北师大版最新中考数学模拟试卷(含答案) (36)
2024年中考数学模拟考试试卷-有答案(北师大版)

2024年中考数学模拟考试试卷-有答案(北师大版)(满分:150分;考试时间:120分钟)学校:___________班级:___________姓名:___________考号:___________一.选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求.1.下面几何体都是由5个棱长1dm的小正方体搭建的.从左面看,与其它三个不同的是( )2.水是生命之源,水以多种形态存在,固态的水即我们熟知的冰,气态的水即我们所说的水蒸气,水分子的半径约为0.0000000002m.将数据0.0000000002用科学记数法表示正确的是( )A.0.2x10-9B.2x10-10C.2x1010D.2x10-93.如图,已知AB∥CD,DE⊥AC,垂足为E,∠D=30°,则∠A的度数为()A.30°B.120°C.150° D .40°4.有理数a,b,c在数轴上的对应点如图所示,则化简代数式|a-b|-|a+b|+|b-c|的结果是()A.2a-b+cB.b-cC.b+cD.-b-c5.四幅作品分别代表"立春""立夏""芒种""大雪",其中既是轴对称图形,又是中心对称图形的是( )6.如果两点A(1,y1)和B(2,y2)都在反比例函数y=kx(k≠0)的图象上,有下列几种结论:①y2<y1<0;②y1<y2<0;③y1>y2>0;④y2>y1>0,其中可能正确的结论有()A.1种B.2种C.3种 D .4种7.象棋起源于中国,在中国有着悠久的历史.一个不透明的盒子里装有2个卒和1个兵(卒为黑色,兵为红色),每个棋子除颜色外都相同,从中随机摸出一个棋子(无法凭借触感得知棋子上的字),记下颜色后放回,再从中随机摸出一个棋子,则两次摸到相同颜色的棋子的概概率为()A.49B.12C.23D.598.某杠杆装置如图,杆的一端吊起一桶水,阻力臂保持不变.在使杠杆平衡的情况下,小康通过改变动力臂L,测量出相应的动力F数据如表.请根据表中数据规律探求,当动力臂L 长度为2.0m时,所需动力最接近( )A.302NB.300NC.150ND.120N 9.如图,在△ABC 中,AB=AC ,∠A=36°,如下作图:①以点B 为圆心,适当长为半径作弧,分别交BA ,BC 于点M 、N;②分别以点M ,N 为圆心,大于12MN 的长为半径作弧,两弧在△ABC 内部交于点P ; ③作射线BP 交AC 于点D.根据以上作图,判断下列结论正确的有( ) ①∠C=2∠A ;②AD=BC ;③BC 2=CD ·AB ;④CD=√5-12AD.A.①②B.①②③C.①②④D.①②③④ 10.对于二次函数y=ax 2+bx+c ,规定函数y={ax 2+bx +c (x ≥0)﹣ax 2-bx -c (x <0)是它的相关函数.已知点M 、N 的坐标分别为(﹣12,1)、(92,1),连接MN ,若线段MN 与二次函数y=-x 2+4x+n 的相关函数的图象有两个公共点,则n 的取值范围是( ) A.﹣3<n ≤﹣1或1<n ≤54 B.-3<n<-1或1<n ≤54 C.n ≤-1或1<n ≤54 D.-3<n<-1或n ≥1二.填空题:本题共6小题,每小题4分,共24分. 11.因式分解:9+a 2-6a= 。
2024年中考数学模拟考试试卷-带答案(北师大版)

2024年中考数学模拟考试试卷-带答案(北师大版)(满分:150分;考试时间:120分钟)学校:___________班级:___________姓名:___________考号:___________一.选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求.1.如图中六棱柱的左视图是()2.中华鲟是地球上最古老的脊椎动物之一,距今约有140000000年的历史,是国家一级保护动物和长江珍稀特有鱼类保护的旗舰型物种.3月28日是中华鲟保护日,有关部门进行放流活动,实现鱼类物种的延续并对野生资源形成持续补充.将140000000用科学记数法表示应为()A.14x107B.1.4x108C.0.14x109D.1.4x1093.已知直线a∥b,将一块含30°角的直角三角板ABC按如图所示的方式放置,其中∠A=30°,∠ACB=90°,若∠1=45°,则∠2的度数为()A.30°B.25°C.20°D.15°4.下列运算错误的是( )A.(a2)³=a6B.a7÷a³=a4C.a³·a6=a9D.a2+a3=a55.下列运动项目图标中,既是轴对称图形又是中心对称图形的是( )6.若点(-2,y1)、(-1,y2)、(3,y3)在反比例函数y=kx(k<0)上,则y1,y2,y3的大小关系是( )A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y27.为了缓解中考备考压力,增加学习兴趣,李老师带领同学们玩转盘游戏.如图为两个转盘,转盘一被四等分,分别写有汉字"中""考""必""胜";转盘二被三等分,分别写有汉字"我""必""胜",将两个转盘转动一次(当指针指向区域分界线时,不作数,重新转动),若得到"必""胜"两字,则获得游戏一等奖,请求出获得游戏等奖的概率()A.12B.14C.16D.1129.如图,在半径为10的扇形AOB中,∠AOB=90°,C是AB上一点,CD⊥OA,CE⊥OB,垂足分别为D、E.若∠CDE=36°,则图中阴影部分的面积为()A.10πB.9πC.8πD.6π9.如图,在△ABC中,AB=AC,以点B为圆心,适当长为半径画弧,交BA于点M,交BC于点N,分别以点M,N为圆心,大于12MN的长为半径画弧,两弧在△ABC的内部相交于点P,画射线BP,交AC于点D,若AD=BD,则∠ADB的度数为( )A.36°B.54°C.72°D.108°10.定义:将平面直角坐标系中中横坐标与纵坐标均为整数的点叫作格点,如(-2,1),(2,0)等均为格点.如图,在平面直角坐标系xOy中,直线l:y=a(x+2)(a>0)与x轴交于点A,与抛物线E:y=ax2(a>0)交于B,C两点(B在C的左边).直线l与抛物线E所围成的封闭图形即阴影部分(不包含边界)中的格点数恰好是26个,则a的取值范围是()A.132<a≤7 B.193<a≤203C.132<a≤203或a=7 D.a=7二.填空题:本题共6小题,每小题4分,共24分.直接填写答案.11.因式分解:x2+6x+9= .12.一个不透明的盒子中装有若干个红球和6个白球,这些球除颜色外均相同.经多次摸球试验后发现,摸到白球的频率稳定在0.25左右,则盒子中红球的个数约为.13.若√7<a<√10,且a为整数,则a的值为.14.如图,正八边形ABCDEFGH的边长为4,以顶点A为圆心,AB的长为半径画圆,则阴影部分的面积为(结果保留π).15.如图,已知在Rt△ABC中,∠C=90°,AC=3,BC=4,分别将Rt△ABC的三边分别沿箭头方向平移2个单位长度并适当延长,得到△A1B1C1,则△A1B1C1的面积为。
2024年中考数学模拟考试试卷-附答案(北师大版)

2024年中考数学模拟考试试卷-附答案(北师大版)(满分:150分;考试时间:120分钟)学校:___________班级:___________姓名:___________考号:___________一.选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求.1.下列立体图形中,俯视图是三角形的是( )2."两岸猿声啼不住,轻舟已过万重山."2023年8月29日,某手机共售出约160万台,将数据1600000用科学记数法表示应为( )A.0.16x107B.1.6x106C.1.6x107D.16x1063.如图,三角板的直角顶点落在矩形纸片的一边上.若∠1=35,则∠2的度数为( )A.35°B.55°C.65°D.70°4.如图,数轴上点A,B,C分别表示数x,x+y,y,且AB<BC,则下列结论正确的是()A.x+y>0B.xy>0C.|x|-y>0D.|x|<|y|5.下列图形中,既是轴对称图形又是中心对称图形的是( )6.下列计算正确的是( )A.3a+2b=5abB.-5y+3y=2yC.7a+a=8D.3x2y-2yx2=x2y7.我校举办的"强基计划五大学科展示汇"吸引了众多学生前来参观,如图所示的是该展览馆出入口的示意图,A,B是入口,C,D,E是出口.小颖从A入口进,从C出口出的概率为()A.15B.16C.12D.138.在同一平面直角坐标系中,函数y=-k(x-1)(k≠0)与y=kx(k≠0)的图象可能是( )9.如图,在△ABC中,∠A=36°,AB=AC,以点B为圆心任意长为半径画弧,分别交AB、BC于点M 、N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点O ,连接BO ,并延长交AC 于点D .若AB=2,则CD 的长为( )A.√5-1B.3-√5C.√5+1D.3+√510.约定:若函数图象至少存在不同的两点关于原点对称,则把该函数称为"黄金函数",其图象上关于原点对称的两点叫做一对"黄金点".若点A(1,m),B(n ,-4)是关于x 的"黄金函数"y=ax 2+bx+c(a ≠0)上的一对"黄金点",且该函数的对称轴始终位于直线x=2的右侧,则有结论:①a+c=0;②b=4;③14a+12b+c<0:④-1<a<0.其中结论正确的是( )A.①②③B.①③④C.①②④D.②③④ 二.填空题:本题共6小题,每小题4分,共24分. 11.因式分解:4m 2-9= .12.江豚素有"水中大熊猫"之称,为了解洞庭湖现有江豚数量,考察队先从湖中捕捞10头江豚并做上标记,然后放归湖内.经过一段时间与群体充分混合后,再从中多次捕捞全部计数后放回,并算得平均每32头江豚中有2头有标记,则估计洞庭湖现有江豚数量约为 头.13.根据物理学规律,如果把一个物体从地面以10m/s 的速度竖直上抛(如图所示),那么物体经过x s 离地面的高度(单位:m )为10x -4.9x 2.根据上述规律,该物体落回地面所需要的时间x 约为 s.(结果保留整数)14.如图,已知正六边形ABCDEF,⊙O 是此正六边形的外接圆.若AB=2,则阴影部分的面积 为 .15.11月10日晚,"深爱万物"--2023深圳人才嘉年华活动正式启动,千余架无人机在深圳人才公园上空上演"天空之舞",为人才喝彩、向人才致敬.如图所示的平面直角坐标系中,线段OA ,BC 分别表示1号、2号无人机在队形变换中飞行高度y 1,y 2(米)与飞行时间x (秒)的函数关系,其中y 2=-4x+150,线段OA 与BC 相交于点P ,AB ⊥y 轴于点B ,点A 的横坐标为25,则在第 秒时1号和2号无人机在同一高度.16.如图所示,正方形ABCD 的边长为3,点E 在AD 上(不与点A ,D 重合),连接BE ,交对角线AC 于点H ,将△ABE 沿BE 折叠,点A 的对应点为F ,延长EF 交CD 于点G ,连接BG 和CH ,则以下结论中:①∠EBG=45°;②当AE=1时,DG=CG;③S △BED =12S 正方形ABCD ;④GH=BH. 所有正确结论的序号是 。
(北师大版)中考数学模拟考试卷-带答案

(北师大版)中考数学模拟考试卷-带答案(考试时间:120分钟;试卷满分:150分)学校:___________班级:___________姓名:___________考号:___________一.选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中只有一项是符合题目要求的)1.-3的相反数是()A.3B.-3C.﹣13D.132.2023年济南(泉城)马拉松于10月29日成功举办.图①是此次泉城马拉松男子组颁奖现场示意图.图②是领奖台的示意图,则此领奖台的主视图是( )3.从济南市文化和旅游局获悉,截至2月17日14时,2024年春节假期全市28家重点监测景区共接待游客4705000人次,可比增长55.6%,实现营业收入1.1亿元。
可比增长92.7%,把数字"4705000"用科学记数法表示为( )A.47.05x105B.4.705x106C.4.705x105D.0.4705x1064.如图:AD∥BC、BD平分∠ABC,若∠ADB=35°,则∠4的度数为()A.35°B.70°C.110°D.120°5.我国民间建筑装饰图案中,蕴含着丰富的数学之美.下列图案中既是轴对称图形又是中心对称图形的是()A. B. C. D.6.下列运算正确的是()A.2a+b=2abB.2a2b-a2b=a2bC.(a3)2=a8D.2a8÷a4=2a27.若0<m<n,则直线y=-5x+m直线y=-x+n的交点()A.第一象限B.第二象限C.第三象限(x-2)D.第四象限8.某小区内的消防车道有一段弯道,如图,弯道的内外边缘均为圆弧,弧AB、弧CD所在圆的圆心为点O,点C、D分别在OA和OB上.已知消防车道宽AC=4m,∠AOB=120°,则弯道外边缘AB的长与内边缘CD的长的差为()A.4π3m B.8π3m C.16π3m D.32π3m9.反比例函数y=ax(a≠0)与一次函数y=ax﹣a在同一坐标系中的图象可能是()A. B. C. D.10.如图,在正方形ABCD中,AB=√2,点E、F分别是DC和BC边上的动点,且始终保持EF=BF+DE,连接AE与AF,分别交DB干点N、M,过点A作AH⊥EF于点M.下列结论:①∠EAF45°:② ∠BAF=∠HAF;③AH=√2;④∠DNE=67.5°;⑤DN2+BM2=NM2,其中结论正确的序号是()A.①③④B.①②③⑤C.②④⑤D.①②③④二.填空题(本大题共6个小题,每小题4分,共24分)11.分解因式a2-4b2= .12.如图,在边长为2的正方形内有一边长为1的小正方形,一只青蛙在该图案内任意跳动,则这只青蛙跳入阴影部分的概率是.13.已知一元二次方程x2-5x+2m=0有一个根为2,则另一根为.14.我国是世界上最早制造使用水车的国家,如图是水车舀水灌溉示意图,水车轮的辐条(圆的半径)将圆平均分为12个格,半径04长约为6米,辐条尽头装有刮板,刮板间安装有等距斜挂的长方体形状的水斗,当水流冲动水车轮刮板时,驱使水车徐徐转动,水斗依次昌满河水在点/处离开水面,逆时针旋转上升至轮子上方8处时,斗口开始翻转向下,将水倾入木樁,由木槽导入水果,进而灌溉,那么水斗从4处(舀水)转动到B处(倒水)所经过的路程是米,(结果保留π)15.如图的曲边三角形可按下述方法作出:作等边三角形ABC,以三个顶点为圆心,以边长为半径画弧,三段圆弧围成的图形就是曲边三角形,若等边三角形ABC的边长为2,则这个曲边三角形的面积是。
(完整)北师大版中考数学模拟试题及答案,推荐文档

九年级中考模拟测试题(一)一、填空题(每题3分,共24分)1、方程组⎪⎩⎪⎨⎧=+=-++2621133y x y x 的解是2、若对任意实数x 不等式b ax >都成立,那么a 、b 的取值范围为3、设21≤≤-x ,则2212++--x x x 的最大值与最小值之差为 4、两个反比例函数x y 3=,xy 6=在第一象限内的图象点1P 、2P 、3P 、…、2007P 在反比例函数xy 6=上,它们的横坐标分别为1x 、2x 、3x 、…、2007x ,纵坐标分别是1、3、5…共2007个连续奇数,过1P 、2P 、3P 、…、2007P 分别作y 轴的平行线,与xy 3=的图象交点依次为)','(111y x Q 、)','(222y x Q 、…、),('2007'20072007y x Q ,则=20072007Q P5、如右图,圆锥的母线长是3,底面半径是1,A 是底面圆周上一点,从A 点出发绕侧面一周,再回到A 点的最短的路线长是6、有一张矩形纸片ABCD ,9=AD ,12=AB ,将纸片折叠使A 、C 两点重合,那么折痕长是7、已知3、a 、4、b 、5这五个数据,其中a 、b 是方程0232=+-x x 的两个根,则这五个数据的标准差是8、若抛物线1422++-=p px x y 中不管p 取何值时都通过定点,则定点坐标为 二、选择题(每题3分,共24分)9、如图,ABC ∆中,D 、E 是BC 边上的点,1:2:3::=EC DE BD ,M 在AC 边上,2:1:=MA CM ,BM 交AD 、AE 于H 、G ,则GM HG BH ::等于 ( )A 、1:2:3B 、1:3:5C 、5:12:25D 、10:24:5110、若一直角三角形的斜边长为c ,内切圆半径是r ,则内切圆的面积与三角形面积之比是( )A 、r c r2+π B 、r c r +π C 、r c r +2π D 、22rc r+π 11、抛物线2ax y =与直线1=x ,2=x ,1=y ,2=y 围成的正方形有公共点,则实数a的取值范围是( )A 、141≤≤a B 、221≤≤a C 、121≤≤a D 、241≤≤a 12、有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需15.3元;若购铅笔4支,练习本10本,圆珠笔1支共需2.4元,那么,购铅笔、练习本、圆珠笔各1件共需( )A 、2.1元B 、05.1元C 、95.0元D 、9.0元13、设关于x 的方程09)2(2=+++a x a ax ,有两个不相等的实数根1x 、2x ,且1x <<12x ,那么实数a 的取值范围是( )A 、112-<a B 、5272<<-a C 、52>a D 、0112<<-a 14、如图,正方形ABCD 的边1=AB ,和都是以1为半径的圆弧,则无阴影部分的两部分的面积之差是( )A 、12-πB 、41π- C 、13-π D 、61π-15、已知锐角三角形的边长是2、3、x ,那么第三边x 的取值范围是( )A 、51<<x B 、135<<x C 、513<<xD 、155<<x16、某工厂第二季度的产值比第一季度的产值增长了%x ,第三季度的产值又比第二季度的产值增长了%x ,则第三季度的产值比第一季度增长了( ) A 、%2x B 、%21x + C 、%%)1(x x •+ D 、%%)2(x x •+ 三、解答题17.(6分)化简:2222111x x x x x x-+-÷-+18. (6分)解分式方程:2412-=+-x x x19.(10分)如图,在梯形纸片ABCD 中,AD//BC ,AD >CD ,将纸片沿过点D的直线折叠,使点C 落在AD 上的点C 处,折痕DE 交BC 于点E ,连结C ′E .求证:四边形CDC ′E 是菱形.20、(10分)如图,开口向下的抛物线a ax ax y 1282+-=与x 轴交于A 、B 两点,抛物线上另有一点C 在第一象限,且使OCA ∆∽OBC ∆,(1)求OC 的长及A DEB C C ′ACBC的值;(2)设直线BC 与y 轴交于P 点,点C 是BP 的中点时,求直线BP 和抛物线的解析式。
(北师大版)中考数学模拟考试试卷-含答案

(北师大版)中考数学模拟考试试卷-含答案(考试时间:120分钟;试卷满分:150分)学校:___________班级:___________姓名:___________考号:___________(满分150分时间120分钟)一.选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.图中立体图形的俯视图是( )2.如图,平行于主光轴MN的光线AB和CD经过凹透镜的折射后,折射光线BE、DF的反向延长线交于主光轴MN上一点P.若∠ABE=160°,∠CDF=150°,则∠EPF的度数是()A.20°B.30°C.50°D.70°3."燕山雪花大如席,片片吹落轩辕台."这是诗仙李白眼里的雪花,单个雪花的重量其实很轻,只有0.00003kg左右,0.00003用科学记数法可表示为( )A.3×10﹣5B.3x10-4C.0.3x10-4D.0.3x10-54.如图,直线a∥b、若∠1=130°,则∠2等于()A.60°B.50°C.40°D.30°5.下列校徽的图案是轴对称图形的是()6.实数a、b在数轴上对应点的位置如图所示.若a+b=0,则下列结论中正确的是()A.|a|<|b|B.2a>2bC.ab>0D.a<-17.春节期间,琪琪和乐乐分别从A,B,C三部春节档片中随机选择一部观看,则琪琪和乐乐选择的影片相同的概率为()A.12B.13C.16D.19 8.小明在化简分式3nm -2n +2m -n2n -m的过程中,因为其中一个步骤的错误,导致化简结果是错误的,小明开始出现错误的那一步编号是( )A.①B.②C.③D.④9.如图,在平行四边形ABCD 中,BC=2AB=8,连接BD ,分别以点B 、D 为国心,大于12BD 长为半径作弧,两弧交于点E 和点F ,作直线EF 交AD 于点I ,交BC 于点H 、点H 恰为BC 的中点,连接AH ,则AH 的长为( )A.4√3B.6C.7D.4√510.二次函数y=ax 2+bx+c(a,b,c 是常数,a ≠0)的自变量x 与函数值y 的部分对应值如表:且当x=-12时,与其对应的函数值y>0,有下列结论:①abc<0;②m=n;③-2和3是关于x 的方程ax 2+bx+c=t 的两个根;④a<83,其中正确结论的个数是( )A.1B.2C.3D.4二.填空题(本大题共6个小题,每小题4分,共24分) 11.分解因式:xy -y 2= .12.如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,EF 、GH 过点O ,且点E 、H 在边AB 上,点G 、F 在边CD 上,向平行四边形ABCD 内部投掷飞镖,飞镖恰好落在阴影区域的概率为 。
2024年中考数学模拟考试试卷-带答案(北师大版)
2024年中考数学模拟考试试卷-带答案(北师大版)(满分:150分;考试时间:120分钟)学校:___________班级:___________姓名:___________考号:___________一.选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求.1.如图,在水平的桌面上放置圆柱和长方体实物模型,则它们的左视图是( )2."四面荷花三面柳,一城山色半城湖",描写了大明湖的美丽景色。
据统计,2023年"五一"假期期间,济南市各大景区共接待游客约262.6万人次.将数据262.6万用科学记数法表示为( )A.2.626x103B.2.626x105C.2.626x106D.0.2626x1073.如图,直线a∥b,直线l与a,b分别相交于A,B两点,过点A作直线的垂线交直线b于点C,若∠1=38°,则∠2的度数为( )A.38°B.34°C.62°D.52°4.实数a,b,c在数轴上的对应点的位置如图所示,则下列结论正确的是()A.a>bB.a+b>0C.bc>0D.a<-c5.剪纸艺术是最古老的中国民间艺术之一,先后入选中国国家级非物质文化遗产名录和人类非物质文化遗产代表作名录."鱼"与"余"同音,寓意生活富裕、年年有余,是剪纸艺术中很受喜爱的主题.以下关于鱼的剪纸中,是轴对称图形但不是中心对称图形的是( )6.下列计算正确的是()A.a2·a³=a5B.a6÷a2=a3C.(ab³)2=a2b9D.5a-2a=37.在一次数学活动课中制作了一个抽奖转盘,如图所示的盘面被等分成八个扇形区域,每个扇形区域里标的数字1,2,3分别代表获得一、二、三等奖.若转动转盘一次,转盘停止后(当指针恰好指在分界线上时,不记,重转),指针所指区域为获奖结果,则获得二等奖的概率为( )A.13B.14C.38D.128.已知直线y=3x+a与直线y=-2x+b交于点P,若点P的横坐标为﹣5,则关于x的不等式3x+a<-2x+b的解集为( )A.x<-5B.x<3C.x>-2D.x>-59.如图,平行四边形ABCD的对角线AC、BD相交于点O,CE平分∠BCD,交AB于点E,交BD于点F,且∠ABC=60°,AB=2BC,连接OE,下列结论:①OE⊥AC;②S平行四边形ABCD=AC·BC;③OE:AC=√3:6;④S△AOE =3S△OEF.其中结论正确的共有()A.1个B.2个C.3个D.4个10.在平面直角坐标系中,对点M(a,b)和点M'(a,b')给出如下定义:若b'={b-3(当a≥0时)|b|(当a<0时),则称点M’(a,b’)是点M(a,b)的伴随点.如:点A(1,-2)的伴随点为A'(1,-5),点B(-1,-2)的伴随点为B'(-1,2).若点Q(m,n)在二次函数y=x2-4x-2的图象上,则当﹣2≤m<5时,其伴随点Q'(m,n')的纵坐标n'的值不可能为( )A.-9B.√3-52C.10D.11二.填空题:本题共6小题,每小题4分,共24分.11.因式分解:ax2+ay2+2axy= .12.一个不透明的袋子中装有3个红球和a个白球,这些球除颜色外无其他差别.现随机从袋中摸出一个球,若这个球是红球的概率为37,则a的值为。
北师大版中考数学模拟试题及参考答案
北师大版中考数学模拟试题及参考答案一、选择题(每题3分,共24分)1. 下列计算正确的是()A.卄ol —TD.爲=±?2. 据统计,截止5月31日上海世博会累计入园人数为803万。
这个数字用科学计数法表示为()A. 8 X 106B.8.03 X 106C.8.03 X 107D.803X 1043. 下列图形中既是轴对称图形,又是中心对称图形的是()竦❹e @)A B. C, D・4. 下列说法正确的是()A. 为了解全省中学生的心理健康状况,宜采用普查方式I丄B. 某彩票设“中奖概率为100" ”,购买100张彩票就定会中奖一次C. 某地会发生地震是必然事件D. 若甲组数据的方差殆"1,乙组数据的方差4=^-2,贝冲组数据比乙组稳定5. 美术课上,老师要求同学们将右图所示的白纸只沿虚线裁开,用裁开的纸片和白纸上的阴影部分围成一个立体模型,然后放在桌面上,下列四个示意图中,只有一个符合上述要求,那么这个示意图是()6. 如图,把一张长方形纸片对折,折痕为,再以的中点0为顶点把平角/三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以0为顶点的等腰三角形,那么剪出的等腰三角形全部展开铺平C D后得到的平面图形一定是()C.正五边形A.正三角形B.正方形D.正六边形7. 一个圆锥的高为3巧,侧面展开图是半圆,则圆锥的侧面积是()A.9 nB.18 nC.27 nD.39n8. 一个正方体的水晶砖,体积为1003,它的棱长大约在()A. 45之间B.56之间C.67之间D.78之间二、填空题(每题3分,共24分)m兀{...m的解集为.10. 函数兀T中,自变量X的取值范围是.11. 如图,为拧紧一个螺母,将扳手顺时针旋转600,扳手上一点A转至点A i处.若长为25,则长为(结果保留n ).12. 如图,在平面直角坐标系中,以A(5 , 1)为圆心,以2 个单位长度为半径的OA 交x轴于点B C.将OA向左平移个单位长度与y轴首次相切,得到OA 1.阴影部分的面积S=.13. 有两块面积相同的小麦试验田,分别收获小麦9000和15000.已知第一块试验田每公顷的产量比第二块少3000,若设第一块试验田每公顷的产量为,根据题意,可得方程14. 如图,在矩形中,=12,= 6•点E、F分别在、上,将矩形沿折叠,使点A、D分别落在矩形外部的点A、D处,则整个阴影部分图形的周长为.第弦题第14議V =15. 如图,双曲线’;’经过矩形的边的中点E,交于点D。
北师大版中考数学全真模拟试题含答案
图1P OBACD图2E OCDAB初三年级学业水平考试数学全真模拟试卷说明:1. 本试卷分为第Ⅰ卷和第Ⅱ卷. 第Ⅰ卷1~2页,第Ⅱ卷3~8页. 请将第Ⅰ卷的正确选项用2B 铅笔填涂在机读答题卡上;第Ⅱ卷用蓝、黑色的钢笔或签字笔解答在试卷上,其中的解答题都应按要求写出必要的解答过程.2. 本试卷满分为120分,答题时间为120分钟.3. 不使用计算器解题.第Ⅰ卷 选择题(36分)一、选择题(本大题共12个小题,每小题3分,满分36分)在每小题给出的四个选项中,有且仅有一项是符合题目要求的.1. 若m-n=-1,则(m-n )2-2m+2n 的值是( )A. 3B. 2C. 1D. -12. 已知点A (a ,2013)与点A′(-2014,b )是关于原点O 的对称点,则b a +的值为A. 1B. 5C. 6D. 43. 等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )A .12,B .15,C .12或15,D .18 4. 下列图形中,既是轴对称图形又是中心对称图形的有 ①平行四边形;②正方形;③等腰梯形;④菱形;⑤矩形;⑥圆.A. 1个B. 2个C. 3个D. 4个5. 如图,在⊙O 中,弦AB ,CD 相交于点P ,若∠A=40°, ∠APD=75°,则∠B=A. 15°B. 40°C. 75°D. 35°6. 下列关于概率知识的说法中,正确的是 A.“明天要降雨的概率是90%”表示:明天有90%的时间都在下雨.B.“抛掷一枚硬币,正面朝上的概率是21”表示:每抛掷两次,就有一次正面朝上.C.“彩票中奖的概率是1%”表示:每买100张彩票就肯定有一张会中奖.D.“抛掷一枚质地均匀的正方体骰子,朝上的点数是1的概率是61”表示:随着抛掷次数的增加,“抛出朝上点数是1”这一事件的频率是61.7. 若抛物线12--=x x y 与x 轴的交点坐标为)0,(m ,则代数式20132+-m m 的值为A. 2012B. 2013C. 2014D. 20158. 用配方法解方程0142=++x x ,配方后的方程是A. 3)2(2=-xB. 3)2(2=+xC. 5)2(2=-xD. 5)2(2=+x9. 要使代数式12-a a有意义,则a 的取值范围是A. 0≥aB. 21≠a C. 0≥a 且21≠a D. 一切实数 10. 如图,已知⊙O 的直径CD 垂直于弦AB ,∠ACD=22.5°,若CD=6 cm ,则AB 的长为 A. 4 cmB. 23cmC. 32cmD. 62cm11. 到2013底,我县已建立了比较完善的经济困难学生资助体系. 某校2011年发放给每个经济困难学生450元,2013年发放的金额为625元. 设每年发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是 A .625)1(4502=+x B. 625)1(450=+xC .625)21(450=+xD. 450)1(6252=+x12. 如图,已知二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,有下列5个结论:①abc <0;②b <a +c ;③4a +2b+c>0;④2c <3b ; ⑤a +b <m (am +b)(m ≠1的实数). 其中正确结论的有 A. ①②③ B. ①③④C. ③④⑤D. ②③⑤第Ⅱ卷 非选择题(84分)二、填空题(本大题共6个小题,每小题3分,满分18分)只要求填写最后结果.13. 若方程0132=--x x 的两根分别为1x 和2x ,则2111x x +的值是_____________.得 分 评卷人14. 已知⊙O 1与⊙O 2的半径分别是方程x 2-4x+3=0的两根,且O 1O 2=t+2,若这两个圆相切,则t=____________. 15. 如图,在△ABC 中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点 D 恰好落在BC 边上时,则CD 的长为 .16. 已知),(11y x A ,),(22y x B 在二次函数462+-=x x y 的图象上,若321<<x x ,则21____y y (填“>”、“=”或“<”).17. 如图,直线AB 与⊙O 相切于点A ,AC 、CD 是⊙O 的两条弦,且CD ∥AB ,若⊙O 的半径为52,CD=4,则弦AC 的长为 . 18. 已知101=-aa ,则a a 1+的值是______________.三、解答题(本大题共2个题,第19题每小题4分,共8分,第20题12分,本大题满分20分)19.(1)计算题:2)1(3112)3(----+--; (2)解方程:1222+=-x x x .20. 在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小完全相同.小明从布袋里随机取出一个小球,记下数字为x ,小红在剩下的3个小球中随机取出一个小球,记下数字为y ,这样确定了点Q 的坐标(x ,y ).(1)画树状图或列表,写出点Q 所有可能的坐标; (2)求点Q (x ,y )在函数y =-x +5的图象上的概率;(3)小明和小红约定做一个游戏,其规则为:若x 、y 满足xy >6则小明胜,若x 、y 满足xy <6则小红胜,这个游戏公平吗?说明理由;若不公平,请写出公平的游戏规则.四、解答题(本大题共2个题,第21题10分,第22题10分,本大题满分20分) 21. 如图,在边长为1的正方形组成的网格中,△AOB 的顶点均在格点上,点A ,B 的坐标分别是A (3,3)、B (1,2),△AOB 绕点O 逆时针旋转90°后得到△11OB A . (1)画出△11OB A ,直接写出点1A ,1B 的坐标; (2)在旋转过程中,点B 经过的路径的长; (3)求在旋转过程中,线段AB 所扫过的面积.22. 某德阳特产专卖店销售“中江柚”,已知“中江柚”的进价为每个10元,现在的售价是每个16元,每天可卖出120个. 市场调查反映:如调整价格,每涨价1元,每天要少卖出10个;每降价1元,每天可多卖出30个.(1)如果专卖店每天要想获得770元的利润,且要尽可能的让利给顾客,那么售价应涨价多少元? (2)请你帮专卖店老板算一算,如何定价才能使利润最大,并求出此时的最大利润?得 分 评卷人得 分 评卷人OBAAOBED五、几何题(本大题满分12分)23. 如图,AB 是⊙O 的直径,BC 为⊙O 的切线,D 为⊙O 上的一点,CD=CB ,延长CD 交BA 的延长线于点E . (1)求证:CD 为⊙O 的切线; (2)求证:∠C=2∠DBE.(3)若EA=AO=2,求图中阴影部分的面积.(结果保留π)六、综合题(本大题满分14分)24. 如图,抛物线y=21x 2+bx -2与x 轴交于A 、B 两点,与y 轴交于C 点,且A (一1,0). (1)求抛物线的解析式及顶点D 的坐标; (2)判断△ABC 的形状,证明你的结论;(3)点M 是x 轴上的一个动点,当△DCM 的周长最小时,求点M 的坐标.得 分 评卷人得 分 评卷人参考答案及评分标准一、选择题(本大题共12个小题,每小题3分,满分36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BDBCDDCBCBAB二、填空题(本大题共6个小题,每小题3分,满分18分)13. -3 14. 0或2 15. 1.6 16. > 17. 52 18. 14±三、解答题(本大题共2个题,第19题每小题4分,共8分,第20题12分,本大题满分20分) 19.计算题:(1)原式=1)13(321--+-(注:每项1分) ………………3分=13--. ……………………………………………………4分(2)解:整理原方程,得:0142=--x x . ……………………………………1分 解这个方程:……(方法不唯一,此略).52,5221-=+=∴x x ……………………………………………………4分 20. 解:画树状图得:(1)点Q 所有可能的坐标有:(1,2),(1,3),(1,4) (2,1),(2,3),(2,4) (3,1),(3,2),(3,4) (4,1),(4,2),(4,3) 共12种. …………4分(2)∵共有12种等可能的结果,其中在函数y=﹣x+5的图象上的有4种,即:(1,4),(2,3),(3,2),(4,1),……………………………………………5分∴点(x ,y )在函数y=﹣x+5的图象上的概率为:=. …………………7分(3)∵x 、y 满足xy >6有:(2,4),(3,4),(4,2),(4,3)共4种情况,x 、y 满足xy <6有(1,2),(1,3),(1,4),(2,1),(3,1),(4,1)共6种情况.……………………………………………………9分()31124==小明胜P ,()21126==小红胜P……………………………10分 游戏不公平∴≠2131 . …………………………………………………11分 公平的游戏规则为:若x 、y 满足6≥xy 则小明胜,若x 、y 满足xy <6则小红胜. …………………………………………12分 四、解答题(本大题共2个题,第21题10分,第22题10分,本大题满分20分)21.(1)如图,)3,3(1-A ,)1,2(1-B …………………………………………3分注:画图1分,两点坐标各1分.(2)由)2,1(B 可得:5=OB , ……………4分弧1BB =πππ255241241=⨯⨯=⋅r …6分 (3)由)3,3(A 可得:23=OA ,又5=OB ,πππ2918414121=⨯⨯=⋅=OA S OAA 扇形,πππ455414121=⨯⨯=⋅=OB S OBB 扇形, ……………………………8分则线段AB 所扫过的面积为:πππ4134529=- . ……………………10分22.解:(1)设售价应涨价x 元,则:770)10120)(1016(=--+x x , …………………………………………2分解得:11=x ,52=x . ……………………………………………………3分 又要尽可能的让利给顾客,则涨价应最少,所以52=x (舍去).∴ 1=x .答:专卖店涨价1元时,每天可以获利770元. ……………………………4分 (2)设单价涨价x 元时,每天的利润为W 1元,则:810)3(107206010)10120)(1016(221+--=++-=--+=x x x x x W (0≤x ≤12) 即定价为:16+3=19(元)时,专卖店可以获得最大利润810元. ……6分设单价降价z 元时,每天的利润为W 2元,则:750)1(307206030)30120)(1016(222+--=++-=+--=z z z z z W (0≤z ≤6) 即定价为:16-1=15(元)时,专卖店可以获得最大利润750元. ………8分 综上所述:专卖店将单价定为每个19元时,可以获得最大利润810元. …10分 五、几何题(本大题满分12分) 23.(1)证明:连接OD ,∵BC 是⊙O 的切线,∴∠ABC=90°, …………1分 ∵CD=CB , ∴∠CBD=∠CDB , ∵OB=OD ,∴∠OBD=∠ODB ,∴∠ODC=∠ABC=90°,即OD ⊥CD , ……………3分 ∵点D 在⊙O 上, ∴CD 为⊙O 的切线. ………4分(2)如图,∠DOE=∠ODB+∠OBD=2∠DBE ,…………………6分B 1A 1OBA由(1)得:OD ⊥EC 于点D ,∴∠E+∠C=∠E+∠DOE =90°, ………………7分 ∴∠C=∠DOE =2∠DBE. ………………………………………………………8分 (3)作OF ⊥DB 于点F,连接AD ,由EA=AO 可得:AD 是Rt △ODE 斜边的中线,∴AD=AO=OD,∴∠DOA=60°,∴∠OBD=30°, ………………………………9分又∵OB=AO=2,OF ⊥BD ,∴ OF=1,BF=, ………………………………10分 ∴BD=2BF=2,∠BOD=180°-∠DOA =120°, ……………………………11分 ∴3341322136021202-=⨯⨯-⨯=-=ππBODOBD S S S 三角形扇形阴影.…12分注:此大题解法不唯一,请参照给分.六、综合题(本大题满分14分)24.解:(1)∵点)01(,-A 在抛物线221y 2-+=bx x 上, ∴02)1()1(212=--⨯+-⨯b ,∴23-=b , …………………………………2分 ∴抛物线的解析式为223212--=x x y . ………………………………………3分∵825)23(212232122--=--=x x x y ,∴顶点D 的坐标为)825,23(-. …………………………………………………5分(2)△ABC 是直角三角形. 当0=x 时,2-=y ,∴)2,0(-C ,则2=OC . …6分当0=y 时,0223212=--x x ,∴4,121=-=x x ,则)0,4(B . ………7分 ∴1=OA ,4=OB , ∴5=AB .∵252=AB ,5222=+=OC OA AC ,20222=+=OB OC BC , ∴222AB BC AC =+, ……………………………………………………8分 ∴△ABC 是直角三角形. ……………………………………………………9分 (3)作出点C 关于x 轴的对称点C ′,则)2,0('C .连接C ′D 交x 轴于点M ,根据轴对称性及两点之间线段最短可知,CD 一定,当MC+MD 的值最小时,△CDM 的周长最小. ………………10分设直线C ′D 的解析式为b ax y +=,则:则⎪⎩⎪⎨⎧-=+=825232b a b ,解得2,1241=-=b a ,…11分∴21241'+-=x y D C …………………………12分 当0=y 时,021241=+-x ,则4124=x ,……13分 ∴)0,4124(M . …………………………………14分。
北师大版最新中考数学模拟试卷(含答案) (36)
河北省中考数学试卷一、选择题(本大题共16小题,共42分。
1~10小题各3分,11~16小题各2分,小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列运算结果为正数的是()A.(﹣3)2 B.﹣3÷2 C.0×(﹣2017)D.2﹣32.(3分)把0.0813写成a×10n(1≤a<10,n为整数)的形式,则a为()A.1 B.﹣2 C.0.813 D.8.133.(3分)用量角器测得∠MON的度数,下列操作正确的是()A.B.C.D.4.(3分)=()A.B.C.D.5.(3分)图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是()A.①B.②C.③D.④6.(3分)如图为张小亮的答卷,他的得分应是()A.100分B.80分C.60分D.40分7.(3分)若△ABC的每条边长增加各自的10%得△A′B′C′,则∠B′的度数与其对应角∠B的度数相比()A.增加了10% B.减少了10% C.增加了(1+10%)D.没有改变8.(3分)如图是由相同的小正方体木块粘在一起的几何体,它的主视图是()A.B.C.D.9.(3分)求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.求证:AC⊥BD.以下是排乱的证明过程:①又BO=DO;②∴AO⊥BD,即AC⊥BD;③∵四边形ABCD是菱形;④∴AB=AD.证明步骤正确的顺序是()A.③→②→①→④B.③→④→①→②C.①→②→④→③D.①→④→③→②10.(3分)如图,码头A在码头B的正西方向,甲、乙两船分别从A,B同时出发,并以等速驶向某海域,甲的航向是北偏东35°,为避免行进中甲、乙相撞,则乙的航向不能..是()A.北偏东55°B.北偏西55°C.北偏东35°D.北偏西35°11.(2分)如图是边长为10cm的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确...的是()A. B. C.D.12.(2分)如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误..的是()A.4+4﹣=6 B.4+40+40=6 C.4+=6 D.4﹣1÷+4=613.(2分)若= +,则中的数是()A.﹣1 B.﹣2 C.﹣3 D.任意实数14.(2分)甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图,甲组12户家庭用水量统计表比较5月份两组家庭用水量的中位数,下列说法正确的是()A.甲组比乙组大B.甲、乙两组相同C.乙组比甲组大D.无法判断15.(2分)如图,若抛物线y=﹣x2+3与x轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k,则反比例函数y=(x>0)的图象是()A.B.C.D.16.(2分)已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;…在这样连续6次旋转的过程中,点B,M间的距离可能是()A.1.4 B.1.1 C.0.8 D.0.5二、填空题(本大题共3小题,共10分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河北省中考数学试卷一、选择题(本大题共16小题,共42分。
1~10小题各3分,11~16小题各2分,小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列运算结果为正数的是()A.(﹣3)2 B.﹣3÷2 C.0×(﹣2017)D.2﹣32.(3分)把0.0813写成a×10n(1≤a<10,n为整数)的形式,则a为()A.1 B.﹣2 C.0.813 D.8.133.(3分)用量角器测得∠MON的度数,下列操作正确的是()A.B.C.D.4.(3分)=()A.B.C.D.5.(3分)图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是()A.①B.②C.③D.④6.(3分)如图为张小亮的答卷,他的得分应是()A.100分B.80分C.60分D.40分7.(3分)若△ABC的每条边长增加各自的10%得△A′B′C′,则∠B′的度数与其对应角∠B的度数相比()A.增加了10% B.减少了10% C.增加了(1+10%)D.没有改变8.(3分)如图是由相同的小正方体木块粘在一起的几何体,它的主视图是()A.B.C.D.9.(3分)求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.求证:AC⊥BD.以下是排乱的证明过程:①又BO=DO;②∴AO⊥BD,即AC⊥BD;③∵四边形ABCD是菱形;④∴AB=AD.证明步骤正确的顺序是()A.③→②→①→④B.③→④→①→②C.①→②→④→③D.①→④→③→②10.(3分)如图,码头A在码头B的正西方向,甲、乙两船分别从A,B同时出发,并以等速驶向某海域,甲的航向是北偏东35°,为避免行进中甲、乙相撞,则乙的航向不能..是()A.北偏东55°B.北偏西55°C.北偏东35°D.北偏西35°11.(2分)如图是边长为10cm的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确...的是()A. B. C.D.12.(2分)如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误..的是()A.4+4﹣=6 B.4+40+40=6 C.4+=6 D.4﹣1÷+4=613.(2分)若= +,则中的数是()A.﹣1 B.﹣2 C.﹣3 D.任意实数14.(2分)甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图,甲组12户家庭用水量统计表比较5月份两组家庭用水量的中位数,下列说法正确的是()A.甲组比乙组大B.甲、乙两组相同C.乙组比甲组大D.无法判断15.(2分)如图,若抛物线y=﹣x2+3与x轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k,则反比例函数y=(x>0)的图象是()A.B.C.D.16.(2分)已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;…在这样连续6次旋转的过程中,点B,M间的距离可能是()A.1.4 B.1.1 C.0.8 D.0.5二、填空题(本大题共3小题,共10分。
17~18小题各3分;19小题有2个空,每空2分。
把答案写在题中横线上)17.(3分)如图,A,B两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C,连接CA,CB,分别延长到点M,N,使AM=AC,BN=BC,测得MN=200m,则A,B间的距离为m.18.(3分)如图,依据尺规作图的痕迹,计算∠α=°.19.(4分)对于实数p,q,我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2}=1,因此,min{﹣,﹣}=;若min{(x﹣1)2,x2}=1,则x=.三、解答题(本大题共7小题,共68分。
解答应写出文字说明、证明过程或演算步骤)20.(8分)在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p.21.(9分)编号为1~5号的5名学生进行定点投篮,规定每人投5次,每命中1次记1分,没有命中记.0.分.,如图是根据他们各自的累积得分绘制的条形统计图.之后来了第6号学生也按同样记分规定投了5次,其命中率为40%.(1)求第6号学生的积分,并将图增补为这6名学生积分的条形统计图;(2)在这6名学生中,随机选一名学生,求选上命中率高于50%的学生的概率;(3)最后,又来了第7号学生,也按同样记分规定投了5次,这时7名学生积分的众数仍是前6名学生积分的众数,求这个众数,以及第7号学生的积分.22.(9分)发现任意五个连续整数的平方和是5的倍数.验证(1)(﹣1)2+02+12+22+32的结果是5的几倍?(2)设五个连续整数的中间一个为n,写出它们的平方和,并说明是5的倍数.延伸任意三个连续整数的平方和被3除的余数是几呢?请写出理由.23.(9分)如图,AB=16,O为AB中点,点C在线段OB上(不与点O,B重合),将OC绕点O逆时针旋转270°后得到扇形COD,AP,BQ分别切优弧于点P,Q,且点P,Q在AB异侧,连接OP.(1)求证:AP=BQ;(2)当BQ=4时,求的长(结果保留π);(3)若△APO的外心在扇形COD的内部,求OC的取值范围.24.(10分)如图,直角坐标系xOy中,A(0,5),直线x=﹣5与x轴交于点D,直线y=﹣x﹣与x轴及直线x=﹣5分别交于点C,E,点B,E关于x轴对称,连接AB.(1)求点C,E的坐标及直线AB的解析式;(2)设面积的和S=S△CDE +S四边形ABDO,求S的值;(3)在求(2)中S时,嘉琪有个想法:“将△CDE沿x轴翻折到△CDB的位置,而△CDB与四边形ABDO拼接后可看成△AOC,这样求S便转化为直接求△AOC 的面积不更快捷吗?”但大家经反复演算,发现S△AOC≠S,请通过计算解释他的想法错在哪里.25.(11分)平面内,如图,在▱ABCD中,AB=10,AD=15,tanA=,点P为AD 边上任意点,连接PB,将PB绕点P逆时针旋转90°得到线段PQ.(1)当∠DPQ=10°时,求∠APB的大小;(2)当tan∠ABP:tanA=3:2时,求点Q与点B间的距离(结果保留根号);(3)若点Q恰好落在▱ABCD的边所在的直线上,直接写出PB旋转到PQ所扫过的面积.(结果保留π)26.(12分)某厂按用户的月需求量x(件)完成一种产品的生产,其中x>0,每件的售价为18万元,每件的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x(件)成反比,经市场调研发现,月需求量x与月份n(n为整数,1≤n≤12),符合关系式x=2n2﹣2kn+9(k+3)(k为常数),且得到了表中的数据.(1)求y与x满足的关系式,请说明一件产品的利润能否是12万元;(2)求k,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第m个月和第(m+1)个月的利润相差最大,求m.2017年河北省中考数学试卷参考答案与试题解析一、选择题(本大题共16小题,共42分。
1~10小题各3分,11~16小题各2分,小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)(2017•河北)下列运算结果为正数的是()A.(﹣3)2 B.﹣3÷2 C.0×(﹣2017)D.2﹣3【分析】各项计算得到结果,即可做出判断.【解答】解:A、原式=9,符合题意;B、原式=﹣1.5,不符合题意;C、原式=0,不符合题意,D、原式=﹣1,不符合题意,故选A【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.(3分)(2017•河北)把0.0813写成a×10n(1≤a<10,n为整数)的形式,则a为()A.1 B.﹣2 C.0.813 D.8.13【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:把0.0813写成a×10n(1≤a<10,n为整数)的形式,则a为8.13,故选:D.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(3分)(2017•河北)用量角器测得∠MON的度数,下列操作正确的是()A.B.C.D.【分析】根据量角器的使用方法进行选择即可.【解答】解:量角器的圆心一定要与O重合,故选C.【点评】本题考查了角的概念,掌握量角器的使用方法是解题的关键.4.(3分)(2017•河北)=()A.B.C.D.【分析】根据乘方和乘法的意义即可求解.【解答】解:=.故选:B.【点评】考查了有理数的混合运算,关键是熟练掌握乘方和乘法的意义.5.(3分)(2017•河北)图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是()A.①B.②C.③D.④【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心,进而得出答案.【解答】解:当正方形放在③的位置,即是中心对称图形.故选:C.【点评】此题主要考查了中心对称图形的定义,正确把握定义是解题关键.6.(3分)(2017•河北)如图为张小亮的答卷,他的得分应是()A.100分B.80分C.60分D.40分【分析】根据绝对值、倒数、相反数、立方根以及平均数进行计算即可.【解答】解:﹣1的绝对值为1,2的倒数为,﹣2的相反数为2,1的立方根为1,﹣1和7的平均数为3,故小亮得了80分,故选B.【点评】本题考查了实数,掌握绝对值、倒数、相反数、立方根以及平均数的定义是解题的关键.7.(3分)(2017•河北)若△ABC的每条边长增加各自的10%得△A′B′C′,则∠B′的度数与其对应角∠B的度数相比()A.增加了10% B.减少了10% C.增加了(1+10%)D.没有改变【分析】根据两个三角形三边对应成比例,这两个三角形相似判断出两个三角形相似,再根据相似三角形对应角相等解答.【解答】解:∵△ABC的每条边长增加各自的10%得△A′B′C′,∴△ABC与△A′B′C′的三边对应成比例,∴△ABC∽△A′B′C′,∴∠B′=∠B.故选D.【点评】本题考查了相似图形,熟练掌握相似三角形的判定是解题的关键.8.(3分)(2017•河北)如图是由相同的小正方体木块粘在一起的几何体,它的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层左边两个小正方形,故选:A.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.9.(3分)(2017•河北)求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.求证:AC⊥BD.以下是排乱的证明过程:①又BO=DO;②∴AO⊥BD,即AC⊥BD;③∵四边形ABCD是菱形;④∴AB=AD.证明步骤正确的顺序是()A.③→②→①→④B.③→④→①→②C.①→②→④→③D.①→④→③→②【分析】根据菱形是特殊的平行四边形以及等腰三角形的性质证明即可.【解答】证明:∵四边形ABCD是菱形,∴AB=AD,∵对角线AC,BD交于点O,∴BO=DO,∴AO⊥BD,即AC⊥BD,∴证明步骤正确的顺序是③→④→①→②,故选B.【点评】本题考查了菱形对角线互相垂直平分的性质,熟练掌握菱形的性质是解题的关键.10.(3分)(2017•河北)如图,码头A在码头B的正西方向,甲、乙两船分别从A,B同时出发,并以等速驶向某海域,甲的航向是北偏东35°,为避免行进中甲、乙相撞,则乙的航向不能..是()A.北偏东55°B.北偏西55°C.北偏东35°D.北偏西35°【分析】根据已知条件即可得到结论.【解答】解:∵甲的航向是北偏东35°,为避免行进中甲、乙相撞,∴乙的航向不能是北偏西35°,故选D.【点评】本题主要考查的是方向角问题,理解方向角的定义是解决本题的关键.11.(2分)(2017•河北)如图是边长为10cm的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确...的是()A. B. C.D.【分析】利用勾股定理求出正方形的对角线为10≈14,由此即可判定A不正确.【解答】解:选项A不正确.理由正方形的边长为10,所以对角线=10≈14,因为15>14,所以这个图形不可能存在.故选A.【点评】本题考查正方形的性质、勾股定理等知识,解题的关键是利用勾股定理求出正方形的对角线的长.12.(2分)(2017•河北)如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误..的是()A.4+4﹣=6 B.4+40+40=6 C.4+=6 D.4﹣1÷+4=6【分析】根据实数的运算方法,求出每个选项中左边算式的结果是多少,判断出哪个算式错误即可.【解答】解:∵4+4﹣=6,∴选项A不符合题意;∵4+40+40=6,∴选项B不符合题意;∵4+=6,∴选项C不符合题意;∵4﹣1÷+4=4,∴选项D符合题意.故选:D.【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.13.(2分)(2017•河北)若= +,则中的数是()A.﹣1 B.﹣2 C.﹣3 D.任意实数【分析】直接利用分式加减运算法则计算得出答案.【解答】解:∵= +,∴﹣====﹣2,故____中的数是﹣2.故选:B.【点评】此题主要考查了分式的加减运算,正确掌握分式加减运算法则是解题关键.14.(2分)(2017•河北)甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图,甲组12户家庭用水量统计表比较5月份两组家庭用水量的中位数,下列说法正确的是()A.甲组比乙组大B.甲、乙两组相同C.乙组比甲组大D.无法判断【分析】根据中位数定义分别求解可得.【解答】解:由统计表知甲组的中位数为=5(吨),乙组的4吨和6吨的有12×=3(户),7吨的有12×=2户,则5吨的有12﹣(3+3+2)=4户,∴乙组的中位数为=5(吨),则甲组和乙组的中位数相等,故选:B.【点评】本题主要考查中位数和扇形统计图,根据扇形图中各项目的圆心角求得其数量是解题的关键.15.(2分)(2017•河北)如图,若抛物线y=﹣x2+3与x轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k,则反比例函数y=(x >0)的图象是()A.B.C.D.【分析】找到函数图象与x轴、y轴的交点,得出k=4,即可得出答案.【解答】解:抛物线y=﹣x2+3,当y=0时,x=±;当x=0时,y=3,则抛物线y=﹣x2+3与x轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)为(﹣1,1),(0,1),(0,2),(1,1);共有4个,∴k=4;故选:D.【点评】本题考查了二次函数图象和性质、反比例函数的图象,解决本题的关键是求出k的值.16.(2分)(2017•河北)已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;…在这样连续6次旋转的过程中,点B,M间的距离可能是()A.1.4 B.1.1 C.0.8 D.0.5【分析】如图,在这样连续6次旋转的过程中,点M的运动轨迹是图中的红线,观察图象可知点B,M间的距离大于等于2﹣小于等于1,由此即可判断.【解答】解:如图,在这样连续6次旋转的过程中,点M的运动轨迹是图中的红线,观察图象可知点B,M间的距离大于等于2﹣小于等于1,故选C.【点评】本题考查正六边形、正方形的性质等知识,解题的关键作出点M的运动轨迹,利用图象解决问题,题目有一定的难度.二、填空题(本大题共3小题,共10分。