s0 1 t , Re[ s ] 若s0为实数,令s0=,则有 e (t ) s

三、 S域平移(Shifting in the s-Domain): 若 x(t ) X (s), ROC: R 则
x(t )e X ( s s0 ), ROC : R Re[s0 ]
s0t
表明 X (s s0 ) 的ROC是将 X ( s)的ROC平移了 一个Re[ s0 ] 。
1 s2 X 1 ( s) 1 , s 1 s 1
1 X 2 ( s) , s 1
ROC: 1
ROC: 1
而 x1 (t ) x2 (t ) t 1 ROC为整个S平面 • 当R1 与R2 无交集时,表明 X ( s) 不存在。
二、 时移性质(Time Shifting):
ROC : 包括 R1 R2
x1 (t ) x2 (t ) X1 (s) X 2 ( s)

信号与系统4.3拉氏变换的性质

信号与系统4.3拉氏变换的性质

T
T2
2
E(2 )
T
s2 ( 2 )2
E(2 )
[
s2
T
( 2
)2
sT
]e 2
T
T
E(2 )
T
s2 ( 2 )2
(1
sT
e2
)
T
第4章 拉普拉斯变换、连续时间系统的S域分析
例4-4 试求图4.4所示的正弦半波周期信号的拉氏变换。
f (t)
E

0
TT
2T
t
2
图4.4 例 4―4图
解: 在例4―3中我们已求得从t=0开始的单个正弦半波(亦即
0 24
t
图4.5 例4-5图
e2(t2)e4u(t 2) e2(t4)e8u(t 4)
于是
F (s) L[ f (t)] e4L[e2t ]e2s e8L[e2t ]e4s
e2(s2) e4(s2) s2
第4章 拉普拉斯变换、连续时间系统的S域分析
4、s域平移特性
若 f (t) F(s)
t)u(t) E sin[ T
(t )]u(t )
2
2
第4章 拉普拉斯变换、连续时间系统的S域分析
应用拉氏变换的时移特性,有
F (s) L[ f (t)] L[ fa (t)] L[ fb (t)]
L[E sin(2 t)u(t)] L{E sin[ 2 (t T )]u(t T )}
本题第一个周期的波形)的拉氏变换为
F1(s)
L[
f
(t)]
E(2 )
T
s2 ( 2 )2
(1
sT
e2
)
T
第4章 拉普拉斯变换、连续时间系统的S域分析

【实用】拉普拉斯变换PPT文档

【实用】拉普拉斯变换PPT文档
第四章 拉普拉斯变换、连续时间系统的S域分析
学习目标 1.深入理解拉普拉斯变换的定义、应用范围、物理意义及收
敛。 2.掌握常用函数的拉氏变换。阶跃函数、指数函数、冲激
函数。 3.熟练掌握拉氏变换的性质。线性、原函数积分、原函数微
分、延时、S域频移、尺度变换、初值、终值定理、卷积。 4.掌握拉氏逆变换。 5.熟练掌握利用拉氏变换法分析电路、S域元件模型。 6.深入理解系统函数的定义及物理意义。 7.熟练掌握系统零极点分布与其时域特征的关系。
一、拉普拉斯的产生和发展
Laplace 2h(t)绝对可积,极限为0 Transform)。
线性、原函数积分、原函数微分、延时、S域频移、尺度变换、初值、终值定理、卷积。
拉本氏章变 重换点与在十傅于氏,九变以换拉的氏世关变系换纪;为工末具对系,统进英行复国频域分工析。程师亥维赛德(O.Heaviside,
虽然通过求极限的方法可以求得它们的傅里叶变换,但其变换式中常常含有冲激函数,使分析计算较为麻烦。
1850~1925)发明了算子法,很好地解决了电力 Laplace,1749~1825)在著作中对这种方法给予严密的数学定义。
线性、原函数积分、原函数微分、延时、S域频移、尺度变换、初值、终值定理、卷积。
H(s)极点都在s域左半平面

便
受到一


限制,


,求取

里叶反变换 留数定理法(含留数和定理)
拉氏变换收敛域的定义


也是比


难的,


尤其


出的是傅里叶变换分析法只能确定零状态响应, 3.
线性、原函数积分、原函数微分、域的定义 3.

信号与系统 第四章 拉普拉斯变换、连续系统的S域分析.

信号与系统 第四章 拉普拉斯变换、连续系统的S域分析.
n
(n为正整数)
n st 0
n
t e dt
st



4、冲激函数 (t)
L (t ) 0 ( t )e d t 1
st
同理
L (t t0 ) e
st0
5、正弦函数
1 j t j t L sin t ( L e L e ) 2j
at
,相当于拉氏变
sin t 和 e at cos t 的拉氏变换。
L e sin t 2 2 (s a) sa a t L e cos t ( s a )2 2
a t
Lsin t 2 s 2
s Lcos t 2 2 s
解法一: bs 延时特性 L[ f (t b)u(t b)] F ( s )e
1 s 尺度变换 L[ f (at b)u(at b)] F e a a
解法二: 尺度变换 延时特性
b
s a
1 s L[ f (at )u(at )] F a a
st
t
j t
j 右 半 开 0 平 面

反映指数函数 est 的幅度变化速度 >0, 幅度发散 <0, 幅度收敛 反映指数函数 est 的因子ejt 作周期变化的频率
三、拉普拉斯变换的收敛域
1、定义 把使 f (t) e- t 满足绝对可积条件的 的取值范围称为拉氏变换的收敛域。 2、单边拉氏变换的收敛条件
九、卷积
1、时域卷积 若 L f1 (t ) F1 ( s) L f 2 (t ) F2 ( s) 则 L f1 (t ) f 2 (t ) F1 ( s ) F2 ( s )

第四章 拉普拉斯变换、连续时间系统的 s 域分析

第四章 拉普拉斯变换、连续时间系统的 s 域分析
+
+
1 vC (0 ) s

-
1 1 VC ( s) I C ( s) vC (0 ) sC s
Vc(s)
-
(四)延时特性(时域平移)

第四章 拉普拉斯变换、连续时间系统的 s 域分析 肖娟
f (t )u(t ) F (s)
f (t t0 )u (t t0 ) e st0 F ( s )
0

s j
F ( s) f (t )e dt
st 0

单边拉氏变换
FB ( s ) f (t )e st dt


双边拉氏变换
第四章 拉普拉斯变换、连续时间系统的 s 域分析 肖娟
2. 拉氏逆变换
f1 (t ) f (t )e
1 f (t ) 2
在算子符号法中,由于未能表示出初始条件的作用,只 好在运算过程中作出一些规定,限制某些因子相消。而拉氏 变换法可以把初始条件的作用计入,这就避免了算子法分析 过程中的一些禁忌,便于把微积分方程转化为代数方程,使 求解过程简化。
(三)单边拉氏变换的收敛域
第四章 拉普拉斯变换、连续时间系统的 s 域分析 肖娟 j
f1 (t )
t0
t
cos(0 )sin(1t ) sin(0 )cos(1t ) 1 cos(0 ) s sin(0 ) F (s) 2 2 0 1t0 2 2 s 1 s 1
第四章 拉普拉斯变换、连续时间系统的 s 域分析 肖娟
例2:求 (t 1)u (t 1), t 1, t 1, (t 1)u (t 1),
f1 (t ) f (t )e t

郑君里《信号与系统》(第3版)(上册)配套题库-章节题库(第4章)【圣才出品】


A.
1 s2
e s
s
B. s 12
es
C. s 12
1 / 167
圣才电子书

1
D. s 12
1
E. s 12
十万种考研考证电子书、题库视频学习平台
【答案】D
【解析】因为
etu(t) 1 s 1
根据拉氏变换的频域微分性质
tet
u
t
1
s
1
1
=
s
1
12
3.信号

d dt
cos tU
t
s2 s2 1
又根据频域微分性质有
t
d dt
cos
tU
t
1
d ds
s2 s2
1
2s s2 1 2
4.信号 f t u t d 的拉普拉斯变换为( )。 0
A.1/s
B.1/(s2)
C.1/(s3)
D.1/(s4)
【答案】C
B.e-αtu(t-T)
C.e-αtu(t-α )
3 / 167
圣才电子书

D.e-αu(t-T)
十万种考研考证电子书、题库视频学习平台
【答案】B
【解析】u(t)的拉氏变换为 1/s,根据时移性,u(t-T)的拉氏变换为 e-sT/s,再
根据频域的时移性,e-αtu(t-T)的拉氏变换为 e-sT/s 的 s 左移α,即 e-sT/s 中的 s 加上
2s 1 2s 1
f(t)中包含Байду номын сангаас激函数 2δ(t),去掉冲激函数以后,根据初值定理
f
(0 )
lim
s
s
3 2s+1

信号与系统第四章拉普拉斯变换连续时间系统的s域分析


1
IC s sC
1 s
vC
0

VC s
1
C
iC (1) (0
)

1 C
0
iC
(
)
d
vC (0 )
电容元件的s模型
22

四.延时(时域平移) 页
若L f (t) F(s),则
证明:
L f (t t0 )u(t t0 ) F (s)est0
L
f (t t0 )u(t t0 )

0
f (t t0 )u(t t0 )estd t

t0
f
(t

t0
) e std
t
令 τ t t0,则有t t0,d t d τ, 代入上式
L
f (t t0 )u(t t0 )
若L f ( at b )u( at b )

1
F
s

e

s
b a
a 0,b 0
a a
26

七.初值 页
若f (t)及 d f (t) 可以进行拉氏变换,且f (t) F (s),则 dt
lim
t 0
f (t)
考虑到实际信号都是有起因信号:
所以
F s f t es td t 0
采用0系统, 相应的单边拉氏变换为
F s
L f t

0
f te s td t


f
t

L1F s

1 2π
j
σ j
σ j
F se s

信号与系统 第四章习题 王老师经典解法(青岛大学)小白发布


3
E1(s)

1 s
-2 -1
(a)
1 s
2

Y 1( s )
E2(s)
−2 t
Vo ( s ) ; E ( s)
U (t ) ,求零状态响应 vo (t ) ;
(3)若 e(t ) = 10 cos(5t ) ,求正弦稳态响应 voss (t ) 。
0.25F + e(t) -
2:1
1F
2:1
2F +
C1
C2
C3
R
vo(t
-
题图 4-17-1
4-18 题图 4-18-1 所示电路 (1)若初始无储能,信号源为 is (t ) ,为求 i1 (t ) (零状态响应) ,列写转移函数 H ( s ) ,并给 出对应于 is (t ) = 10 cos(2t )U (t ) 的零状态响应 i1 (t ) ; (2)若初始状态以 i1 (0) , v 2 (0) 表示(都不等于零) ,但
is(t
)
1Ω + 1F
-
1H
i1(t
is (t ) = 0 ,求 i1 (t ) (零输入响应) 。
v 2( t )

题图 4-18-1
4-19 求题图 4-19 中电路的电压传输函数,如果要求响应中不出现 强迫响应分量,激励函数应有怎样的模式?
C
R1
+ +
-)
e(t R2
vo(t)
-
题图 4-19
4-11 用拉氏变换分析法,求下列系统的响应。
d 2 r (t ) dr (t ) (1) +3 + 2r (t ) = 0 , r (0 − ) = 1 , r ' (0 − ) = 2 2 dt dt

拉普拉斯变换、连续时间系统的S域分析

若f (t)满足以下条件时,才存在付里叶变换 1 狄氏条件:1) f (t)在有限闭区间连续或有有限个第一类间断点; 2) f (t)在有限闭区间只有有限个极值点。
2 在(-, )内满足绝对可积,即 f (t) dt
由付里叶变换存在条件 可知,绝对可积条件较强,许多 函数都不满足此条件,如单位阶跃函数、正弦余弦函数、线 性函数等。 2拉普拉斯变换
F (s) f (t)et e jtdt
f (t)e( j)tdt f (t)est dt
其中 s j
F (s) f (t)est dt称作拉普拉斯(Laplace)变换
f (t) 1
F
(s)e
st
d称s 作拉普拉斯逆变换
2j
f (t) F (s)
单边拉氏变换
a1 f1(t) a2 f2 (t) a1F1(s) a2F2 (s)
其收敛域至少是二函数收敛域的相重叠部分。
7
例1:求双曲函数的象函数
sht 1 (et et )
2
sht
1 2
(et
et
)
0
1 2
(et
et
)est
dt
1 2
s
1
1 1
2 s
1
s2 2
Res 0
et的收敛域Res ,et的收敛域Res ,
当n 2时
t2
2 s3
,依次类推
t n n(n 1)(n 2)2 1
s n1
6
4.冲击函数
(t) (t)est dt 1 0
5.正弦函数
sin kt sin ktest dt 1 e jkt e jkt est dt
0
0 2j
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例题
f (t) cos(ωt) 1 ejω t ejω t 2
已知
L eα t 1 s α
则 同理
L cosω t
1
2
1 s jω
1
s
j
ω
s2
s ω2
Lsinω
t
s2
ω ω2
二.原函数微分
第 18

若L f (t)
证明:
F
(
s),
则L d
f d
(t t
)
sF (s)
6.一般求函数的单边拉氏变换可以不加注其收敛范围。
三.一些常用函数的拉氏变换
第 13

1.阶跃函数
L u(t)
1
estd
t
1 est 1
0
s 0 s
2.指数函数
L eα t eα testd t
eα st
1
0
α s αs
3.单位冲激信号
0
σ α
L
t
0
t
estd
t
2π j j

3.拉氏变换对
10

F
s
L
f
t
f
tes
t dt

f
t
L1
F
s
1
2
j
j
F
s
es tds
j

记作: f t Fs f t称为原函数,Fs称为象函数。
考虑到实际信号都是有起因信号:
所以
F s f t es td t 0
采用0系统, 相应的单边拉氏变换为
F s

收敛轴
收敛区
收敛坐标
σ0 O
σ

例题及说明
12

1.满足 lim t
f
(t) e t

σ0
的信号称为指数阶信号;
2.有界的非周期信号的拉氏变换一定存在;
3.lim tne t 0 0 t
4. lime te t 0 α t
5.et2 等信号比指数函数增长快,找不到收敛坐标, 为非指数阶信号,无法进行拉氏变换。
些信号是不满足绝对可积条件的,因而其信号的分析
受到限制;

f t d t
•另外在求时域响应时运用傅里叶反变换对频率进行的
无穷积分求解困难。
f (t) 1
2
F
ω e j
t
d
ω
F
1
F
ω
第 3 页
为了解决对不符合狄氏条件信号的分析,第三章中引 入了广义函数理论去解释傅里叶变换,同时,还可利 用本章要讨论的拉氏变换法扩大信号变换的范围。 •优点:
变 换
第四章 拉普拉斯变换、连续时间系统的s域分析
4.2 拉普拉斯变换的定义、 收敛域
主要内容
第 7

从傅里叶变换到拉普拉斯变换 拉氏变换的收敛域 一些常用函数的拉氏变换
一.从傅里叶变换到拉普拉斯变换
第 8

1.拉普拉斯正变换
信号 f (t),乘以衰减因子 e t (为任意实数)后容易满足
绝对可积条件,依傅氏变换定义 :
求解比较简单,特别是对系统的微分方程进行变换 时,初始条件被自动计入,因此应用更为普遍。 •缺点: 物理概念不如傅氏变换那样清楚。
本章内容及学习方法
第 4

本章首先由傅氏变换引出拉氏变换,然后对拉氏正 变换、拉氏反变换及拉氏变换的性质进行讨论。
本章重点在于,以拉氏变换为工具对系统进行复频 域分析。
则f t e t 是F j 的傅里叶逆变换
f te t 1 F j ej td

两边同乘 以 e t
f t 1
F j e j t d

其中: s j ; 若取常数,则d s jd
积分限:对 : 对s : j
j
所以
f t 1
j
F
s
estd s
最后介绍系统函数以及H(s)零极点概念,并根据他 们的分布研究系统特性,分析频率响应,还要简略介绍 系统稳定性问题。
注意与傅氏变换的对比,便于理解与记忆。
一.积分微分方程拉氏变换的步骤

y(t)的微分方程 拉
初始条件
氏 变

Y(s)的代数方程
经典法求解
微分方程的解
解方程
取 拉 氏
反 Y(s)的函数
f
(0 )
f
t
e std t
f
0
t
e st
0
sf
0
t
e
st
d
t
推广:
f 0 sF ( s )
L
d
f 2(t)
dt
sF s
f
0
f
(0 )
s2F (s) sf (0 ) f (0 )
L d
f n(t)
dt
F1 F f (t) e t
f (t) e t
ej td t
f (t) e( j )td t F ( j )
令 : j s , 具有频率的量纲, 称为复频率。

Fs f tes t dt

2.拉氏逆变换
9

F j f te j t dt Fs f tes t dt
主要内容
第 16

线性 原函数积分 s域平移 初值 卷积 对s域积分
原函数微分 延时(时域平移) 尺度变换 终值 对s域微分
一.线性
第 17


L f1(t) F1(s),
L
f2
(t
)
F2
(s),
K1
,
K
为常数,
2
则 L K1 f1(t) K2 f2(t) K1F1(s) K2F2(s)
第四章 拉普拉斯变换、连续时间系统的s域分析
4.1 引言
作业: 4-1(1)(3)(5)(7), 4-3(2)(4), 4-4(1-5),4-5, 4-24(a),4-27,4-33.
第 2

•以傅里叶变换为基础的频域分析方法的优点在于:它
给出的结果有着清楚的物理意义 ,但也有不足之处,
傅里叶变换只能 t
0
f te s td t
f
t
L1F s
1 2π
j
σ j
σ j
F se s
td
s
二.拉氏变换的收敛
第 11

收敛域:使F(s)存在的s的区域称为收敛域。
记为:ROC(region of convergence)
实际上就是拉氏变换存在的条件;
lim f (t) eσt 0
t
σ σ0
1 t de st
s 0
第 14

1 s
t
est
0
0
e
std
t
1 s
1 s
est
0
1 s2
n2
L t 2
2 s
Lt
2 s
1 s2
2 s3
n3
L t 3
3 Lt2 s
3 s
2 s3
6 s4
所以
L
t n
n! s n 1
第四章 拉普拉斯变换、连续时间系统的s域分析
4.3 拉普拉斯变换的基本 性质
1
全s域平面收敛
L t t0
0
t t0
estd t est0
4.tnu(t)
L tn
t n estd t
0
tn s
est
0
n s
t n1 estd t
0
n t n1 estd t
s0
所以 L tn n L tn1 s n 1
Lt t estd t 0
相关文档
最新文档