线性代数应用题总结分类及经典例题

合集下载

(完整版)线性代数复习——计算或应用题.doc

(完整版)线性代数复习——计算或应用题.doc

一21. 设 α1, α2, α3 线性无关,证明β112,β2α2α3 , β3 α3 α1也线性无关。

1 1 1 022.计算行列式11 0 1 。

1 0 1 10 1 1 123. 1 1 0 1 2利用逆矩阵解矩阵方程0 1 1 X -1 1 。

1 0 1 1 -124.1 a 1 2已知A 0 1 a 2 ,求 a 的值,使得 r ( A)2。

1 0 1 225. 求向量组 α11111 , α2 1 , α3 2 , α4 0 的秩和一个极大线性无关组,并111把其余向量用此极大线性无关组线性表示。

26. 求矩阵 A =21的特征值与特征向量。

1 2x 1 4 x 2 3x 3 027.讨论当 取何值时, 齐次线性方程组2 x 1 3x 2 x3 0 有非零解, 并在有非零解时求其x 1x 2 2 x 3通解。

参考答案 : 21. 如果k1 1k 22k 33O ,k 1 ( 12)k 2(23)k 3(31) O ,于是(k 1 k 3 ) 1 (k 1k 2 ) 2 (k 2 k 3 ) 3 O ,由 1 , 2 ,k 1k 3 0, 3线性无关知k 1 k 2 0,k 2k 30,此方程组只有零解 k 1 0, k 2 0, k 30 ,因此 1, 2,3 线性无关。

1 1 1 01 1 1 01 10 1 1 1 0 11 10 10 0 1 122. = =101=10 1=-01 131011 0 1 0 10 11 10 1111 110 3 00 31 1 0 11 -1 1123.0 1 1 1 1 -1 故1 0 12 -11 11 1 0 12 1-1 1 1 23 01X0 1 1 -1 1 1 11-1-11 1 -1 41 0 11 -12-1 111 -12 -1 -21 a 1 20 a0 0 1 0 1 224.A01 a2 0 1 a 2 0 1 a 2 1 01 2 1 01 20 a 0 0当 a=0 时, r (A) 2。

大学数学线性代数题库及答案解析

大学数学线性代数题库及答案解析

大学数学线性代数题库及答案解析1. 求解方程组a) 3x + 2y - z = 7-x + 3y + 2z = -112x - y + 4z = 5解析:首先,我们可以使用增广矩阵表示方程组:[ 3, 2, -1, 7;-1, 3, 2, -11;2, -1, 4, 5 ]接下来,通过行初等变换将矩阵化为阶梯形:[ 3, 2, -1, 7;0, 7/4, 3/4, -21/4;0, 0, 9/7, 4/7 ]从第三行可以得到 z = 4/7,代入第二行可得 y = -21/7,再代入第一行可以得到 x = 3。

因此,方程组的解为 x = 3, y = -3, z = 4/7。

b) 2x + 3y + 2z = 10x - y + z = 44x + 2y + z = 12解析:同样,我们使用增广矩阵表示方程组:[ 2, 3, 2, 10;1, -1, 1, 4;4, 2, 1, 12 ]通过行初等变换将矩阵化为阶梯形:[ 2, 3, 2, 10;0, -5, -1, -6;0, 0, 0, 0 ]从第二行可以得到 -5y - z = -6,即 z = -6 + 5y。

我们可以令 y = t,其中 t 为任意常数。

则得到 z = -6 + 5t。

将 z 的值代入第一行可以得到x = 4 - 3t。

因此,方程组的解可以表示为 x = 4 - 3t, y = t, z = -6 + 5t。

2. 求解线性方程组的向量空间a) 给定矩阵 A = [1, 2, -1; 2, 4, -2; 3, 6, -3],求解 A 的列空间。

解析:列空间由矩阵 A 的列向量张成。

我们可以计算矩阵 A 的列向量组的极简形式:[ 1, 2, -1;2, 4, -2;3, 6, -3 ]通过初等行变换得到:[ 1, 2, -1;0, 0, 0;0, 0, 0 ]可以看出,第一列是主列,而第二列和第三列都是自由列。

因此,矩阵 A 的列空间可以表示为 Span{[1, 2, -1]}。

2024年考研数学一专题线性代数历年题目归纳

2024年考研数学一专题线性代数历年题目归纳

2024年考研数学一专题线性代数历年题目归纳线性代数是考研数学一科目中的重要内容之一,涉及到矩阵、向量、线性方程组等多个概念和方法。

了解历年考研数学一专题线性代数的题目,可以帮助考生更好地掌握该专题的重点和难点,提高解题能力。

本文将对2024年考研数学一专题线性代数历年题目进行归纳,以供考生参考。

1. 矩阵运算题矩阵的加法、减法、乘法是线性代数的基本内容,考研中常涉及到矩阵的运算性质和运算规律。

如下是一道历年考研数学一专题线性代数中的矩阵运算题目:【例题】已知矩阵A=(a_{ij})_{m×n},矩阵B=(b_{ij})_{n×p},矩阵C=(c_{ij})_{p×k},试证明:(A×B)×C=A×(B×C)。

解析:首先我们需要明确矩阵的乘法运算满足结合律。

对于(A×B)×C,先计算矩阵A和矩阵B的乘积,得到(m×p)的矩阵D。

然后将矩阵D与矩阵C相乘,得到(m×k)的矩阵E,即(A×B)×C=E。

同样地,对于A×(B×C),先计算矩阵B和矩阵C的乘积,得到(n×k)的矩阵F。

然后将矩阵A与矩阵F相乘,得到(m×k)的矩阵G,即A×(B×C)=G。

因此,(A×B)×C=E=A×(B×C)=G,即(A×B)×C=A×(B×C)。

2. 矩阵的秩题矩阵的秩是指矩阵中非零行的最大线性无关组中所含向量的个数。

在考研数学一专题线性代数中,关于矩阵的秩有很多题目,如下所示:【例题】已知矩阵A=(a_{ij})_{m×n},矩阵B=(b_{ij})_{n×p},且秩(A)=r,秩(B)=s。

试证明:1) 秩(AB)≤min{r,s};2) 如果r=s,且r=min{m,n,p},则秩(AB)=r。

线性代数《线性方程组》常见题型与典型例题

线性代数《线性方程组》常见题型与典型例题

线性代数《线性方程组》常见题型与典型例题壹齐次线性方程组的基本公式与结论(1) 克莱姆法则若n个方程n个未知量构成的非齐次线性方程组AX=b的系数行列式|A|≠0,则方程组有唯一解,并且有其中|A i|是|A|中第i列元素(即x i的系数)替换成方程组右端的系数项b1,b2,…,b n所构成的行列式.(2) 齐次线性方程组解的存在性● 若n个方程n个未知量构成的齐次线性方程组AX=0的系数行列式|A|≠0,则方程组有唯一零解,● 若m个方程n个未知量构成的齐次线性方程组,若r(A)= n,即A的列向量组线性无关,则方程组有唯一零解;若r(A)= s<n,即A 的列向量组线性相关,则方程组有有非零解,且有n-s个线性无关解.(3) 求解方法之高斯消元法将系数矩阵A作初等行变换转换为阶梯型矩阵B,初等变换将方程组化为同解方程组,即Ax=0与Bx=0同解,只需要解Bx=0即可. 设n个变量m各方程构成的方程组,并设r(A)=r≤m≤n,则方程组的独立方程个数为r个,r也是独立变量的个数,故多余方程个数为m-r,自由变量的个数为n-r. 令自由变量为任意常数,回代求得独立未知变量,则得方程组的解.(4) 基础解系和解的结构基础解系:设x1,x2,…,x n-r是方程组Ax=0的解,若①x1,x2,…,x n-r 线性无关;②任一方程组Ax=0的解均由x1,x2,…,x n-r线性表出,则称x1,x2,…,x n-r是方程组Ax=0的一个基础解系.通解:设x1,x2,…,x n-r是方程组Ax=0的一个基础解系,则k1x1+k2x2+…+k n-r x n-r是方程组Ax=0的通解,其中k1,k2,…,k n-r为任意常数.贰非齐次线性方程组的基本公式与结论非齐次线性方程组AX=b,其导出组(即齐次方程组)AX=0,A系数矩阵,(A|b)增广矩阵。

(1) 解的性质● 导出组解的线性组合仍为导出组的解● 非齐次方程组的任意两个解的差为其导出组的解(2) 通解的结构● 导出组的n个线性无关组的线性组合为其通解● 非齐次线性方程组的通解等于其导出组的通解与其任意特解之和● 关于非齐次方程组AX=b解的讨论:若r(A)=r(A|b)=n(未知数个数),则有唯一解若r(A)≠r(A|b),则无解若r(A)=r(A|b)=m<n,则有无穷解,其基础解系所含解向量个数为n-m个(3) 求解方法求导出组的通解加上他的任意一个特解即可.叁常见题型(1) 有关线性方程组的概念与性质的命题解题方法:概念与性质必须娴熟。

线性代数总复习及典型例题共63页文档

线性代数总复习及典型例题共63页文档

60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
线性代数总复习及典型例题
21、没有人陪你走一辈子,所以你要 适应孤 独,没 有人会 帮你一 辈子, 所以你 要奋斗 一生。 22、当眼泪流尽的时候,留Байду номын сангаас的应该 是坚强 。 23、要改变命运,首先改变自己。
24、勇气很有理由被当作人类德性之 首,因 为这种 德性保 证了所 有其余 的德性 。--温 斯顿. 丘吉尔 。 25、梯子的梯阶从来不是用来搁脚的 ,它只 是让人 们的脚 放上一 段时间 ,以便 让别一 只脚能 够再往 上登。
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿

线性代数重点题型总结

线性代数重点题型总结

第四章
4.1 ①求特征值与特征向量,例2、例3
②特征值与特征向量性质考察,例7,习题2
其他:例5
4.2 ①判断某阵能否对角化,并求幂。

例、习题1、2
②两阵相似,求阵中的未知数。

习题1、3、14
4.3 ①将向量正交化or单位化(方法见P185),习题16、17
②已知实对称矩阵,求正交阵使Q−1AQ为对角阵,例4、例5、习题22、23
注意出现多重特征值时要先正交化再单位化
证明类:习题7、3、19、P172 例5
第三章
3.1①线性方程解的情况:无解、唯一解、无穷解、线性方程的非零解时r(A)和r(A|b)的关系。

例1、例2、例3、例4
3.2①向量的4则运算,分配律、结合律。

②某向量能否被另一向量组线性表示,充要条件是
r(α1….αn)=r(α1…αn,β)。

例5、习题7
③向量组是否等价(能相互表示即可)例6
3.3①判断已知向量组是否线性相关(即r(A)<n),p130例4、习题10、14、15、
3.4①判断某向量组的一个极大无关组,并用它表示其他向量。

例2,习题16、17
3.5①求方程组的基础解系,分齐次和非齐次的。

例1、2、4
第二章
2.2①加减乘法,习题6、23。

注意6题体现规律,矩阵左乘变列,右乘变行。

②矩阵转置和矩阵行列式的性质,用于判断题。

2.4-2.7①分块矩阵、逆矩阵,矩阵的秩习题33、47、48、51
第一章
重点习题:1.3(例5、例7、例6),
1.4行列式按行列展开(例4)
习题21、22、24、32、35。

线性代数部分重点及典型问题举例

线性代数部分重点及典型问题举例

线性代数部分重点及典型问题举例第二章,矩阵考试要求:⑴ 了解矩阵概念,理解矩阵可逆与逆矩阵概念,知道矩阵可逆的条件,了解矩阵秩的概念;⑵ 熟练掌握矩阵的加法、数乘、乘法和转置等运算,掌握这几种运算的有关性质;⑶ 了解单位矩阵、数量矩阵、对角矩阵、三角形矩阵和对称矩阵的定义和性质.⑷ 理解矩阵初等行变换的概念,熟练掌握用矩阵的初等行变换将矩阵化为阶梯形矩阵、行简化阶梯形矩阵,熟练掌握用矩阵的初等行变换求矩阵的秩、逆矩阵.重点:矩阵概念,矩阵可逆与逆矩阵概念,矩阵可逆的条件,矩阵秩的概念及求法;矩阵的运算和矩阵的求逆,矩阵的初等行变换。

典型例题一、单项选择题1.设A 为23⨯矩阵,B 为32⨯矩阵,则下列运算中( )可以进行. A .AB B .AB T C .A +B D .BA T 答案:A2.设B A ,为同阶可逆矩阵,则下列等式成立的是( ) A . T T T )(B A AB = B . T T T )(A B AB =C . 1T 11T )()(---=B A ABD . T 111T )()(---=B A AB 答案:B3.设B A ,为同阶可逆方阵,则下列说法正确的是( ). A . 若AB = I ,则必有A = I 或B = I B .T T T )(B A AB =C . 秩=+)(B A 秩+)(A 秩)(BD .111)(---=A B AB 答案:D4.设B A ,均为n 阶方阵,在下列情况下能推出A 是单位矩阵的是( ).A .B AB = B .BA AB =C .I AA =D .I A =-1 答案D5.设A 是可逆矩阵,且A AB I +=,则A -=1( ).A .B B . 1+BC . I B +D . ()I AB --1 答案C6.设)21(=A ,)31(-=B ,I 是单位矩阵,则I B A -T =( ).A .⎥⎦⎤⎢⎣⎡--6231B .⎥⎦⎤⎢⎣⎡--6321C .⎥⎦⎤⎢⎣⎡--5322D .⎥⎦⎤⎢⎣⎡--5232 答案 D7.设下面矩阵A , B , C 能进行乘法运算,那么( )成立.A .AB = AC ,A ≠ 0,则B = C B .AB = AC ,A 可逆,则B = C C .A 可逆,则AB = BAD .AB = 0,则有A = 0,或B = 0 答案:B二、填空题1.两个矩阵B A ,既可相加又可相乘的充分必要条件是 .答案:同阶矩阵2.若矩阵A = []21-,B = []12-,则A T B=.答案⎥⎦⎤⎢⎣⎡--2412 3.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=13230201a A ,当a = 时,A 是对称矩阵. 答案:0=a4.当a 时,矩阵⎥⎦⎤⎢⎣⎡-=a A 131可逆. 答案:3-≠a5.设B A ,为两个已知矩阵,且B I -可逆,则方程X BX A =+的解=X . 答案A B I 1)(--6.设A 为n 阶可逆矩阵,则r (A )= . 答案:n7.若矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--330204212,则r (A ) = .答案:22.计算题(1)设矩阵 A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-022011,B =⎥⎦⎤⎢⎣⎡--210321,计算(BA )-1. 解 因为BA =⎥⎦⎤⎢⎣⎡--210321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-022011=⎥⎦⎤⎢⎣⎡--2435 (BA I )=⎥⎦⎤⎢⎣⎡--→⎥⎦⎤⎢⎣⎡--1024111110240135 ⎥⎦⎤⎢⎣⎡---→54201111⎥⎥⎦⎤⎢⎢⎣⎡--→2521023101 (2)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--------=843722310A ,I 是3阶单位矩阵,求1)(--A I . 解:由矩阵减法运算得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---------⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-943732311843722310100010001A I 利用初等行变换得113100237010349001113100011210010301⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥ →----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥→----⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥113100011210001111110233010301001111→---⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥100132010301001111即 ()I A -=---⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥-1132301111 (3)设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=112,322121011B A ,求B A 1-. 解:利用初等行变换得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--102340011110001011100322010121001011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→146100135010001011146100011110001011 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→146100135010134001 即 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=-1461351341A 由矩阵乘法得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=-7641121461351341B A第三章 线性方程组考试要求:⑴ 了解线性方程组的有关概念,熟练掌握用消元法求线性方程组的一般解;⑵ 理解并熟练掌握线性方程组的有解判定定理.重点:线性方程组有解判定定理、线性方程组解的表示及求解非齐次线性方程组AX = b 的解的情况归纳如下:AX = b 有唯一解的充分必要条件是秩(A ) = 秩(A ) = n ; AX = b 有无穷多解的充分必要条件是秩(A ) = 秩(A ) < n ;AX = b 无解的充分必要条件是秩(A ) ≠ 秩(A ). 相应的齐次线性方程组AX = 0的解的情况为:AX = 0只有零解的充分必要条件是 秩(A ) = n ; AX = 0有非零解的充分必要条件是 秩(A ) < n .典型例题:一、单项选择题1.若线性方程组的增广矩阵为⎥⎦⎤⎢⎣⎡=41221λA ,则当λ=( )时线性方程组有无穷多解.A .1B .1-C .2D .21 (答案D)2. 若非齐次线性方程组A m ×n X = b 的( ),那么该方程组无解. A .秩(A ) = n B .秩(A )=m C .秩(A )≠ 秩 (A )D .秩(A )= 秩(A )(答案C)3.线性方程组⎩⎨⎧=+=+012121x x x x 解的情况是( ).A . 无解B . 只有0解C . 有唯一解D . 有无穷多解 答案 A4. 线性方程组AX =0只有零解,则AX b b =≠()0( ).A . 有唯一解B . 可能无解C . 有无穷多解D . 无解 答案B5.设线性方程组AX=b 中,若r (A , b ) = 4,r (A ) = 3,则该线性方程组( ). A .有唯一解 B .无解 C .有非零解 D .有无穷多解 答案B6.设线性方程组b AX =有唯一解,则相应的齐次方程组O AX =( ). A .无解 B .有非零解 C .只有零解 D .解不能确定 答案C二、填空题1.若r (A , b ) = 4,r (A ) = 3,则线性方程组AX = b . 答案:无解2.若线性方程组⎩⎨⎧=+=-02121x x x x λ有非零解,则=λ.答案:-1=λ3.设齐次线性方程组01=⨯⨯n n m X A ,且秩(A ) = r < n ,则其一般解中的自由未知量的个数等于 .答案:r n -4.齐次线性方程组0=AX 的系数矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=000020103211A 则此方程组的一般解为 .5.线性方程组AX b =的增广矩阵A 化成阶梯形矩阵后为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-→110000012401021d A 则当d 时,方程组AX b =有无穷多解.答案:1-=d三.计算题1.求解线性方程组的一般解⎪⎩⎪⎨⎧=-+-=+-+-=++-0232022023432143214321x x x x x x x x x x x x解:将方程组的系数矩阵化为阶梯形⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----010030101031020031101231311031101231232121211231 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→010********* 一般解为⎪⎩⎪⎨⎧===03834241x x x x x (4x 是自由未知量) 2.求当λ取何值时,线性方程组⎪⎩⎪⎨⎧+=+++=+++-=--+1479637222432143214321λx x x x x x x x x x x x 有解,在有解的情况下求方程组的一般解.解 将方程组的增广矩阵化为阶梯形⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+---1000010511102121119102220105111021211114796371221211λλλ 所以,当1=λ时,方程组有解,且有无穷多解,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→00000105111084901 答案:⎩⎨⎧++-=--=43243151110498x x x x x x 其中43,x x 是自由未知量.3.求当λ取何值时,线性方程组⎪⎩⎪⎨⎧=+-+=+-+=++-λ432143214321114724212x x x x x x x x x x x x 解:将方程组的增广矩阵化为阶梯形⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---273503735024121114712412111112λλ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→500003735024121λ 当5=λ时,方程组有解,且方程组的一般解为⎪⎪⎩⎪⎪⎨⎧-+=--=432431575353565154x x x x x x其中43,x x 为自由未知量.。

线性代数重要知识点和典型例题答案

线性代数重要知识点和典型例题答案

线性代数知识点总结第一章 行列式二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和n nn nj j j j j j j j j nij a a a a ...)1(21212121)..(∑-=τ(奇偶)排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变。

(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。

推论:若行列式中某两行(列)对应元素相等,则行列式等于零。

③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。

推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。

④行列式具有分行(列)可加性⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。

克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a →②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:333122211312110a a a a a a a 方法:用221a k 把21a 化为零,。

化为三角形行列式 ⑤上(下)三角形行列式:行列式运算常用方法(主要)行列式定义法(二三阶或零元素多的) 化零法(比例)化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵n (零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵) ---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA ,不满足消去律;由AB=0,不能得A=0或B=0 转置A A TT =)( TTTB A B A +=+)( TTkA kA =)( TTTA B AB =)((反序定理) 方幂:2121k k k kA AA +=2121)(k k k k A A +=对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 数量矩阵:相当于一个数(若……)单位矩阵、上(下)三角形矩阵(若……) 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 注:把分出来的小块矩阵看成是元素N 阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的,|A|=0、伴随矩阵)2.、非零k 乘某一行(列)3、将某行(列)的K 初等变换不改变矩阵的可逆性 初等矩阵都可逆倍乘阵 倍加阵) ⎪⎪⎭⎫ ⎝⎛=O OO I D rr矩阵的秩r(A):满秩矩阵 降秩矩阵 若A 可逆,则满秩 若A 是非奇异矩阵,则r (AB )=r (B ) 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式nij n n ij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆; ③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数应用题总结分类及经典例题
本文旨在总结线性代数中的应用题,并提供一些经典例题。

以下是对应的分类和例题:
1. 线性方程组
例题1:
已知线性方程组如下:
$$\begin{cases}
2x + y - z = 5 \\
x - 3y + 2z = -4 \\
3x + 4y - z = 6 \\
\end{cases}$$
求解以上线性方程组。

例题2:
已知线性方程组如下:
$$\begin{cases}
2x + 3y - z = 4 \\
x - 2y + 3z = -1 \\
3x + 4y - 2z = 7 \\
\end{cases}$$
求解以上线性方程组。

2. 矩阵与向量
例题1:
已知矩阵$A=\begin{bmatrix}
1 &
2 &
3 \\
4 &
5 &
6 \\
\end{bmatrix}$,向量$\mathbf{b}=\begin{bmatrix}
2 \\
-1 \\
\end{bmatrix}$,求解方程组$A\mathbf{x}=\mathbf{b}$。

例题2:
已知矩阵$A=\begin{bmatrix}
2 & -1 \\
3 &
4 \\
\end{bmatrix}$,向量$\mathbf{b}=\begin{bmatrix}
1 \\
2 \\
\end{bmatrix}$,求解方程组$A\mathbf{x}=\mathbf{b}$。

3. 线性变换
例题1:
已知线性变换$T$将向量$\mathbf{v}=\begin{bmatrix}
2 \\
3 \\
\end{bmatrix}$映射为$\mathbf{w}=\begin{bmatrix}
5 \\
-1 \\
\end{bmatrix}$,求线性变换$T$的矩阵表示。

例题2:
已知线性变换$T$将向量$\mathbf{v}=\begin{bmatrix} 1 \\
-2 \\
\end{bmatrix}$映射为$\mathbf{w}=\begin{bmatrix}
3 \\
4 \\
\end{bmatrix}$,求线性变换$T$的矩阵表示。

4. 特征值和特征向量
例题1:
已知矩阵$A=\begin{bmatrix}
2 & 1 \\
4 & 3 \\
\end{bmatrix}$,求$A$的特征值和对应的特征向量。

例题2:
已知矩阵$A=\begin{bmatrix}
3 & -2 \\
1 & 4 \\
\end{bmatrix}$,求$A$的特征值和对应的特征向量。

以上是一些线性代数应用题的分类和经典例题,希望对你的学习有所帮助。

相关文档
最新文档