matlab模型求解
数学建模常用方法MATLAB求解

数学建模常用方法MATLAB求解数学建模是通过数学方法对实际问题进行数学描述、分析和求解的过程。
MATLAB是一款功能强大的数学软件,广泛用于数学建模中的问题求解。
在数学建模中,常用的方法有数值求解、优化求解和符号计算。
下面将介绍MATLAB在数学建模中常用的方法和求解示例。
1.数值求解方法:数值求解是利用数值计算方法来近似求解实际问题的数学模型。
MATLAB提供了许多数值求解函数,如方程求根、解线性方程组、曲线拟合、积分和微分等。
以方程求根为例,可以使用fsolve函数来求解非线性方程。
示例:求解非线性方程sin(x)=0.5```matlabx0=0;%初始点x = fsolve(fun,x0);```2.优化求解方法:优化求解是在给定约束条件下,寻找使目标函数取得最优值的变量值。
MATLAB提供了许多优化求解函数,如线性规划、二次规划、非线性规划、整数规划等。
以线性规划为例,可以使用linprog函数来求解线性规划问题。
示例:求解线性规划问题,目标函数为max(3*x1+4*x2),约束条件为x1>=0、x2>=0和2*x1+3*x2<=6```matlabf=[-3,-4];%目标函数系数A=[2,3];%不等式约束的系数矩阵b=6;%不等式约束的右端向量lb = zeros(2,1); % 变量下界ub = []; % 变量上界x = linprog(f,A,b,[],[],lb,ub);```3.符号计算方法:符号计算是研究数学符号的计算方法,以推导或计算数学表达式为主要任务。
MATLAB提供了符号计算工具箱,可以进行符号计算、微积分、代数运算、求解方程等。
以符号计算为例,可以使用syms函数来定义符号变量,并使用solve函数求解方程。
示例:求解二次方程ax^2+bx+c=0的根。
```matlabsyms x a b c;eqn = a*x^2 + b*x + c == 0;sol = solve(eqn, x);```以上是MATLAB在数学建模中常用的方法和求解示例,通过数值求解、优化求解和符号计算等方法,MATLAB可以高效地解决各种数学建模问题。
Matlab中的数学建模方法

Matlab中的数学建模方法引言在科学研究和工程领域,数学建模是一种重要的方法,它可以通过数学模型来描述和解释真实世界中的现象和问题。
Matlab是一款强大的数值计算和数据可视化工具,因其灵活性和易用性而成为数学建模的首选工具之一。
本文将介绍一些在Matlab中常用的数学建模方法,并以实例来展示其应用。
一、线性回归模型线性回归是最常见的数学建模方法之一,用于解决变量之间呈现线性关系的问题。
在Matlab中,可以使用regress函数来拟合线性回归模型。
例如,假设我们想要分析学生的身高和体重之间的关系,并建立一个线性回归模型来预测学生的体重。
首先,我们需要收集一组已知的身高和体重数据作为训练集。
然后,可以使用regress函数来计算回归模型的参数,并进行预测。
最后,通过绘制散点图和回归直线,可以直观地观察到身高和体重之间的线性关系。
二、非线性回归模型除了线性回归外,有时数据之间的关系可能是非线性的。
在这种情况下,可以使用非线性回归模型来建立更准确的数学模型。
在Matlab中,可以使用curvefit工具箱来拟合非线性回归模型。
例如,假设我们想要分析一组实验数据,并建立一个非线性模型来描述数据之间的关系。
首先,可以使用curvefit工具箱中的工具来选择最适合数据的非线性模型类型。
然后,通过调整模型的参数,可以用最小二乘法来优化模型的拟合效果。
最后,可以使用拟合后的模型来进行预测和分析。
三、最优化问题最优化是数学建模的关键技术之一,用于在给定的限制条件下找到使目标函数取得最大或最小值的变量取值。
在Matlab中,可以使用fmincon函数来求解最优化问题。
例如,假设我们要最小化一个复杂的目标函数,并且有一些约束条件需要满足。
可以使用fmincon函数来设定目标函数和约束条件,并找到最优解。
通过调整目标函数和约束条件,以及设置合适的初始解,可以得到问题的最优解。
四、概率统计模型概率统计模型用于解决随机性和不确定性问题,在许多领域都得到广泛应用。
数学建模实验二:微分方程模型Matlab求解与分析

实验二: 微分方程模型Matlab 求解与分析一、实验目的[1] 掌握解析、数值解法,并学会用图形观察解的形态和进行解的定性分析; [2] 熟悉MATLAB 软件关于微分方程求解的各种命令;[3] 通过范例学习建立微分方程方面的数学模型以及求解全过程; [4] 熟悉离散 Logistic 模型的求解与混沌的产生过程。
二、实验原理1. 微分方程模型与MATLAB 求解解析解用MATLAB 命令dsolve(‘eqn1’,’eqn2’, ...) 求常微分方程(组)的解析解。
其中‘eqni'表示第i 个微分方程,Dny 表示y 的n 阶导数,默认的自变量为t 。
(1) 微分方程 例1 求解一阶微分方程 21y dxdy+= (1) 求通解 输入:dsolve('Dy=1+y^2')输出:ans =tan(t+C1)(2)求特解 输入:dsolve('Dy=1+y^2','y(0)=1','x')指定初值为1,自变量为x 输出:ans =tan(x+1/4*pi)例2 求解二阶微分方程 221()04(/2)2(/2)2/x y xy x y y y πππ'''++-=='=-原方程两边都除以2x ,得211(1)04y y y x x'''++-= 输入:dsolve('D2y+(1/x)*Dy+(1-1/4/x^2)*y=0','y(pi/2)=2,Dy(pi/2)=-2/pi','x')ans =- (exp(x*i)*(pi/2)^(1/2)*i)/x^(1/2) +(exp(x*i)*exp(-x*2*i)*(pi/2)^(3/2)*2*i)/(pi*x^(1/2))试试能不用用simplify 函数化简 输入: simplify(ans)ans =2^(1/2)*pi^(1/2)/x^(1/2)*sin(x) (2)微分方程组例3 求解 d f /d x =3f +4g ; d g /d x =-4f +3g 。
matlab数学建模100例

matlab数学建模100例Matlab是一种强大的数学建模工具,广泛应用于科学研究、工程设计和数据分析等领域。
在这篇文章中,我们将介绍100个使用Matlab进行数学建模的例子,帮助读者更好地理解和应用这个工具。
1. 线性回归模型:使用Matlab拟合一组数据点,得到最佳拟合直线。
2. 多项式拟合:使用Matlab拟合一组数据点,得到最佳拟合多项式。
3. 非线性回归模型:使用Matlab拟合一组数据点,得到最佳拟合曲线。
4. 插值模型:使用Matlab根据已知数据点,估计未知数据点的值。
5. 数值积分:使用Matlab计算函数的定积分。
6. 微分方程求解:使用Matlab求解常微分方程。
7. 矩阵运算:使用Matlab进行矩阵的加减乘除运算。
8. 线性规划:使用Matlab求解线性规划问题。
9. 非线性规划:使用Matlab求解非线性规划问题。
10. 整数规划:使用Matlab求解整数规划问题。
11. 图论问题:使用Matlab解决图论问题,如最短路径、最小生成树等。
12. 网络流问题:使用Matlab解决网络流问题,如最大流、最小费用流等。
13. 动态规划:使用Matlab解决动态规划问题。
14. 遗传算法:使用Matlab实现遗传算法,求解优化问题。
15. 神经网络:使用Matlab实现神经网络,进行模式识别和预测等任务。
16. 支持向量机:使用Matlab实现支持向量机,进行分类和回归等任务。
17. 聚类分析:使用Matlab进行聚类分析,将数据点分成不同的类别。
18. 主成分分析:使用Matlab进行主成分分析,降低数据的维度。
19. 时间序列分析:使用Matlab进行时间序列分析,预测未来的趋势。
20. 图像处理:使用Matlab对图像进行处理,如滤波、边缘检测等。
21. 信号处理:使用Matlab对信号进行处理,如滤波、频谱分析等。
22. 控制系统设计:使用Matlab设计控制系统,如PID控制器等。
MATLAB优化模型求解方法-MathWorks

第5讲: MATLAB优化模型求解方法(上):标准模型作者:Effie Ruan, MathWorks中国最优化赛题是数学建模大赛中最常见的问题类型之一。
一般说来,凡是寻求最大、最小、最远、最近、最经济、最丰富、最高效、最耗时的目标,都可以划入优化问题的范畴。
MATLAB 优化工具箱和全局优化工具箱对多个优化问题提供了完整的解决方案,前者涵盖了线性规划、混合整型线性规划、二次规划、非线性优化、非线性最小二乘的求解器,后者囊括了全局搜索、多初始点、模式搜索、遗传算法等求解算法。
本讲主要介绍如何使用优化工具箱求解数学建模中标准的优化模型。
更多的内容,欢迎大家浏览 MathWorks 官网以及 MATLAB 软件文档。
1.聊一聊最优化问题最优化即在一定的条件下,寻求使目标最小(大)的设计参数或决策。
在优化问题中有两个关键对象:目标函数和约束条件(可选)。
常规优化问题,其数学表达可以描述为:其中x 为长度n的决策变量向量,f(x) 为目标函数,G(x) 为约束函数。
求解目标函数的最小(大)值,一个高效而精确的解决方案不仅取决于约束条件和变量数量,更取决于目标函数和约束函数的特性。
明确优化类型是确认优化方案的前提,让我们看一下这些特性如何划分:常见的目标函数有:线性规划:被广泛的应用于变量之间可线性表示的财务、能源、运营研究等现代管理领域中。
混合整数线性规划:扩展了线性规划问题,增加了最优解中部分或全部变量必须是整数的约束。
例如,如果一个变量代表要认购的股票数量,则只应取整数值。
同样,如果一个变量代表发电机的开/关状态,则只应取二进制值(0 或 1)。
二次规划:目标函数或约束函数为多元二次函数。
此优化应用于财务金融中投资组合优化、发电厂发电优化、工程中设计优化等领域。
最小二乘:分为线性和非线性,通过最小化误差的平方和寻找变量的最优函数匹配。
非线性最小二乘优化还可用于曲线拟合。
2.优化求解器太多了,怎么选?对MATLAB 提供的各类优化问题的算法,我们称之为求解器(Solver)。
matlab微分方程模型

matlab微分方程模型Matlab微分方程模型是一种基于Matlab软件的数学建模方法,用于解决微分方程相关的问题。
微分方程是描述物理、工程和数学问题的重要工具,通过建立微分方程模型,可以对各种现象进行定量分析和预测。
在Matlab中,可以使用ode45函数求解常微分方程(ODE)或者ode15s函数求解刚性ODE。
这些函数可以通过数值方法近似求解微分方程的解析解,从而得到问题的数值解。
具体来说,可以通过在Matlab中定义微分方程的右侧函数,然后使用相应的ode函数进行求解。
例如,考虑一个简单的一阶线性微分方程模型:dy/dx = -ky,其中k为常数。
我们可以通过在Matlab中定义这个微分方程的右侧函数,并使用ode45函数求解。
具体步骤如下:1. 在Matlab中定义微分方程的右侧函数:function dydx = myODE(x,y)k = 0.1; % 设定常数k的值dydx = -k*y;end2. 使用ode45函数求解微分方程:xspan = [0 10]; % 设定求解区间y0 = 1; % 设定初始条件[x,y] = ode45(@myODE, xspan, y0);3. 绘制得到的数值解:plot(x,y);xlabel('x');ylabel('y');title('Solution of dy/dx = -ky');通过以上步骤,我们可以得到微分方程dy/dx = -ky的数值解,并绘制出解的图像。
这个简单的例子展示了如何使用Matlab微分方程模型求解微分方程。
除了一阶线性微分方程,Matlab微分方程模型还可以用于解决更复杂的微分方程问题,包括高阶线性微分方程、非线性微分方程、偏微分方程等。
通过定义相应的微分方程函数和合适的求解方法,可以在Matlab中进行数值求解。
此外,Matlab还提供了丰富的绘图和分析工具,可以对微分方程的解进行可视化和进一步分析。
最优化问题的matlab求解

3. 建立主程序.非线性规划求解的函数是fmincon,命令的基本格 式如下:
(1) x=fmincon(‘fun’,X0,A,b) (2) x=fmincon(‘fun’,X0,A,b,Aeq,beq) (3) x=fmincon(‘fun’,X0,A,b, Aeq,beq,VLB,VUB)
x13
x
2 2
x3
80
2个不等式约束,
2个等式约束
3个决策变量x1,x2,x3 如果nonlcon以‘mycon1’作为参数值,则程序 mycon1.m如下
功能:各个参数的解释如前,若各个约束条件不存 在,则用空矩阵来代替。
例:求解 min 2x1 x2 4x3 3x4 x5 2x2 x3 4x4 2x5 54
s.t. 3x1 4x2 5x3 x4 x5 62 x1, x2 0, x3 3.32, x4 0.678, x5 2.57
function y=fun071(x,a,b) y=x(1)^2/a+x(2)^2/b;
x0=[1,1];a=2;b=2;
x=fminunc(@fun071,x0,[],a,b)
X=(0,0)
3、全局最优解和局部最优解
例:已知函数 y(t) e2t cos10t e3t6 sin 2t,t 0, 试观察不同 的初值得出其最小值。
fun.m ~ f(x)的m文件名
x0 ~初始点; x ~最优解
实验四 用MATLAB求解状态空间模型

实验四 用MATLAB 求解状态空间模型1、实验设备MATLAB 软件2、实验目的① 学习线性定常连续系统的状态空间模型求解、掌握MATLAB 中关于求解该模型的主要函数;② 通过编程、上机调试,进行求解。
3、实验原理说明Matlab 提供了非常丰富的线性定常连续系统的状态空间模型求解(即系统运动轨迹的计算)的功能,主要的函数有:初始状态响应函数initial()、阶跃响应函数step()以及可计算任意输入的系统响应数值计算函数lsim()和符号计算函数sym_lsim()。
数值计算问题可由基本的Matlab 函数完成,符号计算问题则需要用到Matlab 的符号工具箱。
4、实验步骤① 根据所给状态空间模型,依据线性定常连续系统状态方程的解理论,采用MATLAB 编程。
② 在MATLAB 界面下调试程序,并检查是否运行正确。
习题1:试在Matlab 中计算如下系统在[0,5s]的初始状态响应,并求解初始状态响应表达式。
Matlab 程序如下:A=[0 1; -2 -3];B=[]; C=[]; D=[];x0=[1; 2];sys=ss(A,B,C,D);[y,t,x]=initial(sys,x0,0:5);plot(t,x)0011232⎡⎤⎡⎤==⎢⎥⎢⎥--⎣⎦⎣⎦x x x习题2:试在Matlab 中计算如下系统在[0,10s]内周期为3s 的单位方波输入下的状态响应。
并计算该系统的单位阶跃状态响应表达式。
Matlab 程序如下:A=[0 1; -2 -3];B=[0; 1]; C=[]; D=[];x0=[1; 2];sys=ss(A,B,C,D);[u t]=gensig('square',3,10,0.1)0011232⎡⎤⎡⎤==⎢⎥⎢⎥--⎣⎦⎣⎦x x x[y,t,x] = lsim(sys,u,t,x0)plot(t,u,t,x);(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、不动点迭代法求解非线性方程 迭代法是一种逐次逼近的方法,用某个固定公 式反复校正根的近似值,使之逐步精确化,最 后得到满足精度要求的结果。
输入
x1 , , N 0
k 1,2,, N 0
计算
xk 1 x g x1
是 输出
x x1
否
k, x
x1 x k N0
作如下近似:
Qn Q(tn )
则得到欧拉解法递推公式的一般形式:
Qn1 Qn f (Qn , tn ) h
具体求解过程为:
Q1 Q0 f (Q0 , t0 ) h Q2 Q1 f (Q1 , t1 ) h
Q3 Q2 f (Q2 , t2 ) h
适度刚性 采用梯形算法 刚性
ode23s
ode23tb
刚性
刚性
单步法;2 阶Rosebrock 算法; 当精度较低时,计算时 低精度 间比 ode15s 短
梯形算法;低精度 当精度较低时,计算时 间比ode15s短
2.2 非线性方程求根函数
x = fzero(FUN,x0)
%x0可以是数,或区间
x = fzero(FUN,x0,options) [x,fval]= fzero(FUN,x0,options) [x,fval,exitflag] = fzero(FUN,x0,options)
对于等间隔节点
t tn1 tn h tn1 tn h
可以得到: tn Q精确值 t0 t1 t2
n=0,1,2
…. …. ….
tn
…. …. ….
Q(t0) Q(t1) Q(t2)
Q(tn)
Q近似值
Q0
Q1
Q2
Qn
在tn节点上,微分方程可以写为
Q(tn1 ) Q(tn ) f Q(tn ) , tn h
输出
迭代N 0 次还没有达到
精度要求信息
将连续函数方程f(x)=0改写为等价形式:x=(x) 其中(x)也是连续函数,称为迭代函数。 不动点:若x*满足f(x*)=0,则x*=(x*);反之,若 x*=(x*) ,则f(x*)=0 ,称x*为(x)的一个不动点。 不动点迭代: xk 1 ( xk ) (k=0,1,……) 若对任意 x0[a,b],由上述迭代得序列{xk},有极限
方差分析表中有6列: 第1列(source)显示:X中数据可变性的来源; 第2列(SS)显示:用于每一列的平方和; 第3列(df)显示:与每一种可变性来源有关的自由度; 第4列(MS)显示:是SS/df的比值; 第5列(F)显示:F统计量数值,它是MS的比率; 第6列显示:从F累积分布中得到的概率,当F增加时, p值减少。
科学计算与MATLAB 实验讲义
中南大学材料科学与工程学院
第三讲 MATLAB模型求解
——(常微分、偏微分)方程(组),概率统计
内容提要
1、实验目的 2、实验内容 常微分方程求解函数 非线性方程求根 解(非)线性方程组 偏微分函数求解 概率统计函数 3、上机实践题 编程题 实践例题
简单欧拉方法程序
function [outx,outy]=MyEuler(fun,x0,xt,y0,PointNum) %MyEuler 用前向差分的欧拉方法解微分方程 %fun 表示f(x,y) %x0,xt表示自变量的初值和终值 %y0表示函数在x0处的值,其可以为向量形式 %PointNum表示自变量在[x0,xt]上取的点数 if nargin<5 | PointNum<=0 %如果函数仅输入4个参数值,则PointNum默认值为100 PointNum=100; end if nargin<4 %y0默认值为0 y0=0; end h=(xt-x0)/PointNum;%计算步长h x=x0+[0:PointNum]'*h;%自变量数组 y(1,:) = y0(:)';%将输入存为行向量,输入为列向量形式 for k = 1:PointNum f=feval(fun,x(k),y(k,:));%计算f(x,y)在每个迭代点的值 f=f(:)'; y(k + 1,:) =y(k,:) +h*f; %对于所取的点x迭代计算y值 end outy=y; outx=x; %plot(x,y)%画出方程解的函数图
Matlab非线性方程组求解
格式
X=fsolve(FUN,X0)
2.4 概率统计函数 单因素方差分析 函数 anova1 格式 p = anova1(X) %X的各列为彼此独立的样本观 察值,其元素个数相同,p为各列均值相等的概率值,若p 值接近于0,则原假设受到怀疑,说明至少有一列均值与其 余列均值有明显不同。 p = anova1(X,group) %X和group为向量且group要与 X对应 p = anova1(X,group,'displayopt') % displayopt=on/off 表示显示与隐藏方差分析表图和盒图 [p,table] = anova1(…) % table为方差分析表 [p,table,stats] = anova1(…) % stats为分析结果的构造 说明 anova1函数产生两个图:标准的方差分析表图和 盒图。
2、 双因素方差分析 函数 anova2 格式 p = anova2(X,reps) p = anova2(X,reps,'displayopt')
[p,table] = anova2(…)
[p,table,stats] = anova2(…) 说明 执行平衡的双因素试验的方差分析来比较X中两个或多个 列(行)的均值,不同列的数据表示因素A的差异,不同行的 数据表示另一因素B的差异。如果行列对有多于一个的观察点, 则变量reps指出每一单元观察点的数目,每一单元包含reps行, 如: reps=2 其余参数与单因素方差分析参数相似。
2.3 (非)线性方程组求解函数 线性代数方程组
A11 x1 A12 x2 A13 x3 A1n xn B1 A x A x A x A x B 21 1 22 2 23 3 2n n 2 An1 x1 An 2 x2 An 3 x3 Ann xn Bn
lim xk x *
k
则称迭代过程收敛,且x*=(x*)为(x)的不动点。
function [root,n]=StablePoint(f,x0,eps) if(nargin==2) eps=1.0e-4;
end
tol=1; root=x0; n=0; while(tol>eps) n=n+1; r1=root; root=subs(sym(f),findsym(sym(f)),r1)+r1; tol=abs(root-r1); end
函数
ODE类 型
非刚性 非刚性 非刚性
特点
单步法;4,5 阶 R-K 方法; 累计截断误差为 (△x)3 单步法;2,3 阶 R-K 方法; 累计截断误差为 (△x)3
说明
大部分场合的首选方法 使用于精度较低的情形
ode45 ode23
ode113 ode23t ode15s
多步法;Adams算法;高低精 计算时间比 ode45 短 度均可到 10-3~10-6 适度刚性情形 多步法;Gear’s 反向数值微分; 若 ode45 失效时,可尝 精度中等 试使用
3 2 d y d y dy 3 2x x 2 3 3 e 3 2 dx dx dx y (1) 1, y '(1) 10, y "(1) 30, x [1,10]
dy1 dx y2 dy2 y3 dx dy3 2 3 3e 2 x 3 y3 3 y2 3 x x dx x
(3)绘制威布尔(Weibull)概率图形 函数 weibplot 格式 weibplot(X) %若X为向量,则显示威布尔(Weibull)概率图形,若X 为矩阵,则显示每一列的威布尔概率图形。 h = weibplot(X) %返回绘图直线的柄 说明 绘制威布尔(Weibull)概率图形的目的是用图解法估计来自威布尔分 布的数据X,如果X是威布尔分布数据,其图形是直线的,否则图形中可 能产生弯曲。 (4)样本的概率图形 函数 capaplot
histfit(data,nbins) % nbins指定bar的个数,
缺省时为data中数据个数的平方根。
3、 上机实践
3.1编程题
1、欧拉数值算法(差分法)求解常微分方程 差分法就是用差商近似代替微商,即
Q dQ t dt
代入微分方程得到:
Q(t t ) Q(t ) f (Q, t ) t Q(t t ) Q(t ) f (Q, t )t
y1 0 dY d y2 0 dx dx y3 0
1 0 3 x3
0 0 1 Y 0 3e2 x 2 3 3 x x
function dy=myfun03(x,y) dy=zeros(3,1) %初始化变量dy dy(1)=y(2); %dy(1)表示y的一阶导数,其等于y的第二列值 dy(2)=y(3); %dy(2)表示y的二阶导数 dy(3)=2*y(3)/x^3+3*y(2)/x^3+3*exp(2*x)/x^3 %dy(3)表示y的三阶导数 % 用ode23 ode45 ode113解多阶微分方程 clear,clc
可以用矩阵形式表示为 即: 则:
格式
A11 A12 A21 A22 An1 An 2
A13 A23 An 3
A1n x1 A2 n x2 Ann xn