有限差分法Matlab实现
matlab有限差分法求解非齐次偏微分方程

matlab有限差分法求解非齐次偏微分方程【导语】本文将介绍matlab有限差分法在求解非齐次偏微分方程中的应用。
非齐次偏微分方程是数学和物理学中的常见问题之一,它们描述了许多实际系统的行为。
通过有限差分法,可以将偏微分方程转化为差分方程,从而利用计算机来求解。
本文将从原理、步骤和实例三个方面来分析非齐次偏微分方程的有限差分法求解过程。
【正文】一、原理有限差分法是将连续函数在一系列有限的点上进行逼近的方法。
它的基本思想是用差分代替微分,将偏导数转化为差分算子。
通过对空间和时间离散化,将非齐次偏微分方程转化为差分方程组,再利用数值计算的方法求解这个差分方程组,从而得到非齐次偏微分方程的近似解。
具体而言,有限差分法将求解区域划分为网格,并在网格上近似表示偏微分方程中的函数。
利用中心差分公式或向前、向后差分公式来近似计算偏导数。
通过将偏微分方程中的微分算子替换为差分近似,可以将方程转化为一个代数方程组,进而求解得到非齐次偏微分方程的近似解。
二、步骤1. 确定求解的区域和方程:首先要确定求解的区域,然后确定非齐次偏微分方程的形式。
在matlab中,可以通过定义一个矩阵来表示求解区域,并将方程转化为差分算子形式。
2. 离散化:将求解区域划分为网格,确定每个网格点的位置,建立网格点之间的连接关系。
通常,使用均匀网格来离散化求解区域,并定义网格点的坐标。
3. 建立差分方程组:根据偏微分方程的形式和离散化的结果,建立差分方程组。
根据中心差分公式,用网格点上的函数值和近邻点的函数值来近似计算偏导数。
将差分算子应用于非齐次偏微分方程的各个项,得到差分方程组。
4. 求解差分方程组:利用线性代数求解差分方程组。
将方程组转化为矩阵形式,利用matlab中的线性方程组求解功能,得到差分方程组的近似解。
通过调整求解区域划分的精细程度和差分算子的选取,可以提高求解的精度。
5. 回代和结果分析:将求解的结果回代到原非齐次偏微分方程中,分析其物理意义和数值稳定性。
完整word版,一维扩散方程有限差分法matlab

Fpg一维扩散方程の有限差分法——计算物理实验作业七 陈万物理学 2013 级 题目:编程求解一维扩散方程の解uD 2u 2 (0 x a 0 ,0 t t max ) tx u(x,t) |t 0 e x ua 1ub 1 nc 1(x 0)a 2ub 2 uc 2( x a 0 )n取 a 1 1,b 1 1, c 1 0, a 2 1, b 21, c 2 0, a 0 1.0,t max 。
输出 t=1,2,...,10 时辰の x 和 u(x), 并与解析解 u=exp(x+0.1t)作比较。
主程序:% 一维扩散方程の有限差分法 clear,clc;%定义初始常量a1 = 1; b1 = 1; c1 = 0; a2 = 1;b2 =-1; c2 = 0;a0 = 1.0; t_max = 10; D = 0.1; h = 0.1; tao = 0.1;%调用扩散方程子函数求解u = diffuse_equation(a0,t_max,h,tao,D,a1,b1,c1,a2,b2,c2);子程序 1:function output = diffuse_equation(a0,t_max,h,tao,D,a1,b1,c1,a2,b2,c2)% 一维扩散方程の有限差分法,采用隐式六点差分格式 (Crank-Nicolson)% a0: x の最大值% t:_max: t の最大值% h: 空间步长% tao: 时间步长% D :扩散系数% a1,b1,c1是( x=0)界线条件の系数; a2,b2,c2是( x=a0)界线条件の系数x = 0:h:a0;n = length(x);t = 0:tao:t_max;k = length(t);P = tao * D/h^2;P1=1/P+1;P2 = 1/P- 1;u = zeros(k,n);%初始条件u(1,:) = exp(x);%求 A 矩阵の对角元素dd = zeros(1,n);d(1,1) = b1*P1+h*a1;d(2:(n-1),1) = 2*P1;d(n,1) = b2*P1+h*a2;%求 A 矩阵の对角元素下边一行元素ee= -ones(1,n-1);e(1,n-1) = -b2;%求 A 矩阵の对角元素上边一行元素ff= -ones(1,n-1);f(1,1) = -b1;R = zeros(k,n);%求 R%追赶法求解for i = 2:kR(i,1) = (b1*P2-h*a1)*u(i -1,1)+b1*u(i -1,2)+2*h*c1;for j = 2:n-1R(i,j) = u(i -1,j-1)+2*P2*u(i -1,j)+u(i -1,j+1);endR(i,n) = b2*u(i -1,n-1)+( b2*P2-h*a2)*u(i -1,n)+2*h*c2;M = chase(e,d,f,R(i,:));u(i,:) = M';plot(x,u(i,:)); axis([0 a0 0 t_max]); pause(0.1)endoutput = u;%绘图比较解析解和有限差分解[X,T] = meshgrid(x,t);Z = exp(X+0.1*T);surf(X,T,Z),xlabel( 'x'),ylabel('t'),zlabel('u'),title( '解析解 '); figuresurf(X,T,u),xlabel('x'),ylabel('t'),zlabel('u'),title( '有限差分解 ');子程序 2:function M = chase(a,b,c,f)%追赶法求解三对角矩阵方程, Ax=f%a 是对角线下边一行の元素%b 是对角线元素%c 是对角线上边一行の元素%M 是求得の结果,以列向量形式保存n = length(b);beta = ones(1,n-1);y = ones(1,n);M = ones(n,1);for i = (n-1):(-1):1a(i+1) = a(i);end%将 a 矩阵和 n 对应beta(1) = c(1)/b(1);for i = 2:(n-1)beta(i) = c(i)/( b(i) -a(i)*beta(i -1) );endy(1) = f(1)/b(1);for i = 2:ny(i) = (f(i) -a(i)*y(i -1))/(b(i) - a(i)*beta(i-1));endM(n) = y(n);for i = (n-1):(-1):1M(i) = y(i) -beta(i)*M(i+1);endend结果:比较解析两图,结果令人满意。
matlab有限差分法

matlab有限差分法一、前言Matlab是一种广泛应用于科学计算和工程领域的计算机软件,它具有简单易学、功能强大、易于编程等优点。
有限差分法(Finite Difference Method)是一种常用的数值解法,它将微分方程转化为差分方程,通过对差分方程进行离散化求解,得到微分方程的数值解。
本文将介绍如何使用Matlab实现有限差分法。
二、有限差分法基础1. 有限差分法原理有限差分法是一种通过将微分方程转化为离散形式来求解微分方程的数值方法。
其基本思想是将求解区域进行网格划分,然后在每个网格点上进行逼近。
假设要求解一个二阶常微分方程:$$y''(x)=f(x,y(x),y'(x))$$则可以将其转化为离散形式:$$\frac{y_{i+1}-2y_i+y_{i-1}}{h^2}=f(x_i,y_i,y'_i)$$其中$h$为网格步长,$y_i$表示在$x_i$处的函数值。
2. 一维情况下的有限差分法对于一维情况下的常微分方程:$$\frac{d^2 y}{dx^2}=f(x,y,y')$$可以使用中心差分法进行离散化:$$\frac{y_{i+1}-2y_i+y_{i-1}}{h^2}=f(x_i,y_i,y'_i)$$这个方程可以写成矩阵形式:$$A\vec{y}=\vec{b}$$其中$A$为系数矩阵,$\vec{y}$为函数值向量,$\vec{b}$为右端项向量。
三、Matlab实现有限差分法1. 一维情况下的有限差分法假设要求解的方程为:$$\frac{d^2 y}{dx^2}=-\sin(x)$$首先需要确定求解区域和网格步长。
在本例中,我们将求解区域设为$[0,2\pi]$,网格步长$h=0.01$。
则可以通过以下代码生成网格:```matlabx = 0:0.01:2*pi;```接下来需要构造系数矩阵和右端项向量。
根据上面的公式,系数矩阵应该是一个三对角矩阵,可以通过以下代码生成:```matlabn = length(x)-2;A = spdiags([-ones(n,1), 2*ones(n,1), -ones(n,1)], [-1 0 1], n, n); ```其中`spdiags`函数用于生成一个稀疏矩阵。
有限差分法的Matlab程序

有限差分法的M a t l a b程序有限差分法的Matlab程序(椭圆型方程)function FD_PDE(fun,gun,a,b,c,d)% 用有限差分法求解矩形域上的Poisson方程tol=10^(-6); % 误差界N=1000; % 最大迭代次数n=20; % x轴方向的网格数m=20; % y轴方向的网格数h=(b-a)/n; % x轴方向的步长l=(d-c)/m; % y轴方向的步长for i=1:n-1x(i)=a+i*h;end % 定义网格点坐标for j=1:m-1y(j)=c+j*l;end % 定义网格点坐标u=zeros(n-1,m-1); %对u赋初值% 下面定义几个参数r=h^2/l^2;s=2*(1+r);k=1;% 应用Gauss-Seidel法求解差分方程while k<=N% 对靠近上边界的网格点进行处理% 对左上角的网格点进行处理z=(-h^2*fun(x(1),y(m-1))+gun(a,y(m-1))+r*gun(x(1),d)+r*u(1,m-2)+u(2,m-1))/s; norm=abs(z-u(1,m-1));u(1,m-1)=z;% 对靠近上边界的除第一点和最后点外网格点进行处理for i=2:n-2z=(-h^2*fun(x(i),y(m-1))+r*gun(x(i),d)+r*u(i,m-2)+u(i+1,m-1)+u(i-1,m-1))/s;if abs(u(i,m-1)-z)>norm;norm=abs(u(i,m-1)-z);endu(i,m-1)=z;end% 对右上角的网格点进行处理z=(-h^2*fun(x(n-1),y(m-1))+gun(b,y(m-1))+r*gun(x(n-1),d)+r*u(n-1,m-2)+u(n-2,m-1))/s; if abs(u(n-1,m-1)-z)>normnorm=abs(u(n-1,m-1)-z);endu(n-1,m-1)=z;% 对不靠近上下边界的网格点进行处理for j=m-2:-1:2% 对靠近左边界的网格点进行处理z=(-h^2*fun(x(1),y(j))+gun(a,y(j))+r*u(1,j+1)+r*u(1,j-1)+u(2,j))/s;if abs(u(1,j)-z)>normnorm=abs(u(1,j)-z);endu(1,j)=z;% 对不靠近左右边界的网格点进行处理for i=2:n-2z=(-h^2*fun(x(i),y(j))+u(i-1,j)+r*u(i,j+1)+r*u(i,j-1)+u(i+1,j))/s;if abs(u(i,j)-z)>normnorm=abs(u(i,j)-z);endu(i,j)=z;end% 对靠近右边界的网格点进行处理z=(-h^2*fun(x(n-1),y(j))+gun(b,y(j))+r*u(n-1,j+1)+r*u(n-1,j-1)+u(n-2,j))/s;if abs(u(n-1,j)-z)>normnorm=abs(u(n-1,j)-z);endu(n-1,j)=z;end% 对靠近下边界的网格点进行处理% 对左下角的网格点进行处理z=(-h^2*fun(x(1),y(1))+gun(a,y(1))+r*gun(x(1),c)+r*u(1,2)+u(2,1))/s;if abs(u(1,1)-z)>normnorm=abs(u(1,1)-z);endu(1,1)=z;% 对靠近下边界的除第一点和最后点外网格点进行处理for i=2:n-2z=(-h^2*fun(x(i),y(1))+r*gun(x(i),c)+r*u(i,2)+u(i+1,1)+u(i-1,1))/s;if abs(u(i,1)-z)>normnorm=abs(u(i,1)-z);endu(i,1)=z;end% 对右下角的网格点进行处理z=(-h^2*fun(x(n-1),y(1))+gun(b,y(1))+r*gun(x(n-1),c)+r*u(n-1,2)+u(n-2,1))/s;if abs(u(n-1,1)-z)>normnorm=abs(u(n-1,1)-z);endu(n-1,1)=z;% 结果输出if norm<=tolfid = fopen('FDresult.txt', 'wt');fprintf(fid,'\n********用有限差分法求解矩形域上Poisson方程的输出结果********\n\n'); fprintf(fid,'迭代次数: %d次\n\n',k);fprintf(fid,' x的值 y的值 u的值 u的真实值 |u-u(x,y)|\n');for i=1:n-1for j=1:m-1fprintf(fid, '%8.3f %8.3f %14.8f %14.8f %14.8f\n', [x(i),y(j),u(i,j),gun(x(i),y(j)),abs(u(i,j)-gun(x(i),y(j)))]);endendfclose(fid);break; % 用来结束while循环endk=k+1;endif k==N+1fid = fopen('FDresult.txt', 'wt');fprintf(fid,'超过最大迭代次数,求解失败!');fclose(fid);endclc[a1 a2 a3 a4] = textread('F:\aa.txt','%f %f %f %f');a = [a1 a2 a3];a=a';b=a4';[pa,mina,maxa,pb,minb,maxb]=premnmx(a,b);net =newrb(pa,pb,0,1.3,24,2);an =sim(net,pa);E = an - pb;m =sse(E)n = mse(E)[f1 f2 f3 f4]= textread('F:\bb.txt','%f %f %f %f');f = [f1 f2 f3];f=f';pf = tramnmx(f,mina,maxa);an2 = sim(net,pf);g =postmnmx(an2,minb,maxb);g= g';E2 = g- f4;mm =sse(E2)nn = mse(E2)。
一维热传导方程数值解法及matlab实现分离变量法和有限差分法

一维热传导方程数值解法及matlab实现分离变量法和有限差分法一维热传导方程的Matlab解法:分离变量法和有限差分法。
问题描述:本实验旨在利用分离变量法和有限差分法解决热传导方程问题,并使用Matlab进行建模,构建图形,研究不同情况下采用何种方法从更深层次上理解热量分布与时间、空间分布关系。
实验原理:分离变量法:利用分离变量法,将热传导方程分解为两个方程,分别只包含变量x和变量t,然后将它们相乘并求和,得到一个无穷级数的解。
通过截取该级数的前n项,可以得到近似解。
有限差分法:利用有限差分法,将空间和时间分别离散化,将偏导数用差分代替,得到一个差分方程组。
通过迭代求解该方程组,可以得到近似解。
分离变量法实验:采用Matlab编写代码,利用分离变量法求解热传导方程。
首先设定x和t的范围,然后计算无穷级数的前n项,并将其绘制成三维图形。
代码如下:matlabx = 0:0.1*pi:pi;y = 0:0.04:1;x。
t] = meshgrid(x。
y);s = 0;m = length(j);for i = 1:ms = s + (200*(1-(-1)^i))/(i*pi)*(sin(i*x).*exp(-i^2*t));endsurf(x。
t。
s);xlabel('x')。
XXX('t')。
zlabel('T');title('分离变量法(无穷)');axis([0 pi 0 1 0 100]);得到的三维热传导图形如下:有限差分法实验:采用Matlab编写代码,利用有限差分法求解热传导方程。
首先初始化一个矩阵,用于存储时间t和变量x。
然后计算稳定性系数S,并根据边界条件和初始条件,迭代求解差分方程组,并将其绘制成三维图形。
代码如下:matlabu = zeros(10.25);s = (1/25)/(pi/10)^2;fprintf('稳定性系数S为:\n');disp(s);for i = 2:9u(i。
有限差分 matlab

有限差分 MATLAB简介有限差分方法(Finite Difference Method)是一种常用的数值计算方法,用于求解偏微分方程或者常微分方程的数值近似解。
MATLAB是一个功能强大的数值计算软件,可以很方便地实现有限差分方法。
本文将介绍有限差分方法在MATLAB中的应用。
首先,我们将简要介绍有限差分方法的原理和基本思想。
然后,我们将通过一个具体的例子来演示如何使用MATLAB进行有限差分计算。
最后,我们将总结本文内容,并提供一些相关资源供读者进一步深入学习。
有限差分方法原理有限差分方法是一种基于离散化思想的数值计算方法。
它通过将求解区域划分为网格点,并利用离散点上函数值之间的差商逼近导数来近似求解微分方程。
对于一维问题,我们可以将求解区域划分为等距离的网格点,记作x0, x1,x2, …, xn。
每个网格点上函数值记作u0, u1, u2, …, un。
我们希望通过已知边界条件和微分方程来求解其他未知函数值。
有限差分法的基本思想是使用差商逼近导数。
例如,对于一阶导数,我们可以使用前向差分、后向差分或者中心差分来逼近。
其中,前向差分定义为:f'(x) ≈ (f(x+h) - f(x)) / h后向差分定义为:f'(x) ≈ (f(x) - f(x-h)) / h中心差分定义为:f'(x) ≈ (f(x+h) - f(x-h)) / (2h)类似地,我们可以使用更高阶的有限差分来逼近更高阶的导数。
对于二维问题,我们可以将求解区域划分为二维网格点,并在每个网格点上计算函数值。
然后,我们可以使用类似的方法来逼近偏导数。
MATLAB实现在MATLAB中,我们可以很方便地使用矩阵运算和向量化操作来实现有限差分方法。
首先,我们需要定义求解区域和网格点。
假设我们要求解一个一维问题,在区间[0, 1]上进行离散化。
我们可以通过指定网格点个数n和步长h来确定网格点坐标:n = 100; % 网格点个数h = 1/n; % 步长x = linspace(0, 1, n+1); % 网格点坐标接下来,我们需要定义边界条件和微分方程。
matlab有限差分法求解非齐次偏微分方程

《使用 MATLAB 有限差分法求解非齐次偏微分方程》在科学和工程领域,偏微分方程是描述自然现象和过程中关键的数学工具。
非齐次偏微分方程作为其中的一个重要分支,在描述真实世界中的复杂现象方面具有广泛的应用。
而 MATLAB 作为一个强大的数学建模和计算工具,其有限差分法求解非齐次偏微分方程的能力受到了广泛关注。
在本文中,我们将以 MATLAB 为工具,探讨有限差分法如何用于求解非齐次偏微分方程,以及其中涉及的深度和广度。
1. 偏微分方程及有限差分法简介当我们研究自然界中的变化和现象时,经常会遇到连续变量之间的相关性和变化规律。
偏微分方程便是用来描述这些连续变量之间关系的数学工具。
而有限差分法则是一种数值计算方法,通过将连续的变量离散化,将偏微分方程转化为代数方程组,从而求解偏微分方程的数值解。
2. 非齐次偏微分方程的求解非齐次偏微分方程与常见的齐次偏微分方程相比,具有更复杂的边界和初始条件,因此其求解方法也更为复杂。
通过有限差分法,我们可以将非齐次偏微分方程转化为离散的代数方程组,进而求解出数值解。
3. MATLAB 中有限差分法的实现MATLAB 提供了丰富的数学建模和计算工具,包括用于求解偏微分方程的函数和工具箱。
通过调用这些函数和工具箱,我们可以方便地实现有限差分法对非齐次偏微分方程的求解。
4. 示例应用与个人观点我们将以一个实际的例子,展示 MATLAB 中有限差分法求解非齐次偏微分方程的过程,并共享对这一过程的个人观点和理解。
通过该示例,我们能更深刻地理解有限差分法在求解非齐次偏微分方程中的应用,以及其中涉及的数学原理和算法流程。
总结与回顾在本文中,我们以 MATLAB 为工具,探讨了有限差分法求解非齐次偏微分方程的深度和广度。
通过对有限差分法的基本原理和实际应用进行全面评估,我们详细介绍了有限差分法在求解非齐次偏微分方程中的具体步骤和流程。
我们也共享了在示例应用中对这一过程的个人理解和观点,以期帮助读者更全面、深刻和灵活地理解该主题。
有限差分法求解偏微分方程MATLAB

南京理工大学课程考核论文课程名称:高等数值分析论文题目:有限差分法求解偏微分方程*名:**学号: 1成绩:有限差分法求解偏微分方程一、主要内容1.有限差分法求解偏微分方程,偏微分方程如一般形式的一维抛物线型方程:22(,)()u uf x t t xαα∂∂-=∂∂其中为常数具体求解的偏微分方程如下:22001(,0)sin()(0,)(1,)00u u x t x u x x u t u t t π⎧∂∂-=≤≤⎪∂∂⎪⎪⎪=⎨⎪⎪==≥⎪⎪⎩2.推导五种差分格式、截断误差并分析其稳定性;3.编写MATLAB 程序实现五种差分格式对偏微分方程的求解及误差分析;4.结论及完成本次实验报告的感想。
二、推导几种差分格式的过程:有限差分法(finite-difference methods )是一种数值方法通过有限个微分方程近似求导从而寻求微分方程的近似解。
有限差分法的基本思想是把连续的定解区域用有限个离散点构成的网格来代替;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。
推导差分方程的过程中需要用到的泰勒展开公式如下:()2100000000()()()()()()()......()(())1!2!!n n n f x f x f x f x f x x x x x x x o x x n +'''=+-+-++-+- (2-1)求解区域的网格划分步长参数如下:11k k k kt t x x h τ++-=⎧⎨-=⎩ (2-2) 2.1 古典显格式2.1.1 古典显格式的推导由泰勒展开公式将(,)u x t 对时间展开得 2,(,)(,)()()(())i i k i k k k uu x t u x t t t o t t t∂=+-+-∂ (2-3) 当1k t t +=时有21,112,(,)(,)()()(())(,)()()i k i k i k k k k k i k i k uu x t u x t t t o t t tuu x t o tττ+++∂=+-+-∂∂=+⋅+∂ (2-4)得到对时间的一阶偏导数1,(,)(,)()=()i k i k i k u x t u x t uo t ττ+-∂+∂ (2-5) 由泰勒展开公式将(,)u x t 对位置展开得223,,21(,)(,)()()()()(())2!k i k i k i i k i i u uu x t u x t x x x x o x x x x∂∂=+-+-+-∂∂ (2-6)当11i i x x x x +-==和时,代入式(2-6)得2231,1,1122231,1,1121(,)(,)()()()()(())2!1(,)(,)()()()()(())2!i k i k i k i i i k i i i i i k i k i k i i i k i i i iu uu x t u x t x x x x o x x x x u u u x t u x t x x x x o x x x x ++++----⎧∂∂=+-+-+-⎪⎪∂∂⎨∂∂⎪=+-+-+-⎪∂∂⎩(2-7) 因为1k k x x h +-=,代入上式得2231,,22231,,21(,)(,)()()()2!1(,)(,)()()()2!i k i k i k i k i k i k i k i ku uu x t u x t h h o h x xu u u x t u x t h h o h x x +-⎧∂∂=+⋅+⋅+⎪⎪∂∂⎨∂∂⎪=-⋅+⋅+⎪∂∂⎩ (2-8) 得到对位置的二阶偏导数2211,22(,)2(,)(,)()()i k i k i k i k u x t u x t u x t u o h x h+--+∂=+∂ (2-9) 将式(2-5)、(2-9)代入一般形式的抛物线型偏微分方程得21112(,)(,)(,)2(,)(,)(,)()i k i k i k i k i k i k u x t u x t u x t u x t u x t f x t o h h αττ++---+⎡⎤-=++⎢⎥⎣⎦(2-10)为了方便我们可以将式(2-10)写成11122k kk k k k i i i i i i u u u u u f h ατ++-⎡⎤--+-=⎢⎥⎣⎦(2-11) ()11122k k k k k k i i i i i i u u uu u f h τατ++----+= (2-12)最后得到古典显格式的差分格式为()111(12)k k k k k i i i i i u ra u r u u f ατ++-=-+++ (2-13)2r h τ=其中,古典显格式的差分格式的截断误差是2()o h τ+。