【中考模拟】江苏省泰州市泰兴市2015届中考数学二模试题(含解析)
泰兴市黄桥初中2014-2015学年中考二模数学试卷

AP BR ,则
BQ 的值为___ QR
.
三、解答下列各题(共 102 分) 17.计算与求值(本大题共 2 小题,每小题 6 分,共 12 分) (1) 2 cos 30 ( )
0
1 2
2
1 3 4
(2) 先化简,再求值: m
4m 4 m 2 ,其中 m 是方程 2 x 2 4 x 1 0 的根. m m2
奇数
偶数 ×3
×5
? +35
(第 10 题图)
(第 11 题图)
输出y
(第 13 题)
11.如图,刀柄外形是一个直角梯形(下底挖去一小半圆),刀片上、下是平行的,转动刀 片(如右图)时形成∠1、∠2,则∠1+∠2= 度. 12. 一个圆锥的侧面展开图是半径为 6 的半圆,则这个圆锥的底面半径为 13.一个数值转换器如图所示,根据要求回答问题:要使输出值 y 大于 100,输入的最小正 整数 x 为 . A F (第 15 题图)
(第 16 题)
D E B C
(第 14 题)
14. 如图所示,在矩形 ABCD 中,动点 P 从点 B 出发,沿 BC,CD,DA 运动至点 A 停止, 设点 P 运动的路程为 x ,△ABP 的面积为 y ,如果 y 关于 x 的函数图象如图所示,那么 △ABC 的面积是 . 15. 在平行四边形 ABCD 中, E 在 DC 上,若 DE : EC 1: 2 ,则 BF : BE _______.
泰兴市黄桥初中 2014-2015 学年中考二模数学试卷
(第 18 题图) 19.(本题满分 8 分)某中学举行“中国梦,我的梦”演讲比赛,宏志班的班长和学习委员 都想去,于是他们用摸球游戏决定谁去参加,游戏规则是:在一个不透明的袋子里有除数字 外完全相同的 4 个小球,上面分别标有数字 1,2,3,4,一人先从袋中随机摸出一个小球,另 一个人再从袋中剩下的 3 个小球中随机摸出一个小球。 (1)请列出所有可能出现的结果;(可考虑用树形图、列表等方法) (2)若摸出的两个小球上的数字和为偶数,则班长去参赛,请问他能如愿的概率是多少? 20.(本题 8 分)在中俄“海上联合—2014”反潜演习中,我军舰 A 测得潜艇 C 的俯角为 0 0 30 .位于军舰 A 正上方 1000 米的反潜直升机 B 侧得潜艇 C 的俯角为 60 .试根据以上数据求 出潜艇 C 离开海平面的下潜深度.
泰兴市西城初中教育集团初三二模试卷九年级数学试卷

泰兴市西城初中教育集团初三二模试卷 19.5九年级数学(考试时间:120分钟 满分:150分)请注意:1.本试卷分选择题和非选择题两个部分.2.所有试题的答案均填写在答题卡上,答案写在试卷上无效. 3.作图必须用2B 铅笔,并请加黑加粗.第一部分 选择题(共18分)一、选择题(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡...相应位置....上) 1. 2-=A .2B .12C .-2D .12- 2.下面计算正确的是A .3333=+B .532=⋅C .3327=÷D .24±=3.一个几何体的三视图如右图所示,则这个几何体摆放的位置是4.下列调查中,最适合采用全面调查(普查)方式的是A .对泰州市辖区内长江流域水质情况的调查B .对乘坐飞机旅客是否携带违禁物品的调查C .对一个社区每天丢弃塑料袋数量的调查D .对电视剧《都挺好》收视率的调查5.下列一元二次方程中,有两个不相等实数根的方程是A .x 2﹣3x +1=0B .x 2+1=0C .x 2﹣2x +1=0D .x 2+2x +3=06.如图,将矩形ABCD 绕点A 逆时针旋转90°至矩形AEFG ,点D 的旋转路径为 ⌒DG ,若AB =1,BC =2,则阴影部分的面积为主视图 左视图俯视图A B C D(第6题图)A .π3+32B .1+32C .π2D .π3+1第二部分 非选择题(共132分)二、填空题(本大题共有10小题,每小题3分,共30分.请把答案直接填写在答题卡相....应位置...上) 7. 4的算术平方根是 ▲ .8. 将36000km 用科学记数法表示为 ▲ km . 9. 六边形的内角和等于 ▲ °.10.已知当x =1时,2ax 2+bx 的值为3,则当x =2时,ax 2+bx 的值为 ▲ . 11.事件A 发生的概率为14,大量重复做这种试验,事件A 平均每100次发生的次数是 ▲ . 12.矩形ABCD 的对角线AC 与BD 相交点O ,AC =10,P 、Q 分别为AO 、AD 的中点,则PQ 的长度为 ▲ .13.如图,在⊙O 的内接五边形ABCDE 中,∠B +∠E =210°,则∠CAD = ▲ °. 14.如图所示的一扇形纸片,圆心角∠AOB 为120°,弦AB 的长为23,用它围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为 ▲ .15.已知一次函数y =(2k ﹣1)x +k +2的图象在范围﹣1≤x ≤2内的一段都在x 轴上方,则k16.如图,将面积为322的矩形ABCD 沿对角线BD 折叠,点A 的对应点为点P ,连接AP 交BC 于点E .若BE =2,若PD 与BC 相交于G ,则CG 的长为 ▲ . 三、解答题(本大题共有10小题,共102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 17.(本题满分12分)计算或解方程(1)101()3tan 60+(3o ---; (2)解方程:214111x x x +-=-- (第14题图)(第16题图)(第13题图)(第12题图)18.(本题满分8分)某初中要调查学校学生(学生总数2000人)双休日的学习状况,采用下列调查方式:①从一个年级里选取200名学生;②从不同年级里随机选取200名学生;③选取学校里200名女学生.④按照一定比例在三个不同年级里随机选取200名学生. (1)上述调查方式中合理的有 ▲ ;(填写序号即可)(2)李老师将他调查得到的数据制成频数直方图(如图1)和扇形统计图(如图2),在这个调查中,200名学生双休日在家学习的有 ▲ 人; (3)请估计该学校2000学生双休日学习时间不少于4小时的人数.19.(本题满分8分)在一个暗箱中装有红、黄、白三种颜色的乒乓球(除颜色外其余均相同),其中白球2个、黄球1个,若从中任意摸出一个球是白球的概率是21. (1)求暗箱中红球的个数.(2)先从暗箱中任意摸出一个球记下颜色后放回,再从暗箱中任意摸出一个球,求两次摸到的球颜色不同的概率(用树形图或列表法求解)20.(本题满分8分)如图,点A ,F ,C ,D 在一条直线上,AB ∥DE ,AB =DE ,AF =DC .求证:BC ∥EF .21.(本题满分10分)学校准备添置一批课桌椅,原计划订购60套,每套100元。
2015年江苏省泰州市中考真题数学

2015年江苏省泰州市中考真题数学一、选择题(本大题共6小题,每小题3分,满分18分,在每小题所给出的四个选项中,恰有一项符合题目要求的,请将正确的选项的字母代号填涂在答题卡相应位置上)1. -13的绝对值是( ) A.-3 B.13C.-13D.3解析:-13的绝对值是13. 答案:B2.下列4227、π、)0,其中无理数是( )B.227C.π解析:π是无理数.答案:C3.描述一组数据离散程度的统计量是( )A.平均数B.众数C.中位数D.方差解析:由于方差反映数据的波动情况,所以能够刻画一组数据离散程度的统计量是方差. 答案:D4.一个几何体的表面展开图如图所示,则这个几何体是( )A.四棱锥B.四棱柱C.三棱锥D.三棱柱解析:根据四棱锥的侧面展开图得出答案.这个几何体是四棱锥.答案:A5.如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为( )A.(0,1)B.(1,-1)C.(0,-1)D.(1,0)解析:由图形可知,对应点的连线CC′、AA′的垂直平分线的交点是点(1,-1),根据旋转变换的性质,点(1,-1)即为旋转中心.故旋转中心坐标是P(1,-1).答案:B6.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是( )A.1对B.2对C.3对D.4对解析:∵AB=AC,D为BC中点,∴CD=BD,∠BDO=∠CDO=90°,在△ABD和△ACD中,AB ACAD ADBD CD=⎧⎪=⎨⎪=⎩,,,∴△ABD≌△ACD;∵EF垂直平分AC,∴OA=OC,AE=CE,在△AOE和△COE中,OA OCOE OEAE CE=⎧⎪=⎨⎪=⎩,,,∴△AOE≌△COE;在△BOD和△COD中,BD CDBDO CDOOD OD=⎧⎪∠=∠⎨⎪=⎩,,,∴△BOD≌△COD;在△AOC和△AOB中,AC ABOA OAOC OB=⎧⎪=⎨⎪=⎩,,,∴△AOC≌△AOB.答案:D二、填空题(本大题共有10小题,每小题3分,共30分,请把答案直接填写在答题卡相应位置上)7.2-1等于 .解析:2-1=(12)1=12.答案:1 28.我市2014年固定资产投资约为220 000 000 000元,将220 000 000 000用科学记数法表示为 .解析:将220 000 000 000用科学记数法表示为2.2×1011.答案:2.2×10119.等于 .解析:先把各根式化为最简二次根式,再合并同类项即可.原式.答案:.10.如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2= .解析:如图,∵l1∥l2,∴∠3=∠1=40°,∵∠α=∠β,∴AB∥CD,∴∠2+∠3=180°,∴∠2=180°-∠3=180°-40°=140°. 答案:140°11.圆心角为120°,半径长为6cm的扇形面积是 cm2.解析:由题意得,n=120°,R=6cm,故21206360π⋅=12π.答案:12π12.如图,⊙O的内接四边形ABCD中,∠A=115°,则∠BOD等于 .解析:根据圆内接四边形的对角互补求得∠C的度数,再根据圆周角定理求解即可. ∵∠A=115°∴∠C=180°-∠A=65°∴∠BOD=2∠C=130°.答案:130°13.事件A发生的概率为120,大量重复做这种试验,事件A平均每100次发生的次数是 .解析:事件A发生的概率为120,大量重复做这种试验,则事件A平均每100次发生的次数为:100×120=5.答案:514.如图,△ABC中,D为BC上一点,∠BAD=∠C,AB=6,BD=4,则CD的长为 .解析:∵∠BAD=∠C,∠B=∠B,∴△BAD∽△BCA,∴BA BD BC BA=.∵AB=6,BD=4,∴646BC=,∴BC=9,∴CD=BC-BD=9-4=5.答案:515.点(a-1,y1)、(a+1,y2)在反比例函数y=kx(k>0)的图象上,若y1<y2,则a的范围是 .解析:∵k>0,∴在图象的每一支上,y随x的增大而减小,①当点(a-1,y1)、(a+1,y2)在图象的同一支上,∵y1<y2,∴a-1>a+1,解得:无解;②当点(a-1,y1)、(a+1,y2)在图象的两支上,∵y1<y2,∴a-1<0,a+1>0,解得:-1<a<1.答案:-1<a<1.16.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为 .解析:如图所示:∵四边形ABCD是矩形,∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=8,根据题意得:△ABP ≌△EBP ,∴EP=AP ,∠E=∠A=90°,BE=AB=8,在△ODP 和△OEG 中,D E OD OE DOP EOG ∠=∠⎧⎪=⎨⎪∠=∠⎩,,,∴△ODP ≌△OEG(ASA),∴OP=OG ,PD=GE ,∴DG=EP ,设AP=EP=x ,则PD=GE=6-x ,DG=x ,∴CG=8-x ,BG=8-(6-x)=2+x ,根据勾股定理得:BC 2+CG 2=BG 2,即62+(8-x)2=(x+2)2,解得:x=4.8,∴AP=4.8.答案:4.8三、解答题(本大题共10小题,满分102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明,证明过程或演算步骤)17.(1)解不等式:1213 1.2x x x -⎧⎪⎨+-⎪⎩>,< (2)计算:352242a a a a -÷+---⎛⎫ ⎪⎝⎭解析:(1)根据一元一次不等式组的解法,首先求出每个不等式的解集,再求出这些解集的公共部分即可.(2)根据分式的混合运算顺序,首先计算小括号里面的,然后计算除法,求出算式的值是多少即可.答案:(1)由x-1>2x ,可得x <-1, 由12x+3<-1,可得x <-8,∴不等式121312x x x -⎧⎪⎨+-⎪⎩>,<的解集是:x <-8. (2)352242a a a a -÷+---⎛⎫ ⎪⎝⎭=239242a a a a --÷--=-126a +18.已知:关于x 的方程x 2+2mx+m 2-1=0.(1)不解方程,判别方程根的情况;(2)若方程有一个根为3,求m 的值.解析:(1)找出方程a,b及c的值,计算出根的判别式的值,根据其值的正负即可作出判断;(2)将x=3代入已知方程中,列出关于系数m的新方程,通过解新方程即可求得m的值. 答案:(1)由题意得,a=1,b=2m,c=m2-1,∵△=b2-4ac=(2m)2-4×1×(m2-1)=4>0,∴方程x2+2mx+m2-1=0有两个不相等的实数根.(2)∵x2+2mx+m2-1=0有一个根是3,∴32+2m×3+m2-1=0,解得,m=-4或m=-2.19.为了解学生参加社团的情况,从2010年起,某市教育部门每年都从全市所有学生中随机抽取2000名学生进行调查,图①、图②是部分调查数据的统计图(参加社团的学生每人只能报一项)根据统计图提供的信息解决下列问题:(1)求图②中“科技类”所在扇形的圆心角α的度数(2)该市2012年抽取的学生中,参加体育类与理财类社团的学生共有多少人?(3)该市2014年共有50000名学生,请你估计该市2014年参加社团的学生人数.解析:(1)用1减去其余四个部分所占百分比得到“科技类”所占百分比,再乘以360°即可;(2)由折线统计图得出该市2012年抽取的学生一共有300+200=500人,再乘以体育类与理财类所占百分比的和即可;(3)先求出该市2014年参加社团的学生所占百分比,再乘以该市2014年学生总数即可. 答案:(1)“科技类”所占百分比是:1-30%-10%-15%-25%=20%,α=360°×20%=72°.(2)该市2012年抽取的学生一共有300+200=500人,参加体育类与理财类社团的学生共有500×(30%+10%)=200人.(3)50000×5506002000=28750.即估计该市2014年参加社团的学生有28750人.20.一只不透明袋子中装有1个红球,2个黄球,这些球除颜色外都相同,小明搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出1个球,用画树状图或列表法列出摸出球的所有等可能情况,并求两次摸出的球都是红球的概率.解析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球都是红球的情况,再利用概率公式即可求得答案.答案:画树状图得:∵共有9种等可能的结果,两次摸出的球都是红球的只有1种情况,∴两次摸出的球都是红球的概率为:19.21.某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?解析:设每件衬衫降价x 元,根据销售完这批衬衫正好达到盈利45%的预期目标,列出方程求解即可.答案:设每件衬衫降价x 元,依题意有120×400+(120-x)×100=80×500×(1+45%), 解得x=20.答:每件衬衫降价20元时,销售完这批衬衫正好达到盈利45%的预期目标.22.已知二次函数y=x 2+mx+n 的图象经过点P(-3,1),对称轴是经过(-1,0)且平行于y 轴的直线.(1)求m 、n 的值;(2)如图,一次函数y=kx+b 的图象经过点P ,与x 轴相交于点A ,与二次函数的图象相交于另一点B ,点B 在点P 的右侧,PA :PB=1:5,求一次函数的表达式.解析:(1)利用对称轴公式求得m ,把P(-3,1)代入二次函数y=x 2+mx+n 得出n=3m-8,进而就可求得n ;(2)根据(1)得出二次函数的解析式,根据已知条件,利用平行线分线段成比例定理求得B 的纵坐标,代入二次函数的解析式中求得B 的坐标,然后利用待定系数法就可求得一次函数的表达式.答案:(1)∵对称轴是经过(-1,0)且平行于y 轴的直线,∴-21m =-1,∴m=2, ∵二次函数y=x 2+mx+n 的图象经过点P(-3,1),∴9-3m+n=1,得出n=3m-8.∴n=3m-8=-2.(2)∵m=2,n=-2,∴二次函数为y=x 2+2x-2,作PC ⊥x 轴于C ,BD ⊥x 轴于D ,则PC ∥BD ,∴PC PABD AB=,∵P(-3,1),∴PC=1,∵PA:PB=1:5,∴116BD=,∴BD=6,∴B的纵坐标为6,代入二次函数为y=x2+2x-2得,6=x2+2x-2,解得x1=2,x2=-4(舍去),∴B(2,6),∴3126k bk b-+=⎧⎨+=⎩,,解得14kb=⎧⎨=⎩,,∴一次函数的表达式为y=x+4.23.如图,某仓储中心有一斜坡AB,其坡度为i=1:2,顶部A处的高AC为4m,B、C在同一水平地面上.(1)求斜坡AB的水平宽度BC;(2)矩形DEFG为长方体货柜的侧面图,其中DE=2.5m,EF=2m,将该货柜沿斜坡向上运送,当BF=3.5m时,求点D离地面的高2.236,结果精确到0.1m)解析:(1)根据坡度定义直接解答即可;(2)作DS⊥BC,垂足为S,且与AB相交于H.证出∠GDH=∠SBH,根据12GHGD=,得到GH=1m,利用勾股定理求出DH的长,然后求出BH=5m,进而求出HS,然后得到DS. 答案:(1)∵坡度为i=1:2,AC=4m,∴BC=4×2=8m.(2)作DS⊥BC,垂足为S,且与AB相交于H.∵∠DGH=∠BSH,∠DHG=∠BHS,∴∠GDH=∠SBH,∴12 GHGD=,∵DG=EF=2m ,∴GH=1m ,∴,BH=BF+FH=3.5+(2.5-1)=5m ,设HS=xm ,则BS=2xm ,∴x 2+(2x)2=52,∴,∴≈4.5m.24.如图,△ABC 中,AB=AC ,以AB 为直径的⊙O 与BC 相交于点D ,与CA 的延长线相交于点E ,过点D 作DF ⊥AC 于点F.(1)试说明DF 是⊙O 的切线;(2)若AC=3AE ,求tanC.解析:(1)连接OD ,根据等边对等角得出∠B=∠ODB ,∠B=∠C ,得出∠ODB=∠C ,证得OD ∥AC ,证得OD ⊥DF ,从而证得DF 是⊙O 的切线;(2)连接BE ,AB 是直径,∠AEB=90°,根据勾股定理得出AE ,CE=4AE ,然后在RT △BEC 中,即可求得tanC 的值.答案(1)连接OD ,∵OB=OD ,∴∠B=∠ODB ,∵AB=AC ,∴∠B=∠C ,∴∠ODB=∠C ,∴OD ∥AC ,∵DF ⊥AC ,∴OD ⊥DF ,∴DF 是⊙O 的切线.(2)连接BE ,∵AB 是直径,∴∠AEB=90°,∵AB=AC ,AC=3AE ,∴AB=3AE ,CE=4AE ,∴AE ,在RT △BEC 中,tanC=4BE CE AE==25.如图,正方形ABCD 的边长为8cm ,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 上的动点,且AE=BF=CG=DH.(1)求证:四边形EFGH 是正方形;(2)判断直线EG 是否经过一个定点,并说明理由;(3)求四边形EFGH 面积的最小值.解析:(1)由正方形的性质得出∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA ,证出AH=BE=CF=DG ,由SAS 证明△AEH ≌△BFE ≌△CGF ≌△DHG ,得出EH=FE=GF=GH ,∠AEH=∠BFE ,证出四边形EFGH 是菱形,再证出∠HEF=90°,即可得出结论;(2)连接AC 、EG ,交点为O ;先证明△AOE ≌△COG ,得出OA=OC ,证出O 为对角线AC 、BD 的交点,即O 为正方形的中心;(3)设四边形EFGH 面积为S ,BE=xcm ,则BF=(8-x)cm ,由勾股定理得出S=x 2+(8-x)2=2(x-4)2+32,S 是x 的二次函数,容易得出四边形EFGH 面积的最小值.答案:(1)∵四边形ABCD 是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA ,∵AE=BF=CG=DH ,∴AH=BE=CF=DG ,在△AEH 、△BFE 、△CGF 和△DHG 中,AE BF CG DH A B C D AH BE CF DG ===⎧⎪∠=∠=∠=∠⎨⎪===⎩,,,∴△AEH ≌△BFE ≌△CGF ≌△DHG(SAS),∴EH=FE=GF=GH ,∠AEH=∠BFE ,∴四边形EFGH 是菱形,∵∠BEF+∠BFE=90°,∴∠BEF+∠AEH=90°,∴∠HEF=90°,∴四边形EFGH 是正方形.(2)直线EG 经过一个定点,这个定点为正方形的中心(AC 、BD 的交点);理由如下: 连接AC 、EG ,交点为O ;如图所示:∵四边形ABCD 是正方形,∴AB ∥CD ,∴∠OAE=∠OCG ,在△AOE 和△COG 中,OAE OCG AOE COG AE CG ∠=∠⎧⎪∠=∠⎨⎪=⎩,,,∴△AOE ≌△COG(AAS),∴OA=OC ,即O 为AC 的中点,∵正方形的对角线互相平分,∴O 为对角线AC 、BD 的交点,即O 为正方形的中心.(3)设四边形EFGH面积为S,设BE=xcm,则BF=(8-x)cm,根据勾股定理得:EF2=BE2+BF2=x2+(8-x)2,∴S=x2+(8-x)2=2(x-4)2+32,∵2>0,∴S有最小值,当x=4时,S的最小值=32,∴四边形EFGH面积的最小值为32cm2.26.已知一次函数y=2x-4的图象与x轴、y轴分别相交于点A、B,点P在该函数的图象上,P到x轴、y轴的距离分别为d1、d2.(1)当P为线段AB的中点时,求d1+d2的值;(2)直接写出d1+d2的范围,并求当d1+d2=3时点P的坐标;(3)若在线段AB上存在无数个P点,使d1+ad2=4(a为常数),求a的值.解析:(1)对于一次函数解析式,求出A与B的坐标,即可求出P为线段AB的中点时d1+d2的值;(2)根据题意确定出d1+d2的范围,设P(m,2m-4),表示出d1+d2,分类讨论m的范围,根据d1+d2=3求出m的值,即可确定出P的坐标;(3)设P(m,2m-4),表示出d1与d2,由P在线段上求出m的范围,利用绝对值的代数意义表示出d1与d2,代入d1+ad2=4,根据存在无数个点P求出a的值即可.答案:(1)对于一次函数y=2x-4,令x=0,得到y=-4;令y=0,得到x=2,∴A(2,0),B(0,-4),∵P为AB的中点,∴P(1,-2),则d1+d2=3.(2)①d1+d2≥2;②设P(m,2m-4),∴d1+d2=|m|+|2m-4|,当0≤m≤2时,d1+d2=m+4-2m=4-m=3,解得:m=1,此时P1(1,-2);当m>2时,d1+d2=m+2m-4=3,解得:m=73,此时P2(73,23);当m<0时,不存在,综上,P的坐标为(1,-2)或(73,23).(3)设P(m,2m-4),∴d1=|2m-4|,d2=|m|,∵P在线段AB上,∴0≤m≤2,∴d1=4-2m,d2=m,∵d1+ad2=4,∴4-2m+am=4,即(a-2)m=0,∵有无数个点,∴a=2.。
泰兴中考二模数学试卷答案

一、选择题(每题4分,共40分)1. 下列各数中,无理数是()A. √4B. √9C. √16D. √25答案:C2. 若方程 2x + 3 = 7 的解为 x,则 x 的值是()A. 2B. 3C. 4D. 5答案:C3. 已知函数 f(x) = 3x - 2,若 f(2) = 4,则 f(x) 的图象与 x 轴的交点坐标是()A. (1, 0)B. (2, 0)C. (3, 0)D. (4, 0)答案:B4. 在三角形ABC中,∠A = 60°,∠B = 45°,则∠C的度数是()A. 75°B. 90°C. 105°D. 120°答案:D5. 若 a、b、c 是等差数列,且 a + b + c = 18,a + c = 12,则 b 的值为()A. 3B. 4C. 5D. 6答案:B6. 下列各函数中,为奇函数的是()A. y = x^2B. y = x^3C. y = x^4D. y = x^5答案:B7. 已知等比数列的前三项分别为 2,4,8,则该数列的公比是()A. 1B. 2C. 4D. 8答案:B8. 若方程 x^2 - 5x + 6 = 0 的解为 x1、x2,则 x1 + x2 的值为()A. 2B. 3C. 4D. 5答案:C9. 在平面直角坐标系中,点A(2,3)关于原点的对称点是()A. (2,3)B. (-2,-3)C. (3,2)D. (-3,-2)答案:B10. 若 sin A = 1/2,且 A 在第二象限,则 cos A 的值为()A. √3/2B. -√3/2C. 1/2D. -1/2答案:B二、填空题(每题5分,共50分)11. 已知等差数列的前三项分别为 1,4,7,则该数列的公差是 _______。
答案:312. 若 a、b、c 是等比数列,且 a + b + c = 12,b = 4,则 a 的值为 _______。
江苏省泰州市靖江三中2015年中考数学二模试题(含解析)

江苏省泰州市靖江三中2015年中考数学二模试题一、选择题(本大题共6小题,每小题3分,满分18分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,选择正确选项的字母代号涂在答题卡相应的位置上)1.﹣3的相反数是()A.﹣B.C.﹣3 D.32.下列计算正确的是()A.(2ab)3=6a3b3B. =﹣1 C.(﹣2)﹣2=﹣D. =33.连续四次抛掷一枚硬币都是正面朝上,则“第五次抛掷正面朝上”是()A.必然事件 B.不可能事件C.随机事件 D.概率为1的事件4.如图是几何体的主视图与左视图,那么它的俯视图是()A.B.C.D.5.函数y=与y=2x的图象没有交点,则k的取值范围为()A.k<0 B.k<1 C.k>0 D.k>16.已知:如图,在平面直角坐标系中,有菱形OABC,点A的坐标为(10,0),对角线OB、AC相交于点D,双曲线y=(x>0)经过点D,交BC的延长线于点E,且OB•AC=160,有下列四个结论:①双曲线的解析式为y=(x>0);②点C的坐标是(6,8);③sin∠COA=;④AC+OB=6.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(本大题共10小题,每小题3分,满分30分.请把答案直接填写在答题卡相应位置上)7.函数中,自变量x的取值范围是.8.分解因式:2a2﹣8b2= .9.数据201、203、198、199、200、205的平均数为.10.截至2013年12月31日,余额宝规模已达到1853亿元,这个数据用科学记数法可表示为元.11.如图,AB是⊙O的直径,CD是弦,若BC=1,AC=3,则sin∠ADC的值为.12.如图,AD为△ABC的中线,G为△ABC的重心,若S△BGC=2,则S△ABD= .13.圆锥的母线长为6cm,底面圆半径为4cm,则这个圆锥的侧面积为 cm2.14.一山坡的坡比为3:4,一人沿山坡向上走了20米,那么这人垂直高度上升了米.15.定义一个新的运算:a⊕b=,则运算x⊕2的最小值为.16.一次综合实践活动中,小明同学拿到一只含45°角的三角板和一只含30°角的三角板,如图放置恰好有一边重合,则S△ODC:S△OAB的值为.三、解答题(本大题共10小题,满分102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.计算:()0﹣2cos60°﹣|﹣3|18.(1)已知是方程组的解,写出a、b的关系式.(2)解方程:﹣=1.19.初三学生小丽、小杰为了解本校初二学生每周上网的时间,各自在本校进行了抽样调查.小丽调查了初二电脑爱好者中40名学生每周上网的时间,算得这些学生平均每周上网时间为2.5小时;小杰从全体320名初二学生名单中随机抽取了40名学生,调查了他们每周上网的时间,算得这些学1、2、3、4.小明先随机地摸出一个小球,小强再随机的摸出一个小球.记小明摸出球的标号为x,小强摸出的球标号为y.小明和小强在此基础上共同协商一个游戏规则:当x>y时小明获胜,否则小强获胜.①若小明摸出的球不放回,求小明获胜的概率.②若小明摸出的球放回后小强再随机摸球,问他们制定的游戏规则公平吗?请说明理由.21.已知方程ax2+bx+9=0有一个根为x1=﹣12,且关于x的方程ax2+bx+9=x+有两个相等的实数根,求a、b的值.22.如图,在正方形ABCD中,M是AD上异于D的点,N是CD的中点,且∠AMB=∠NMB,则AM=2,求AB的长.23.如图,在△ABC中,I是内心,O是AB边上一点,⊙O经过B点且与AI相切于I点.(1)求证:AB=AC;(2)若BC=16,⊙O的半径是5,求AI的长.24.操作:有2张边长都是2的正方形纸片A和B,请你将纸片A的一边的一个端点放在纸片B的对称轴L上,另一个端点与纸片B的一个顶点重合后压平.求纸片A与纸片B重合部分的面积.25.如图,正方形OABC的顶点O在坐标原点,且OA边和AB边所在直线的解析式分别为y=x和y=﹣x+.(1)求正方形OABC的边长;(2)现有动点P、Q分别从C、A同时出发,点P沿线段CB向终点B运动,速度为每秒1个单位,点Q沿折线A→O→C向终点C运动,速度为每秒k个单位,设运动时间为2秒.当k为何值时,将△CPQ沿它的一边翻折,使得翻折前后的两个三角形组成的四边形为菱形?(3)若正方形以每秒个单位的速度沿射线AO下滑,直至顶点C落在x轴上时停止下滑.设正方形在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围.26.已知抛物线y=ax2+x+c(a≠0)经过A(﹣1,0),B(2,0)两点,与y轴相交于点C.(1)求该抛物线的解析式;(2)点E是该抛物线上一动点,且位于第一象限,当点E到直线BC的距离最大时,求点E的坐标;(3)在(2)的条件下,在x轴上有一点P,且∠EAO+∠EPO=∠α,当tanα=2时,求点P的坐标.2015年江苏省泰州市靖江三中中考数学二模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,满分18分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,选择正确选项的字母代号涂在答题卡相应的位置上)1.﹣3的相反数是()A.﹣B.C.﹣3 D.3【考点】相反数.【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是﹣(﹣3)=3.故选:D.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.下列计算正确的是()A.(2ab)3=6a3b3B. =﹣1 C.(﹣2)﹣2=﹣D. =3【考点】幂的乘方与积的乘方;算术平方根;分式的基本性质;负整数指数幂.【分析】根据积的乘方、分式的约分、负整数指数幂、二次根式的性质,即可解答.【解答】解:A、(2ab)3=8a3b3,故错误;B、,故错误;C、,故错误;D、=3,正确;故选:D.【点评】本题考查了积的乘方、分式的约分、负整数指数幂、二次根式的性质,熟记相关法则是解决本题的关键.3.连续四次抛掷一枚硬币都是正面朝上,则“第五次抛掷正面朝上”是()A.必然事件 B.不可能事件C.随机事件 D.概率为1的事件【考点】随机事件.【分析】根据随机事件的定义即可判断.【解答】解:“第五次抛掷正面朝上”是随机事件.故选C.【点评】本题考查了随机事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.如图是几何体的主视图与左视图,那么它的俯视图是()A.B.C.D.【考点】由三视图判断几何体;简单组合体的三视图.【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,分别进行分析即可.【解答】解:因为从正面看从左往右3列正方体的个数依次为1,2,1;从左面看从左看有1列,正方体的个数依次为2;所以它的俯视图从左往右3列正方体的个数依次为1,1,1;故选A.【点评】此题考查了由三视图判断几何体,同时也考查了学生对三视图掌握程度和灵活运用能力,体现了对空间想象能力方面的考查.5.函数y=与y=2x的图象没有交点,则k的取值范围为()A.k<0 B.k<1 C.k>0 D.k>1【考点】反比例函数与一次函数的交点问题.【专题】计算题.【分析】由于两个函数没有交点,那么联立两函数解析式所得的方程无解.由此可求出k的取值范围.【解答】解:令=2x,化简得:x2=;由于两函数无交点,因此<0,即k>1.故选D.【点评】函数图象交点坐标为两函数解析式组成的方程组的解.如果两函数无交点,那么联立两函数解析式所得的方程(组)无解.6.已知:如图,在平面直角坐标系中,有菱形OABC,点A的坐标为(10,0),对角线OB、AC相交于点D,双曲线y=(x>0)经过点D,交BC的延长线于点E,且OB•AC=160,有下列四个结论:①双曲线的解析式为y=(x>0);②点C的坐标是(6,8);③sin∠COA=;④AC+OB=6.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】反比例函数综合题.【分析】过B作BF⊥x轴于点F,由菱形的面积可求得BF,在Rt△ABF中,可求得AF,过D作DG⊥x 轴于点G,由菱形的性质可求得D点坐标,则可求得双曲线解析式;过C作CH⊥x轴于点H,则HF=BC,可求得OH,可求得C点坐标和sin∠COA;在Rt△OBF中,由勾股定理可求得OB,结合条件可求得AC,则可求得AC+OB,可得出答案.【解答】解:如图,过B作BF⊥x轴于点F,过D作DG⊥x轴于点G,过C作CH⊥x轴于点H,∵A(10,0),∴OA=10,∴S菱形ABCD=OA•BF=AC•OB=×160=80,即10BF=80,∴BF=8,在Rt△ABF中,AB=10,BF=8,由勾股定理可得AF=6,∴OF=OA+AF=10+6=16,∵四边形OABC为菱形,∴D为OB中点,∴DG=BF=×8=4,OG=OF=×16=8,∴D(8,4),∵双曲线过点D,∴4=,解得k=32,∴双曲线解析式为y=,故①正确;又由上可知四边形BCHF为矩形,∴HF=BC=10,∴OH=OF﹣HF=16﹣10=6,且CH=BF=8,∴C(6,8),故②正确;在Rt△OCH中,OC=10,CH=8,∴sin∠COA===,故③正确;在Rt△OBF中,OF=16,BF=8,∴OB===8,∵AC•OB=160,∴AC===4,∴AC+OB=4+8=12,故④不正确;综上可知正确的为①②③共三个,故选C.【点评】本题主要考查反比例函数的综合应用,涉及待定系数法、菱形的性质、直角三角形、菱形的面积等知识.利用菱形的面积求得B到x轴的距离是解题的关键,注意菱形两个面积公式的灵活运用.本题考查知识点较基础,综合性很强,但难度不大.二、填空题(本大题共10小题,每小题3分,满分30分.请把答案直接填写在答题卡相应位置上)7.函数中,自变量x的取值范围是x≥﹣.【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,3+2x≥0,解得x≥﹣.故答案为:x≥﹣.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.8.分解因式:2a2﹣8b2= 2(a﹣2b)(a+2b).【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】先提取公因式2,再对余下的多项式利用平方差公式继续分解.【解答】解:2a2﹣8b2,=2(a2﹣4b2),=2(a+2b)(a﹣2b).故答案为:2(a+2b)(a﹣2b).【点评】本题主要考查提公因式法分解因式和利用平方差公式分解因式,熟记公式是解题的关键,难点在于要进行二次分解因式.9.数据201、203、198、199、200、205的平均数为201 .【考点】算术平均数.【分析】首先求出数据201、203、198、199、200、205的和是多少;然后用所有数据的和除以6,求出数据201、203、198、199、200、205的平均数为多少即可.【解答】解:(201+203+198+199+200+205)÷6=1206÷6=201∴数据201、203、198、199、200、205的平均数为201.故答案为:201.【点评】此题主要考查了算术平均数的含义和求法,要熟练掌握,解答此题的关键是要明确:平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.10.截至2013年12月31日,余额宝规模已达到1853亿元,这个数据用科学记数法可表示为1.853×1011元.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1853亿有12位,所以可以确定n=12﹣1=11.【解答】解:1853亿=185 300 000 000=1.853×1011.故答案为:1.853×1011.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.11.如图,AB是⊙O的直径,CD是弦,若BC=1,AC=3,则sin∠ADC的值为.【考点】圆周角定理;解直角三角形.【分析】根据AB是⊙O的直径,求出∠ACB=90°,根据勾股定理,求出AB的长,根据∠ADC=∠ABC,运用锐角三角函数的概念求出答案.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,BC=1,AC=3,由勾股定理得,AB=,∠ADC=∠ABC,∴sin∠ADC=sin∠ABC===,故答案为:.【点评】本题考查的是圆周角定理的应用和勾股定理、锐角三角函数的应用,掌握直角所对的圆周角是直角和同弧所对的圆周角相等是解题的关键.12.如图,AD为△ABC的中线,G为△ABC的重心,若S△BGC=2,则S△ABD= 3 .【考点】三角形的重心.【分析】根据重心到顶点的距离是它到对边中点的距离的2倍和已知求出△ABC的面积,根据三角形的中心把三角形分成面积相等的两部分解答即可.【解答】解:∵G为△ABC的重心,∴AD=2GD,∵S△BGC=2,∴S△ABC=6,∵AD为△ABC的中线,∴S△ABD=3,故答案为:3.【点评】本题考查的是三角形的重心的知识,掌握重心到顶点的距离是它到对边中点的距离的2倍是解题的关键.13.圆锥的母线长为6cm,底面圆半径为4cm,则这个圆锥的侧面积为24π cm2.【考点】圆锥的计算.【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式.【解答】解:∵圆锥的底面半径为4cm,∴圆锥的底面圆的周长=2π•4=8π,∴圆锥的侧面积=•8π•6=24π(cm2).故答案为:24π.【点评】本题考查了圆锥的侧面积的计算:圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面周长,扇形的半径为圆锥的母线长.也考查了扇形的面积公式:S=•l•R,(l为弧长).14.一山坡的坡比为3:4,一人沿山坡向上走了20米,那么这人垂直高度上升了12 米.【考点】解直角三角形的应用-坡度坡角问题.【分析】设出垂直高度,表示出水平宽度,利用勾股定理求解即可.【解答】解:如图:AB=20米,tanB=3:4,设AC=3x,BC=4x,由勾股定理得:AB=5x=20,解得:x=4,则AC=3x=12(米).故答案为:12.【点评】本题考查了坡度和坡角,掌握坡度坡角的定义及勾股定理的运用是解题的关键.15.定义一个新的运算:a⊕b=,则运算x⊕2的最小值为﹣2 .【考点】反比例函数与一次函数的交点问题.【专题】新定义.【分析】分成x≤2和x>2两种情况进行讨论,利用一次函数与反比例函数的性质即可求解.【解答】解:当x≤2时,x⊕2=﹣2x+2,则x⊕2的最小值是﹣2×2+2=﹣2;当x>2时,x⊕2==﹣,此时﹣2<x<0.总之,x⊕2的最小值为﹣2.故答案是:﹣2.【点评】本题考查了反比例函数与一次函数的性质,正确分成两种情况写出函数的解析式是关键.16.一次综合实践活动中,小明同学拿到一只含45°角的三角板和一只含30°角的三角板,如图放置恰好有一边重合,则S△ODC:S△OAB的值为.【考点】解直角三角形.【专题】计算题.【分析】作OH⊥BC于H,如图,设OH=x,利用含30度的直角三角形三边的关系,在Rt△OBH中计算出BH=OH=x,根据等腰直角三角形的性质,在Rt△OCH中计算出CH=OH=x,则BC=(+1)x,再在Rt△BCD中计算出DC=(+1)x,在Rt△ABC中计算出AB=(+1)x,接着根据三角形面积公式分别计算出S△OCD=S△BCD﹣S△OBC=x2,S△OAB=S△ABC﹣S△OBC=x2,然后计算它们的比值即可.【解答】解:作OH⊥BC于H,如图,设OH=x,在Rt△OBH中,∵∠OBH=30°,∴BH=OH=x,在Rt△OCH中,∵∠OCH=45°,∴CH=OH=x,∴BC=(+1)x,在Rt△BCD中,CD=BC=(+1)x,在Rt△ABC中,AB=BC=(+1)x,∴S△OCD=S△BCD﹣S△OBC=•(+1)x•(+1)x﹣•(+1)x•x=x2,S△OAB=S△ABC﹣S△OBC=•(+1)x•(+1)x﹣•(+1)x•x=x2,∴S△ODC:S△OAB=x2: x2=.故答案为.【点评】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.记住含30度的直角三角形三边的关系.三、解答题(本大题共10小题,满分102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.计算:()0﹣2cos60°﹣|﹣3|【考点】二次根式的混合运算;零指数幂;特殊角的三角函数值.【分析】分别利用零指数幂的性质以及绝对值的性质和特殊角的三角函数值化简求出即可.【解答】解:()0﹣2cos60°﹣|﹣3|=1﹣2×﹣3+=﹣3.【点评】此题主要考查了零指数幂的性质以及绝对值的性质和特殊角的三角函数值等知识,正确化简各数是解题关键.18.(1)已知是方程组的解,写出a、b的关系式.(2)解方程:﹣=1.【考点】二元一次方程组的解;解分式方程.【分析】(1)将方程组的解入方程组得:,然后将﹣3a﹣2c=1变形得:c=(1+3a)③,将③代入﹣3c+2b=2得:,整理得:9a+4b=1;(2)方程两边同时乘以x2﹣1,将分式方程转化为整式方程,然后解整式方程求得方程组的解,然后进行检验即可.【解答】解:(1)将代入方程组得:,由﹣3a﹣2c=1得:c=(1+3a)③,将③代入﹣3c+2b=2得:,整理得:9a+4b=1;(2)方程两边同时乘以x2﹣1得:(x+1)2﹣4=x2﹣1,整理得:2x=2解得:x=1,将x=1代入(x2﹣1)=0,∴x=1是原方程的增根.∴原方程无解.【点评】本题主要考查的方程组的解和解分式方程,掌握方程的解的定义和解分式方程的步骤和方法是解题的关键.19.初三学生小丽、小杰为了解本校初二学生每周上网的时间,各自在本校进行了抽样调查.小丽调查了初二电脑爱好者中40名学生每周上网的时间,算得这些学生平均每周上网时间为2.5小时;小杰从全体320名初二学生名单中随机抽取了40名学生,调查了他们每周上网的时间,算得这些学1、2、3、4.小明先随机地摸出一个小球,小强再随机的摸出一个小球.记小明摸出球的标号为x,小强摸出的球标号为y.小明和小强在此基础上共同协商一个游戏规则:当x>y时小明获胜,否则小强获胜.①若小明摸出的球不放回,求小明获胜的概率.②若小明摸出的球放回后小强再随机摸球,问他们制定的游戏规则公平吗?请说明理由.【考点】游戏公平性;列表法与树状图法.【分析】(1)首先根据题意画出树状图,由树状图求得所有等可能的结果与小明获胜的情况,继而利用概率公式即可求得答案,注意此题属于不放回实验;(2)首先根据题意画出树状图,由树状图求得所有等可能的结果与小明、小强获胜的情况,继而利用概率公式求得其概率,比较概率,则可得到他们制定的游戏规则是否公平,注意此题属于放回实验.【解答】解:①画树状图得:∵共有12种等可能的结果,小明获胜的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)共6种情况,∴小明获胜的概率为: =;(2)画树状图得:∵共有16种等可能的结果,小明获胜的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)共6种情况,∴P(小明获胜)==,P(小强获胜)=,∵P(小明获胜)≠P(小强获胜),∴他们制定的游戏规则不公平.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.21.已知方程ax2+bx+9=0有一个根为x1=﹣12,且关于x的方程ax2+bx+9=x+有两个相等的实数根,求a、b的值.【考点】根的判别式;一元二次方程的解.【分析】先根据根据一元二次方程的解的定义得到144a﹣12b+9=0,再根据根的判别式得到(b﹣)2﹣4a(9﹣)=0然后解方程组得到a=,b=2.【解答】解:∵方程ax2+bx+9=0有一个根为x1=﹣12,关于x的方程ax2+bx+9=x+有两个相等的实数根,∴144a﹣12b+9=0,(b﹣)2﹣4a(9﹣)=0,解,得:a=,b=2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的解.22.如图,在正方形ABCD中,M是AD上异于D的点,N是CD的中点,且∠AMB=∠NMB,则AM=2,求AB的长.【考点】正方形的性质;勾股定理.【分析】根据∠NMB=∠MBC,延长MN,BC相交于T,得到等腰△TBM,连接点T和MB的中点,得到相似三角形,然后由相似三角形的性质进行计算,求出∠ABM的正切,进一步求得答案即可.【解答】解:如图:延长MN交BC的延长线于T,设MB的中点为O,连TO,则OT⊥BM,∵∠ABM+∠MBT=90°,∠OTB+∠MBT=90°,∴∠ABM=∠OTB,则△BAM∽△TOB,∴=,即=,即MB2=2AM•BT ①令DN=1,CT=MD=K,则:AM=2﹣K,BM=,BT=2+K,代入①中得:4+(2﹣K)2=2(2﹣K)(2+K),解方程得:K1=0(舍去),K2=.∴AM=2﹣=.tan∠ABM==,∵AM=2,∴AB=6.【点评】本题考查了正方形的性质,勾股定理的应用,作出辅助线构建等腰三角形是本题的关键.23.如图,在△ABC中,I是内心,O是AB边上一点,⊙O经过B点且与AI相切于I点.(1)求证:AB=AC;(2)若BC=16,⊙O的半径是5,求AI的长.【考点】三角形的内切圆与内心.【分析】(1)延长AI交BC于D,连结OI,作BH⊥AC于H,如图,根据内心的性质得∠OBI=∠DBI,则可证明OI∥BD,再根据切线的性质得OI⊥AI,则BD⊥AD,加上AI平分∠BAC,所以△ABC为等腰三角形,得到AB=AC;(2)由OI∥BC,得到△AOI∽△ABD,得到比例式,再根据勾股定理求得AD==,于是就可得.【解答】解:(1)延长AI交BC于D,连结OI,作BH⊥AC于H,如图,∵I是△ABC的内心,∴BI平分∠ABC,即∠OBI=∠DBI,∵OB=OI,∴∠OBI=∠OIB,∴∠DBI=∠OIB,∴OI∥BD,∵AI为⊙O的切线,∴OI⊥AI,∴BD⊥AD,∵AI平分∠BAC,∴△ABC为等腰三角形,∴AB=AC;(2)∵OI∥BC,∴△AOI∽△ABD,∴==,∴=,∴AB=,∴AD==,∴AI=•AD=×=.【点评】本题考查了三角形的内切圆与内心,等腰三角形的判定和性质,相似三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.24.操作:有2张边长都是2的正方形纸片A和B,请你将纸片A的一边的一个端点放在纸片B的对称轴L上,另一个端点与纸片B的一个顶点重合后压平.求纸片A与纸片B重合部分的面积.【考点】翻折变换(折叠问题).【专题】分类讨论.【分析】如图,设纸片A与纸片B重合部分为四边形EFGH或四边形GFNM,根据已知条件得:EF=FG=FN=2,∠E=∠FGH=∠N=∠FGM=∠P=90°,证得R t△EFH≌R t△FGH,得到HG=EH,同理可证R t△FGM≌R t△FNM,得到GM=NM,设GM=NM=x,HG=EH=y,则PM=2﹣x,PH=2﹣y,HM=x+y,在R t△PHM中,HM2=PH2+PM2,即(x+y)2=(2﹣x)2+(2﹣y)2①,根据相似三角形的性质得到,于是得到y=﹣3x+4 ②,把②代入①,求出MN=,EH=4﹣2,即可得到结果.【解答】解:如图,设纸片A与纸片B重合部分为:四边形EFGH或四边形GFNM,根据已知条件得:EF=FG=FN=2,∠E=∠FGH=∠N=∠FGM=∠P=90°,在R t△EFH与R t△FGH中,,∴R t△EFH≌R t△FGH,∴HG=EH,同理R t△FGM≌R t△FNM,∴GM=NM,设GM=NM=x,HG=EH=y,则PM=2﹣x,PH=2﹣y,HM=x+y,在R t△PHM中,HM2=PH2+PM2,即(x+y)2=(2﹣x)2+(2﹣y)2①,∵∠GFQ=∠PMH=180°﹣∠HMN,∠FQG=∠FGM=90°,∴△FQG∽△HPM,∴,∴,∴y=﹣3x+4 ②,把②代入①,解得:x=,y=4﹣2,∴MN=,EH=4﹣2,∴四边形EFGH的面积=2×=8﹣4,四边形GFNM面积=2×=,∴纸片A与纸片B重合部分为:8﹣4,.【点评】本题考查了翻折变换﹣折叠问题,正方形的性质,三角形面积的求法,相似三角形的判定和性质,正确的画出图形是解题的关键.25.如图,正方形OABC的顶点O在坐标原点,且OA边和AB边所在直线的解析式分别为y=x和y=﹣x+.(1)求正方形OABC的边长;(2)现有动点P、Q分别从C、A同时出发,点P沿线段CB向终点B运动,速度为每秒1个单位,点Q沿折线A→O→C向终点C运动,速度为每秒k个单位,设运动时间为2秒.当k为何值时,将△CPQ沿它的一边翻折,使得翻折前后的两个三角形组成的四边形为菱形?(3)若正方形以每秒个单位的速度沿射线AO下滑,直至顶点C落在x轴上时停止下滑.设正方形在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围.【考点】一次函数综合题.【分析】(1)联立方程组求得点A的坐标即可得到结果;(2)有两种情况:①Q在OA上,则CQ=PQ时能构成菱形,根据题意列出2k=4即可求得;②Q点在OC上,则PC=QC时才能构成菱形,根据题意列出2k=8即可求得;(3)①当点A运动到点O时,t=3,当0<t≤3时,设O′C′交x轴于点D,根据三角函数的定义tan∠DOO′=,即==,求得DO′=t即可得到S=DO′•OO′=•t•t=t2;②当点C运动到x轴上时,t=(5×)÷=4,当3<t≤4时,设A′B′交x轴于点E由于A′O=t﹣5,于是得到A′E=A′O=即可得到S=(A′E+O′D)•A′O′=(+t)•5=.【解答】解:(1)联立,解得,∴A(4,3),∴OA==5,∴正方形OABC的边长为5;(2)有两种情况:①Q在OA上,则CQ=PQ时能构成菱形,∵PC=2,∴AQ=4时才能构成CQ=PQ的等腰三角形,∴2k=4,解得k=2,②Q点在OC上,∵∠PCQ是直角,∴只有沿这PQ边对折才能构成菱形,且PC=QC,∵PC=2,∴QC=2,∴2k=OA+OC﹣QC=5+5﹣2=8,∴k=4,∴当k=2或k=4时将△CPQ沿它的一边翻折,使得翻折前后的两个三角形组成的四边形为菱形;(3)①当点A运动到点O时,t=3,当0<t≤3时,设O′C′交x轴于点D,则tan∠DOO′=,即==,∴DO′=t,∴S=DO′•OO′=•t•t=t2,②当点C运动到x轴上时,t=(5×)÷=4,当3<t≤4时,设A′B′交x轴于点E,∵A′O=t﹣5,∴A′E=A′O=,∴S=(A′E+O′D)•A′O′=(+t)•5=.【点评】本题看出来待定系数法求解析式,应用勾股定理求线段的长,菱形的性质等,分类讨论是解本题的关键.26.已知抛物线y=ax2+x+c(a≠0)经过A(﹣1,0),B(2,0)两点,与y轴相交于点C.(1)求该抛物线的解析式;(2)点E是该抛物线上一动点,且位于第一象限,当点E到直线BC的距离最大时,求点E的坐标;(3)在(2)的条件下,在x轴上有一点P,且∠EAO+∠EPO=∠α,当tanα=2时,求点P的坐标.【考点】二次函数综合题.【专题】综合题.【分析】(1)把A(﹣1,0),B(2,0)两点代入抛物线y=ax2+x+c(a≠0)求出a,c的值,再求出其顶点坐标即可;(2)作EN∥BC,交y轴于N,过C作CM⊥EN于M,令x=0求出y的值,故可得出∠OCB=45°.根据EN∥BC可知∠CNM=∠OCB=45°.由CM⊥EN于M得出∠CNM=∠CMN=45°.MN=CM=,CN=1.故可得出直线NE的解析式,进而可得出E点坐标;(3)过E作EF⊥AB于F,根据E(1,2)可知tan∠EOF=2,再由tan∠α=2得出∠EOF=∠α,利用等量代换得出∠EPO=∠AEO,故可得出△AEP∽△AOE,根据勾股定理得出AE的长,根据AP=8,OP=7可知P(7,0),由对称性可得P'的坐标,进而可得出结论.【解答】解:(1)将A(﹣1,0),B(2,0)分别代入y=ax2+x+c得,,解得,所以二次函数解析式为y=﹣x2+x+2;(2)设E(x,﹣x2+x+2),作EH⊥BC于H,EF⊥x轴于F,交BC于D,如图1,当x=0时,y=﹣x2+x+2=2,则C(0,2),∵OB=OC=2,∴△OBC为等腰直角三角形,∴∠FBD=45°,∴∠EDH=∠BDF=45°,∴△DEH为等腰直角三角形,∴EH=ED,易得直线BC的解析式为y=﹣x+2,则D(x,﹣x+2),∴ED=﹣x2+x+2﹣(﹣x+2)=﹣x2+2x,∴EH=(﹣x2+2x)=﹣(x﹣1)2+,当x=1时,EH有最大值,此时E点坐标为(1,2);(3)(3)如图2,过E作EF⊥AB于F,∵E(1,2),∴tan∠EOF=2,又∵tan∠α=2,∴∠EOF=∠α,∵∠EOF=∠EAO+∠AEO=∠α,∠EAO+∠EPO=∠α,∴∠EPO=∠AEO,∵∠EAO=∠PAE,∴△AEP∽△AOE,∴=,∵AE==2,AO=1,∴AP=8,∴OP=7,∴P(7,0),由对称性可得,P'(﹣5,0),∴P(7,0)或(﹣5,0).【点评】本题考查的是二次函数综合题,涉及到二次函数图象上点的坐标特点、锐角三角函数的定义及相似三角形的判定与性质、勾股定理等知识,难度较大.。
泰兴二模中考数学试卷

一、选择题(每题3分,共30分)1. 下列各数中,无理数是()A. √4B. 0.1010010001...C. -πD. 2/32. 已知二次函数y=ax^2+bx+c(a≠0)的图象与x轴有两个不同的交点,且a>0,则下列结论正确的是()A. a>bB. b>cC. a+c>bD. b+c>a3. 在三角形ABC中,角A、B、C的对边分别为a、b、c,且a=5,b=7,c=8,则角C的度数是()A. 45°B. 60°C. 90°D. 120°4. 下列各式中,正确的是()A. (x+y)^2 = x^2 + 2xy + y^2 + 2xyB. (x-y)^2 = x^2 - 2xy + y^2C. (x+y)^2 = x^2 - 2xy + y^2D. (x-y)^2 = x^2 + 2xy + y^25. 下列函数中,奇函数是()A. y=x^2B. y=|x|C. y=x^3D. y=2x6. 已知等腰三角形ABC中,AB=AC,底边BC=8cm,腰长为10cm,则底角B的度数是()A. 30°B. 45°C. 60°D. 90°7. 在平面直角坐标系中,点P的坐标为(-2,3),点Q在y轴上,且PQ=5,则点Q的坐标可能是()A. (2,3)B. (-2,-2)C. (0,8)D. (0,-8)8. 下列各式中,正确的是()A. sin(π/2) = 1B. cos(π/2) = 0C. tan(π/2) = 0D. cot(π/2) = 19. 已知等差数列{an}的前n项和为Sn,且S10=55,S15=135,则公差d=()A. 1B. 2C. 3D. 410. 下列各式中,正确的是()A. log2(8) = 3B. log2(16) = 2C. log2(4) = 1D. log2(2) = 0二、填空题(每题5分,共30分)11. 已知sinα=1/2,则cos(α+π/2)的值为______。
专题25:旋转变换(含中心对称)

2015年江苏省各地中考数学模拟优质试题分项版解析汇编专题25:旋转变换(含中心对称)一、选择题1.【昆山市二模】下列图形中既是轴对称图形,又是中心对称图形的是()A、等腰梯形B、平行四边形C、正方形D、正五边形2.【泰兴市二模】如图是一个由7个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是()A、主视图和俯视图B、俯视图C、俯视图和左视图D、主视图4.【盐城市滨海县一模】下列图形中,不是中心对称图形的是()5.【南京市鼓楼区一模】下列图形中,既是轴对称图形又是中心对称图形的是()6.【徐州市二模】如图,AB 为半圆的直径,且AB =4,半圆绕点B 顺时针旋转45°,点A 旋转到A ′的位置,则图中阴影部分的面积为( )A 、πB 、2πC 、2D 、4π7.【仪征市一模】如图,将△ABC 绕点C (0,﹣1)旋转180°得到△A ′B ′C ,设点A ′的坐标为(a ,b ),则点A 的坐标为( )A . (﹣a ,﹣b )B . (﹣a ,﹣b ﹣1)C . (﹣a ,﹣b +1)D . (﹣a ,﹣b ﹣2)8.【江阴市要塞片二模】如图,平面直角坐标系中,OB 在x 轴上,∠ABO =90°,点A 的坐标为(1,2),将△AOB 绕点A 逆时针旋转90°,点O 的对应点C 恰好落在双曲线y =k x(x >0)上,则k 的值为( )A 、2B 、3C 、4D 、69.【泰州市姜堰区一模】下列电视台的台标,是中心对称图形的是( )10.【铜山县】下列图形中,既是中心对称图形又是轴对称图形的是()11.【苏州市吴江区一模】在平面直角坐标系中,将直线x=0绕原点顺时针旋转45°,再向上平移1个单位后得到直线a,则直线a对应的函数表达式为()A.y=x B.y=x-1 C.y=x+1 D.y=-x+1二、填空题1.【高邮市二模】如图,已知正方形ABCD的顶点A、B在⊙O上,顶点C、D在⊙O内,将正方形ABCD绕点逆时针旋转,使点D落在⊙O上.若正方形ABCD的边长和⊙O的半径均为6cm,则点D运动的路径长为cm.2.【南京市建邺区二模】直角坐标系中点A坐标为(5,3),B坐标为(1,0),将点A绕点B逆时针旋转90°得到点C,则点C的坐标为.3.【苏州市一模】在Rt△ABC中,斜边AB=4,∠B=60°,将△ABC绕点B旋转60°,顶点C 运动的路线长是(结果保留π).4.【徐州市一模】在等腰三角形、平行四边形、矩形、正方形、正五边形中,既是轴对称图形又是中心对称图形的图形有个.5.【南京市浦口区一模】如图,将边长为6的正方形ABCD绕点C顺时针旋转30°得到正方形A′B′CD′,则点A的旋转路径长为.(结果保留π)三、解答题1.【泰兴市二模】如图线段AB的端点在边长为1的正方形网格的格点上,现将线段AB绕点A按逆时针方向旋转90°得到线段A C.(1)请你用尺规在所给的网格中画出线段AC及点B经过的路径;(2)若将此网格放在一平面直角坐标系中,已知点A的坐标为(1,3),点B的坐标为(-2,-1),则点C的坐标为;(3)线段AB在旋转到线段AC的过程中,线段AB扫过的区域的面积为;(4)若有一张与(3)中所说的区域形状相同的纸片,将它围成一个几何体的侧面,则该几何体底面圆的半径长为2.【南京市鼓楼区二模】如图,线段AB绕点O顺时针旋转一定的角度得到线段A1B1.(1)请用直尺和圆规作出旋转中心O(不写作法,保留作图痕迹);(2)连接O A、OA1、O B、OB1,根据旋转的性质用符号语言写出2条不同类型的正确结论;(3)针对第(2)问中的图形,添加一定的条件,可以求出线段AB扫过的面积.(不再添加字母和辅助线,线段的长用A、B、c…表示,角的度数用α、β、γ…表示).你添加的条件是,线段AB扫过的面积是.3.【扬州市宝应县一模】已知:如图所示,△ABC为任意三角形,若将△ABC绕点C顺时针旋转180°得到△DE C.(1)试猜想AE与BD有何关系?并且直接写出答案.(2)若△ABC的面积为4cm2,求四边形ABDE的面积;(3)请给△ABC添加条件,使旋转得到的四边形ABDE为矩形,并说明理由.4.【南京市鼓楼区一模】【问题提出】如图1,四边形ABCD中,AD=CD,∠ABC=120°,∠ADC=60°,AB=2,BC=1,求四边形ABCD的面积.【尝试解决】旋转是一种重要的图形变换,当图形中有一组邻边相等时,往往可以通过旋转解决问题.(1)如图2,连接BD,由于AD=CD,所以可将△DCB绕点D顺时针方向旋转60°,得到△DAB′,则△BDB′的形状是.(2)在(1)的基础上,求四边形ABCD的面积.[类比应用]如图3,四边形ABCD中,AD=CD,∠ABC=75°,∠ADC=60°,AB=2,BC求四边形ABCD的面积.5.【徐州市一模】如图所示,在平面直角坐标系中,矩形ODEF的对角线OE在y轴上,将矩形ODEF横坐标原点O按逆时针方向旋转60°后,得到矩形OCAB,点E的对应点为点A,点F的对应点为x轴上点B,已知抛物线y=ax2+bx+2经过点A、D、E三点.(1)请直接写出点A和点D的坐标,点A(,)和点D(,);(2)求该抛物线的函数表达式;(3)若点P是x轴的上方抛物线上一动点,那么在x轴的上方是否存在另一点Q,使得以点O、B、P、Q为顶点的平行四边形的面积是矩形ABOC面积的2倍?若存在,请求出点Q的坐标;若不存在,请说明理由.6.【常州市武进区一模】如图,每个网格都是边长为1个单位的小正方形,△ABC的每个顶点都在网格的格点上,且∠C=90°,AC=3,BC=4.(1)试在图中作出△ABC以点A为旋转中心,按顺时针方向旋转90°后得到的图形△AB1C1;(2)试在图中建立直角坐标系,使x轴∥AC,且点B的坐标为(﹣3,5);(3)在(1)与(2)的基础上,若点P、Q是x轴上两点(点P在点Q左侧),PQ长为2个单位,则当点P的坐标为时,AP+PQ+QB1最小,最小值是个单位.7.【宿迁市泗阳县一模】如图1,在正方形ABCD中,点E、F分别在边B C、CD上,且BE=DF,点P是AF的中点,点Q是直线AC与EF的交点,连接PQ、P D.(1)求证:AC垂直平分EF;(2)试判断△PDQ的形状,并加以证明;(3)如图2,若将△CEF绕着点C旋转180°,其余条件不变,则(2)中的结论还成立吗?若成立,请加以证明;若不成立,请说明理由.8.【江阴市要塞片二模】用如图①,②所示的两个直角三角形(部分边长及角的度数在图中已标出),完成以下两个探究问题:探究一:将以上两个三角形如图③拼接(BC和ED重合),在BC边上有一动点P.(1)当点P运动到∠CFB的角平分线上时,连接AP,求线段AP的长;(2)当点P在运动的过程中出现PA=FC时,求∠PAB的度数.探究二:如图④,将△DEF的顶点D放在△ABC的BC边上的中点处,并以点D为旋转中心旋转△DEF,使△DEF的两直角边与△ABC的两直角边分别交于M、N两点,连接MN.在旋转△DEF的过程中,△AMN的周长是否存在有最小值?若存在,求出它的最小值;若不存在,请说明理由.9.【盐城市大丰市一模】将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n 倍,得△AB′C′,即如图①,我们将这种变换记为[θ,n].(1)如图①,对△ABC作变换[60°得△AB′C′,则S△AB′C′:S△ABC= ;直线BC与直线B′C′所夹的锐角为度;(2)如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC作变换[θ,n]得△AB′C′,使点B、C、C′在同一直线上,且四边形ABB'C'为矩形,求θ和n的值;(3)如图③,△ABC中,AB=AC,∠BAC=36°,BC=1,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB′C′为平行四边形,求θ和n的值.10.【铜山县】】如图,在方格纸上建立平面直角坐标系,每个小正方形的边长为1.(1)画出△AOB关于x轴对称的△A1OB1.(2)画出将△AOB绕点O顺时针旋转90°的△A2OB2,并判断△A1OB1和△A2OB2在位置上有何关系?若成中心对称,请直接写出对称中心坐标;如成轴对称,请直接写出对称轴的函数关系式.(3)若将△AOB绕点O旋转360°,试求出线段AB扫过的面积.11.【铜山县】在矩形ABCD中,点P在AD上,AB=2,AP=1.将直角尺的顶点放在P处,直角尺的两边分别交AB,BC于点E,F,连接EF(如图①).(1)当点E与点B重合时,点F恰好与点C重合(如图②),求PC的长;(2)探究:将直尺从图②中的位置开始,绕点P顺时针旋转,当点E和点A重合时停止.在这个过程中,请你观察、猜想,并解答:①tan∠PEF的值是否发生变化?请说明理由;②直接写出从开始到停止,线段EF的中点经过的路线长.。
2015年江苏省泰州市中考数学试题及参考答案(word解析版)

2015年江苏省泰州市中考数学试题及参考答案与解析一、选择题(本大题共6小题,每小题3分,满分18分,在每小题所给出的四个选项中,恰有一项符合题目要求的)1.13-的绝对值是()A.﹣3 B.13C.13-D.32.下列4227、π、,其中无理数是()A B.227C.πD.3.描述一组数据离散程度的统计量是()A.平均数B.众数C.中位数D.方差4.一个几何体的表面展开图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱5.如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为()A.(0,1)B.(1,﹣1)C.(0,﹣1)D.(1,0)6.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对二、填空题(本大题共有10小题,每小题3分,共30分)7.2﹣1等于.8.我市2014年固定资产投资约为220 000 000 000元,将220 000 000 000用科学记数法表示为.9等于.10.如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=.11.圆心角为120°,半径长为6cm的扇形面积是cm2.12.如图,⊙O的内接四边形ABCD中,∠A=115°,则∠BOD等于.13.事件A发生的概率为110,大量重复做这种试验,事件A平均每100次发生的次数是.14.如图,△ABC中,D为BC上一点,∠BAD=∠C,AB=6,BD=4,则CD的长为.15.点(a﹣1,y1)、(a+1,y2)在反比例函数kyx=(k>0)的图象上,若y1<y2,则a的范围是.16.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为.三、解答题(本大腿共10小题,满分102分;解答时应写出必要的文字说明,证明过程或演算步骤)17.(12分)(1)解不等式:12131 2x xx-⎧⎪⎨+-⎪⎩><;(2)计算:352242 aaa a-⎛⎫÷+-⎪--⎝⎭18.(8分)已知:关于x的方程x2+2mx+m2﹣1=0(1)不解方程,判别方程根的情况;(2)若方程有一个根为3,求m的值.19.(8分)为了解学生参加社团的情况,从2010年起,某市教育部门每年都从全市所有学生中随机抽取2000名学生进行调查,图①、图②是部分调查数据的统计图(参加社团的学生每人只能报一项)根据统计图提供的信息解决下列问题:(1)求图②中“科技类”所在扇形的圆心角α的度数(2)该市2012年抽取的学生中,参加体育类与理财类社团的学生共有多少人?(3)该市2014年共有50000名学生,请你估计该市2014年参加社团的学生人数.20.(8分)一只不透明袋子中装有1个红球,2个黄球,这些球除颜色外都相同,小明搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出1个球,用画树状图或列表法列出摸出球的所有等可能情况,并求两次摸出的球都是红球的概率.21.(10分)某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?22.(10分)已知二次函数y=x2+mx+n的图象经过点P(﹣3,1),对称轴是经过(﹣1,0)且平行于y轴的直线.(1)求m、n的值;(2)如图,一次函数y=kx+b的图象经过点P,与x轴相交于点A,与二次函数的图象相交于另一点B,点B在点P的右侧,PA:PB=1:5,求一次函数的表达式.23.(10分)如图,某仓储中心有一斜坡AB,其坡度为i=1:2,顶部A处的高AC为4m,B、C 在同一水平地面上.(1)求斜坡AB的水平宽度BC;(2)矩形DEFG为长方体货柜的侧面图,其中DE=2.5m,EF=2m,将该货柜沿斜坡向上运送,当BF=3.5m时,求点D离地面的高.,结果精确到0.1m)24.(10分)如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.(1)试说明DF是⊙O的切线;(2)若AC=3AE,求tanC.25.(12分)如图,正方形ABCD的边长为8cm,E、F、G、H分别是AB、BC、CD、DA上的动点,且AE=BF=CG=DH.(1)求证:四边形EFGH是正方形;(2)判断直线EG是否经过一个定点,并说明理由;(3)求四边形EFGH面积的最小值.26.(14分)已知一次函数y=2x ﹣4的图象与x 轴、y 轴分别相交于点A 、B ,点P 在该函数的图象上,P 到x 轴、y 轴的距离分别为d 1、d 2. (1)当P 为线段AB 的中点时,求d 1+d 2的值;(2)直接写出d 1+d 2的范围,并求当d 1+d 2=3时点P 的坐标;(3)若在线段AB 上存在无数个P 点,使d 1+ad 2=4(a 为常数),求a 的值.参考答案与解析一、选择题(本大题共6小题,每小题3分,满分18分,在每小题所给出的四个选项中,恰有一项符合题目要求的)1.13-的绝对值是( ) A .﹣3 B .13 C .13- D .3【知识考点】绝对值.【知识考点】根据负数的绝对值等于它的相反数即可求解. 【解答过程】解:13-的绝对值是13, 故选B【总结归纳】考查了绝对值,计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.2.下列4227、π、0,其中无理数是( )A B .227C .πD .0【知识考点】无理数;零指数幂.【知识考点】根据无理数是无限不循环小数,可得答案. 【解答过程】解:π是无理数, 故选:C .【总结归纳】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省泰州市泰兴市2015届中考数学二模试题一.选择题1.在﹣5,0,﹣3,6这四个数中,最小的数是()A.﹣3 B.0 C.﹣5 D.62.下列计算或化简正确的是()A.﹣a(a﹣b)﹣ab=﹣a2B.a2+a3=a5C.D.3.已知m为﹣9,﹣6,﹣5,﹣3,﹣2,2,3,5,6,9中随机取的一个数,则m4>100的概率为()A.B.C.D.4.选择用反证法证明“已知:在△ABC中,∠C=90°.求证:∠A,∠B中至少有一个角不大于45°.”时,应先假设()A.∠A>45°,∠B>45° B.∠A≥45°,∠B≥45°C.∠A<45°,∠B<45° D.∠A≤45°,∠B≤45°5.如图是一个由7个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是()A.主视图和俯视图B.俯视图C.俯视图和左视图D.主视图6.下列说法不正确的是()A.了解全市中学生对泰州“三个名城”含义的知晓度的情况,适合用抽样调查B.若甲组数据方差=0.39,乙组数据方差=0.27,则乙组数据比甲组数据稳定C.某种彩票中奖的概率是,买100张该种彩票一定会中奖D.数据﹣1、1.5、2、2、4的中位数是2.7.如图,平面直角坐标系中,△ABC的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线与△ABC有交点时,b的取值范围是()A.﹣1≤b≤1B.﹣≤b≤1C.﹣≤b≤D.﹣1≤b≤8.如图,平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(1,2),将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在双曲线y=(x>0)上,则k的值为()A.2 B.3 C.4 D.6二.填空题9.地球距离月球表面约为384000千米,将这个距离用科学记数法表示为米.10.分解因式:2a3﹣4a2+2a= .11.已知x=﹣1是一元二次方程ax2+bx﹣10=0的一个解,且a≠﹣b,则的值为.12.通过计算可以得到下列式子:15=1,25=32,35=243,45=1024,55=3125,195=2076099,…,那么:5811的个位上的数字是.13.如图,▱ABCD中,AC⊥AB.AB=6cm,BC=10cm,E是CD上的点,DE=2CE.点P从D点出发,以1cm/s的速度沿DA→AB→BC运动至C点停止.则当△EDP为等腰三角形时,运动时间为s.14.如图,Rt△ABC中,∠B=90°,正方形EFDQ、正方形MNPQ公共顶点记为点Q,其余的各个顶点都在Rt△ABC的边上,若AC=5,BC=3,则EP= .15.如图,△ABC内接于⊙O,半径为5,BC=6,CD⊥AB于D点,则tan∠ACD的值为.16.如图,P为△ABC内一点,∠BAC=30°,∠ACB=90°,∠BPC=120°.若BP=,则△PAB的面积为.17.如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=5,E为DC中点,tan∠C=.则AE的长度为.18.如图,定长弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),M是CD 的中点,过点C作CP⊥AB于点P,若CD=3,AB=8,PM=l,则l的最大值是.三.解答题(共96分)19.(1)计算:|﹣|+(﹣)﹣1﹣2sin45°+()0(2)先化简,再求值:( +)÷,其中a=.20.有红、白、蓝三种颜色的小球各一个,它们除颜色外没有其它任何区别.现将3个小球放入编号为①、②、③的三个盒子里,规定每个盒子里放一个,且只能放一个小球.(1)请用树状图列举出3个小球放入盒子的所有可能情况;(2)求白球恰好被放入③号盒子的概率.21.“校园手机”现象越来越受到社会的关注.小丽在“统计实习”活动中随机调查了学校若干名学生家长对“中学生带手机到学校”现象的看法,统计整理并制作了如下的统计图:(1)求这次调查的家长总数及家长表示“无所谓”的人数,并补全图①;(2)求图②中表示家长“无所谓”的圆心角的度数;(3)从这次接受调查的家长中,随机抽查一个,恰好是“不赞成”态度的家长的概率是多少.22.温岭是受台风影响较为严重的城市之一.如图,坡上有一颗与水平面EF垂直的大树AB,台风过后,大树倾斜后折断倒在山坡上,大树顶部B接触到坡面上的D点.已知山坡的坡角∠AEF=30°,量得树干倾斜角∠BAC=45°,大树被折断部分和坡面所成的角∠ADC=60°且AD=4米.(1)求∠CAE的度数;(2)求这棵大树折断前的高度AB.(结果精确到个位,参考数据:≈1.4,≈1.7,≈2.4)23.如图线段AB的端点在边长为1的正方形网格的格点上,现将线段AB绕点A按逆时针方向旋转90°得到线段AC.(1)请你用尺规在所给的网格中画出线段AC及点B经过的路径;(2)若将此网格放在一平面直角坐标系中,已知点A的坐标为(1,3),点B的坐标为(﹣2,﹣1),则点C的坐标为;(3)线段AB在旋转到线段AC的过程中,线段AB扫过的区域的面积为;(4)若有一张与(3)中所说的区域形状相同的纸片,将它围成一个几何体的侧面,则该几何体底面圆的半径长为.24.如图,在△ABC中,AB=AC,点D在边AB上,以点A为圆心,线段AD的长为半径的⊙A 与边AC相交于点E,AF⊥DE,垂足为点F,AF的延长线与边BC相交于点G,联结GE.已知DE=10,,.求:(1)⊙A的半径AD的长;(2)∠EGC的余切值.25.如图1,正方形ABCD中,E为BC上一点,过B作BG⊥AE于G,延长BG至点F使∠CFB=45°(1)求证:AG=FG;(2)如图2延长FC、AE交于点M,连接DF、BM,若C为FM中点,BM=10,求FD的长.26.张经理到老王的果园里一次性采购一种水果,他俩商定:张经理的采购价y(元/吨)与采购量x(吨)之间函数关系的图象如图中的折线段ABC所示(不包含端点A,但包含端点C).(1)求y与x之间的函数关系式;(2)已知老王种植水果的成本是2 800元/吨,那么张经理的采购量为多少时,老王在这次买卖中所获的利润w最大?最大利润是多少?27.有一个装有进出水管的容器,单位时间内进水管与出水管的进出水量均一定,已知容器的容积为600升,图中线段OA与BC分别表示单独打开一个进水管和单独打开一个出水管时,容器内的水量Q(升)随时间t(分)变化的函数关系.根据图象进行以下探究:(1)求进水管的进水速度和出水管的出水速度;(2)求线段BC所表示的Q与t之间的函数关系式,并写出自变量t的取值范围;(3)现已知水池内有水200升,先打开两个进水管和一个出水管2分钟,再关上一个进水管,直至把容器放满,关上所有水管;3分钟后,同时打开三个出水管,直至把容器中的水放完,画出这一过程的函数图象;并求出在这个过程中容器内的水量Q与t的函数关系式,并写出自变量t的取值范围.28.如图,平面直角坐标系中O为坐标原点,直线y=x+6与x轴、y轴分别交于A、B两点,C为OA中点;(1)求直线BC解析式;(2)动点P从O出发以每秒2个单位长度的速度沿线段OA向终点A运动,同时动点Q从C出发沿线段CB以每秒个单位长度的速度向终点B运动,过点Q作QM∥AB交x轴于点M,若线段PM的长为y,点P运动时间为t(s),求y于t的函数关系式;(3)在(2)的条件下,以PC为直径作⊙N,求t为何值时直线QM与⊙N相切.2015年江苏省泰州市泰兴市中考数学二模试卷参考答案与试题解析一.选择题1.在﹣5,0,﹣3,6这四个数中,最小的数是()A.﹣3 B.0 C.﹣5 D.6【考点】有理数大小比较.【分析】根据负数都小于0,负数都小于正数,负数都小于正数,两个负数比较大小,其绝对值大的反而小比较即可.【解答】解:∵负数都小于0,负数都小于正数,∴﹣5和﹣3小,∵|﹣5|=5,|﹣3|=3,5>3,∴﹣5<﹣3,即最小的数是﹣5,故选C.【点评】本题考查了绝对值和有理数的大小比较的应用,注意:有理数的大小比较法则是负数都小于0,负数都小于正数,负数都小于正数,两个负数比较大小,其绝对值大的反而小.2.下列计算或化简正确的是()A.﹣a(a﹣b)﹣ab=﹣a2B.a2+a3=a5C.D.【考点】二次根式的混合运算;整式的混合运算.【分析】求出每个式子的值,再进行判断即可.【解答】解:A、﹣a(a﹣b)﹣ab=﹣a2+ab﹣ab=﹣a2,故本选项正确;B、a2和a3不能合并,故本选项错误;C、+3=+3×=+,和不能合并,故本选项错误;D、=3,故本选项错误;故选A.【点评】本题考查了二次根式的混合运算和整式的混合运算的应用,主要考查学生的计算能力和辨析能力.3.已知m为﹣9,﹣6,﹣5,﹣3,﹣2,2,3,5,6,9中随机取的一个数,则m4>100的概率为()A.B.C.D.【考点】概率公式.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.本题共有10个数,满足条件的有6个,则可得到所求的结果.【解答】解:∵只有(﹣3)4=81,(﹣2)4=16,34=81,24=16小于100,∴m为﹣9,﹣6,﹣5,﹣3,﹣2,2,3,5,6,9中随机取的一个数,则m4>100的概率为: =.故选:D.【点评】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.4.选择用反证法证明“已知:在△ABC中,∠C=90°.求证:∠A,∠B中至少有一个角不大于45°.”时,应先假设()A.∠A>45°,∠B>45° B.∠A≥45°,∠B≥45°C.∠A<45°,∠B<45° D.∠A≤45°,∠B≤45°【考点】反证法.【分析】用反证法证明命题的真假,应先按符合题设的条件,假设题设成立,再判断得出的结论是否成立即可.【解答】解:用反证法证明命题“∠A,∠B中至少有一个角不大于45°”时,应先假设∠A >45°,∠B>45°.故选:A.【点评】此题主要考查了反证法,反证法证明数学命题的方法和步骤,把要证的结论进行否定,得到要证的结论的反面,是解题的突破口.5.如图是一个由7个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是()A.主视图和俯视图B.俯视图C.俯视图和左视图D.主视图【考点】简单组合体的三视图;轴对称图形;中心对称图形.【分析】首先把此几何体的三视图画出来,然后根据轴对称图形和中心对称图形的定义矩形判断即可.【解答】解:该几何体的主视图为既不是轴对称图形又不是中心对称图形;该几何体的左视图为是轴对称图形不是中心对称图形;该几何体的俯视图为既是轴对称图形又是中心对称图形;故选B.【点评】此题主要考查了三视图的几何知识,考查了学生的空间思维想象能力.6.下列说法不正确的是()A.了解全市中学生对泰州“三个名城”含义的知晓度的情况,适合用抽样调查B.若甲组数据方差=0.39,乙组数据方差=0.27,则乙组数据比甲组数据稳定C.某种彩票中奖的概率是,买100张该种彩票一定会中奖D.数据﹣1、1.5、2、2、4的中位数是2.【考点】全面调查与抽样调查;中位数;方差;概率的意义.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似;以及方差的意义,概率公式中位数的定义对各选项分析判断后利用排除法求解.【解答】解:A、了解全市中学生对泰州“三个名城”含义的知晓度的情况,知道大概情况即可,适合用抽样调查,正确,故本选项错误;B、0.39<0.27,乙组数据比甲组数据稳定,正确,故本选项错误;C、概率是针对数据非常多时,趋近的一个数,所以概率是,并不能说买100张该种彩票就一定能中奖,错误,故本选项正确;D、五个数按照从小到大排列,第3个数是2,所以,中位数是2,正确,故本选项错误.故选C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查,方差的意义,概率的意义以及中位数的定义.7.如图,平面直角坐标系中,△ABC的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线与△ABC有交点时,b的取值范围是()A.﹣1≤b≤1B.﹣≤b≤1C.﹣≤b≤D.﹣1≤b≤【考点】一次函数的性质.【分析】将A(1,1),B(3,1),C(2,2)的坐标分别代入直线中求得b的值,再根据一次函数的增减性即可得到b的取值范围.【解答】解:将A(1,1)代入直线中,可得+b=1,解得b=;将B(3,1)代入直线中,可得+b=1,解得b=﹣;将C(2,2)代入直线中,可得1+b=2,解得b=1.故b的取值范围是﹣≤b≤1.故选B.【点评】考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.8.如图,平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(1,2),将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在双曲线y=(x>0)上,则k的值为()A.2 B.3 C.4 D.6【考点】反比例函数图象上点的坐标特征;坐标与图形变化-旋转.【分析】由旋转可得点D的坐标为(3,2),那么可得到点C的坐标为(3,1),那么k 等于点C的横纵坐标的积.【解答】解:易得OB=1,AB=2,∴AD=2,∴点D的坐标为(3,2),∴点C的坐标为(3,1),∴k=3×1=3.故选:B.【点评】解决本题的关键是利用旋转的性质得到在反比例函数上的点C的坐标.二.填空题9.地球距离月球表面约为384000千米,将这个距离用科学记数法表示为 3.84×108 米.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将384000千米=384000000米,用科学记数法表示为3.84×108.故答案为:3.84×108.【点评】此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.分解因式:2a3﹣4a2+2a= 2a(a﹣1)2.【考点】提公因式法与公式法的综合运用.【专题】计算题.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=2a(a2﹣2a+1)=2a(a﹣1)2,故答案为:2a(a﹣1)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.11.已知x=﹣1是一元二次方程ax2+bx﹣10=0的一个解,且a≠﹣b,则的值为 5 .【考点】一元二次方程的解.【分析】方程的解是使方程左右两边成立的未知数的值.同时注意根据分式的基本性质化简分式.【解答】解:∵x=﹣1是一元二次方程ax2+bx﹣10=0的一个解,∴a﹣b﹣10=0,∴a﹣b=10.∵a≠﹣b,∴a+b≠0,∴====5,故答案是:5.【点评】本题考查了一元二次方程的定义,得到a﹣b的值,首先把所求的分式进行化简,并且本题利用了整体代入思想.12.通过计算可以得到下列式子:15=1,25=32,35=243,45=1024,55=3125,195=2076099,…,那么:5811的个位上的数字是 2 .【考点】尾数特征.【分析】由581的尾数为1×8=8,582的尾数为8×8=64的尾数4,583的尾数为4×8=32的尾数2,584的尾数为2×8=16的尾数6,585的尾数为6×8=48的尾数8,可得出58n的尾数以8,4,2,6四个数为周期循环,比较11与4的关系即可得出结论.【解答】解:581的尾数为1×8=8,582的尾数为8×8=64的尾数4,583的尾数为4×8=32的尾数2,584的尾数为2×8=16的尾数6,585的尾数为6×8=48的尾数8,由此发现58n的尾数以8,4,2,6四个数为周期循环.∵11÷4=8…3,∴5811的个位上的数字是2.故答案为:2.【点评】本题考查了幂函数的周期性,解题的关键是寻找到58n的尾数以8,4,2,6四个数为周期循环.13.如图,▱ABCD中,AC⊥AB.AB=6cm,BC=10cm,E是CD上的点,DE=2CE.点P从D点出发,以1cm/s的速度沿DA→AB→BC运动至C点停止.则当△EDP为等腰三角形时,运动时间为或4或4.8或(27.2﹣)s.【考点】平行四边形的性质;等腰三角形的性质;勾股定理.【专题】动点型.【分析】先求出DE、CE的长,再分①点P在AD上时,PD=DE,列式求解即可;PD=PE时,根据等腰三角形三线合一的性质,过点P作PF⊥CD于F,根据AC⊥AB可得AC⊥CD,然后求出△ACD和△PFD相似,根据相似三角形对应边成比例列式求出PD,从而得解;②点P在BC 上时,利用勾股定理求出AC的长,过点A作AF⊥BC于F,过点E作EG⊥BC的延长线于G,根据三角形的面积求出AF的长,再利用勾股定理列式求出BF的长,然后求出△ABF和△ECG 相似,根据相似三角形对应边成比例列式求出EG、CG,利用勾股定理列式求出PG,然后求出CP,再求出点P运动的路程,然后求出时间即可.【解答】解:在▱ABCD中,∵AB=6cm,∴CD=AB=6cm,∵DE=2CE,∴DE=4cm,CE=2cm,①点P在AD上时,若PD=DE,则t=4,若PD=PE,如图1,过点P作PF⊥CD于F,∵AC⊥AB,∴AC⊥CD,∴△ACD∽△PFD,∴=,即=,解得PD=,若EP=ED=4,通过相似和三角形的三线合一可以解出当PD=4.8时候,△EPD是以EP和ED 为等腰的一个等腰三角形.则t=4.8.②点P在BC上时PE=DE=4,∵AC⊥AB,AB=6cm,BC=10cm,∴AC===8,过点A作AF⊥BC于F,过点E作EG⊥BC的延长线于G,S△ABC=×6×8=×10AF,解得AF=4.8,根据勾股定理,BF===3.6,∵平行四边形ABCD的边AB∥CD,∴∠B=∠ECG,又∵∠AFB=∠EGC=90°,∴△ABF∽△ECG,∴==,即==,解得EG=1.6,CG=1.2,根据勾股定理,PG===,∴PC=PG﹣CG=﹣1.2,点P运动的路程为10+6+10﹣(﹣1.2)=27.2﹣,∵点P的速度为1cm/s,∴点P运动的时间为秒或4秒或27.2﹣秒.故答案为:或4或4.8或27.2﹣.【点评】本题考查了平行四边形的性质,等腰三角形的性质,勾股定理的应用,相似三角形的判定与性质,综合题,难点在于要分情况讨论.14.如图,Rt△ABC中,∠B=90°,正方形EFDQ、正方形MNPQ公共顶点记为点Q,其余的各个顶点都在Rt△ABC的边上,若AC=5,BC=3,则EP= .【考点】相似三角形的判定与性质;全等三角形的判定与性质;勾股定理;正方形的性质.【专题】压轴题.【分析】过P作BC垂线,垂足为G,可证△QDM≌△MBN≌△NGP,△AEF∽△PGC∽△ABC设EF=3a,CG=3b,则AE=5a,AF=4a,PC=5b,PG=4b,可列二元一次方程组:3a+7b=3,10a+4b=4,求出a、b的值,代入EP=5﹣5a﹣5b求出即可.【解答】解:在Rt△ABC中,∠B=90°,AC=5,BC=3,由勾股定理得:AB=4,过P作PG⊥BC于G,∵四边形EFDQ和四边形QMNP是正方形,∴∠CGP=∠QMN=∠QDF=∠B=90°,PN=MN=MQ,∴∠GPN+∠GNP=90°,∠GNP+∠BNM=90°,∴∠GPN=∠BNM,同理∠BNM=∠QMD,在△GPN、△BNM、△DMQ中,∠PGN=∠B=∠QDM=90°,∠GPN=∠BNM=∠DMQ,PN=MN=QM,∴△QDM≌△MBN≌△NGP,∴PG=BN=DM,GN=BM=DQ,∵∠PGC=∠B=90°,∴△CGP∽△CBA,∴==,∴=同理=, =,设EF=3a,CG=3b,则AE=5a,AF=4a,PC=5b,PG=4b=BN=DM,GN=BM=DQ=EF=3a,可列一元二次方程组:解得:a=,b=EP=5﹣5a﹣5b=,故答案为:.【点评】本题考查了正方形性质,相似三角形的性质和判定,三角形内角和定理,全等三角形的性质和判定,勾股定理的应用,主要考查学生运用定理进行推理和计算的能力,有一定的难度.15.如图,△ABC内接于⊙O,半径为5,BC=6,CD⊥AB于D点,则tan∠ACD的值为.【考点】圆周角定理;勾股定理;锐角三角函数的定义.【分析】作直径BE,连接CE,作CF⊥BE于点F,则在直角△BCE中可以利用勾股定理求得EC的长,然后证明∠EBC=∠ECF=∠ACD,求得tan∠EBC即可.【解答】解:作直径BE,连接CE,作CF⊥BE于点F.∵CF⊥BE,CD⊥AB又∵∠A=∠E,∴∠ECF=∠ACD.∵BE是直径,CF⊥BE,∴∠BCE=90°,∠EBC=∠ECF=∠ACD,∴EC==8,∴tan∠EBC===.∴tan∠ACD=tan∠EBC=.故答案是:.【点评】本题考查了圆周角定理,以及三角函数的定义,勾股定理,正确作出辅助线是关键.16.如图,P为△ABC内一点,∠BAC=30°,∠ACB=90°,∠BPC=120°.若BP=,则△PAB的面积为.【考点】圆的综合题.【分析】如图,作△BPC的外接圆⊙O,交AC的延长线于D,连接BD、PD.利用切线的性质和圆内接四边形的内对角互补得到∠BDA=180°﹣∠BPC=60°,所以∠ABD=180°﹣∠BAC﹣∠BDA=90°,即AB是⊙O的切线.设∠ABP=∠BDP=α.通过解直角△ABD、△BPD求得AB、AP的长度,然后由三角形的面积公式S=absinC进行计算即可.【解答】解:如图,作△BPC的外接圆⊙O,交AC的延长线于D,连接BD、PD.∵∠ACB=90°,∴∠BCD=90°,∴BD是⊙O的直径.∵四边形BDCP是圆内接四边形,∴∠BDA=180°﹣∠BPC=60°,∴∠ABD=180°﹣∠BAC﹣∠BDA=180°﹣30°﹣60°=90°,则AB是⊙O的切线.设∠ABP=∠BDP=α.在直角△ABD中,AB=BD•tan∠BDA=BD,在直角△BPD中,BP=BD•sin∠BDP=BDsinα=,则△PAB的面积是:AB•BPsin∠ABP=×BD×sinα=.故答案为:.【点评】本题考查了圆的综合题.其中涉及到了圆周角定理,圆内接四边形的性质,解直角三角形以及三角形的面积计算.此题的难点是作出△BPC的外接圆⊙O.17.如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=5,E为DC中点,tan∠C=.则AE的长度为.【考点】直角梯形;勾股定理;梯形中位线定理;解直角三角形.【分析】先过E作BC的垂线,交BC于F,交AD延长线于M,根据AAS证明△MDE≌△FCE,得出EF=ME,DM=CF,可求得DM的长,再通过解直角三角形可求得MF的长,最后利用勾股定理求得AE的长.【解答】解:过点E作BC的垂线交BC于点F,交AD的延长线于点M,∵AD∥BC,E是DC的中点,∴∠M=∠MFC,DE=CE;在△MDE和△FCE中,,∴△MDE≌△FCE,∴EF=ME,DM=CF.∵AD=2,BC=5,∴DM=CF=,在Rt△FCE中,tan∠C==,∴EF=ME=2,在Rt△AME中,AE==.故答案为:.【点评】此题考查了直角梯形,用到的知识点是直角三角形的性质、全等三角形的判定及勾股定理等,是一道考查学生综合能力的好题,本题的解题关键是作出辅助线,证出△MDE≌△FCE.18.如图,定长弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),M是CD 的中点,过点C作CP⊥AB于点P,若CD=3,AB=8,PM=l,则l的最大值是 4 .【考点】垂径定理;三角形中位线定理.【分析】当CD∥AB时,PM长最大,连接OM,OC,得出矩形CPOM,推出PM=OC,求出OC长即可.【解答】解:法①:如图:当CD∥AB时,PM长最大,连接OM,OC,∵CD∥AB,CP⊥CD,∴CP⊥AB,∵M为CD中点,OM过O,∴OM⊥CD,∴∠OMC=∠PCD=∠CPO=90°,∴四边形CPOM是矩形,∴PM=OC,∵⊙O直径AB=8,∴半径OC=4,即PM=4,故答案为:4.法②:连接CO,MO,根据∠CPO=∠CM0=90°,所以C,M,O,P,四点共圆,且CO为直径.连接PM,则PM为⊙E的一条弦,当PM为直径时PM最大,所以PM=CO=4时PM最大.即PM max=4【点评】本题考查了矩形的判定和性质,垂径定理,平行线的性质的应用,关键是找出符合条件的CD的位置,题目比较好,但是有一定的难度.三.解答题(共96分)19.(1)计算:|﹣|+(﹣)﹣1﹣2sin45°+()0(2)先化简,再求值:( +)÷,其中a=.【考点】分式的化简求值;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】(1)原式第一项利用绝对值的代数意义化简,第二项利用负整数指数幂法则计算,第三项利用特殊角的三角函数值计算,最后一项利用零指数幂法则计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.【解答】解:(1)原式=﹣2﹣2×+1=﹣1;(2)原式=[+]•(a+1)=(+)•(a+1)=•(a+1)=,当a=时,原式==.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.有红、白、蓝三种颜色的小球各一个,它们除颜色外没有其它任何区别.现将3个小球放入编号为①、②、③的三个盒子里,规定每个盒子里放一个,且只能放一个小球.(1)请用树状图列举出3个小球放入盒子的所有可能情况;(2)求白球恰好被放入③号盒子的概率.【考点】列表法与树状图法.【分析】(1)此题需要三步完成,所以采用树状图法比较简单,注意此题属于不放回实验;(2)根据树状图求得所有等可能的情况与白球恰好被放入③号盒子的情况数,求其比值即可求得答案.【解答】解:(1)画树状图得:(2)∴一共有6种等可能的结果,白球恰好被放入③号盒子有2种情况,∴白球恰好被放入③号盒子的概率为: =.【点评】此题考查的是用树状图法求概率.树树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.21.“校园手机”现象越来越受到社会的关注.小丽在“统计实习”活动中随机调查了学校若干名学生家长对“中学生带手机到学校”现象的看法,统计整理并制作了如下的统计图:(1)求这次调查的家长总数及家长表示“无所谓”的人数,并补全图①;(2)求图②中表示家长“无所谓”的圆心角的度数;(3)从这次接受调查的家长中,随机抽查一个,恰好是“不赞成”态度的家长的概率是多少.【考点】条形统计图;扇形统计图;概率公式.【专题】压轴题.【分析】(1)由图象可以得出基本赞成的有200人占50%,可以求出总数,由总数可以求出非常赞成的人数和无所谓的人数.(2)由(1)的总数求出无所谓的百分比再乘以360°就可以求出圆心角的度数.(3)这次受调查的家长不赞成的人数除以总数就是抽到恰好是“不赞成”态度的家长的概率.【解答】解:(1)家长总数:200÷50%=400名,表示“无所谓”人数:400﹣200﹣16﹣400×26%=80名,补全图①,(2)80÷400×360°=72°(3)16÷400=.【点评】本题考查了条形统计图,扇形统计图和概率的计算,补全条形统计图的运用.22.温岭是受台风影响较为严重的城市之一.如图,坡上有一颗与水平面EF垂直的大树AB,台风过后,大树倾斜后折断倒在山坡上,大树顶部B接触到坡面上的D点.已知山坡的坡角∠AEF=30°,量得树干倾斜角∠BAC=45°,大树被折断部分和坡面所成的角∠ADC=60°且AD=4米.(1)求∠CAE的度数;(2)求这棵大树折断前的高度AB.(结果精确到个位,参考数据:≈1.4,≈1.7,≈2.4)【考点】解直角三角形的应用-坡度坡角问题.【分析】(1)通过延长BA交EF于一点G,则∠CAD=180°﹣∠BAC﹣∠EAG即可求得;(2)作AH⊥CD于H点,作CA⊥AE于A点,先求得AH的长,然后再求得AC的长.【解答】解:(1)延长BA交EF于点H,则∠AHE=90°,∠HAE=60°∵∠BAC=45°∴∠CAE=180°﹣∠EAH﹣∠BAC=75°(2)过A作AM⊥CD于M则AM=ADsin60°=4×,MD=AD=2∵∠C=∠CAM=45°∴CM=AM= AC=AM=∴AB=AC+CM+MD=≈2×2.4+2×1.7+2=10.2≈10∴这棵大树折断前高度约为10米.【点评】本题主要考查学生对坡度坡角的掌握及三角函数的运用能力,但综合性较强,有一定的复杂性.23.如图线段AB的端点在边长为1的正方形网格的格点上,现将线段AB绕点A按逆时针方向旋转90°得到线段AC.(1)请你用尺规在所给的网格中画出线段AC及点B经过的路径;(2)若将此网格放在一平面直角坐标系中,已知点A的坐标为(1,3),点B的坐标为(﹣2,﹣1),则点C的坐标为5,0 ;(3)线段AB在旋转到线段AC的过程中,线段AB扫过的区域的面积为;(4)若有一张与(3)中所说的区域形状相同的纸片,将它围成一个几何体的侧面,则该几何体底面圆的半径长为.【考点】扇形面积的计算;弧长的计算;作图-旋转变换.【专题】几何图形问题;网格型.【分析】(1)线段AB绕点A按逆时针方向旋转90°得到线段AC.线段AC及点B经过的路径是一段弧,根据弧长公式计算路径;(2)根据点A的坐标为(1,3),点B的坐标为(﹣2,﹣1),可建立直角坐标系,从直角坐标系中读出点C的坐标为(5,0);(3)线段AB在旋转到线段AC的过程中,线段AB扫过的区域的面积为一个扇形,根据扇形公式计算;(4)将它围成一个几何体即圆锥的侧面,则该几何体底面圆的周长就等于弧长,利用此等量关键可计算出半径.【解答】解:(1)如图,为点B经过的路径;(2)(5,0);(3)线段AB在旋转到线段AC的过程中,线段AB扫过的区域的面积为一个扇形,根据扇形公式计算=;(4)将它围成一个几何体即圆锥的侧面,则该几何体底面圆的周长就等于弧长,=2πr解得r=.。