山东省日照市2020届高三实验班三月联考(数学)含解析

合集下载

山东省日照市数学2020届高中毕业班理数第三次质量检测试卷

山东省日照市数学2020届高中毕业班理数第三次质量检测试卷

山东省日照市数学2020届高中毕业班理数第三次质量检测试卷姓名:________ 班级:________ 成绩:________一、选择题(本大题共12小题,每小题5分,共60分。

) (共12题;共60分)1. (5分)复数。

A .B .C .D .2. (5分) (2016高一上·黄陵期中) 设集合A={1,2,3},B={2,5},则A∩B=()A . {1,3,5}B . {1,5}C . {2}D . {1,2,3,5}3. (5分) (2017高二下·宜昌期末) 某学校为了调查喜欢语文学科与性别的关系,随机调查了一些学生情况,具体数据如表:调查统计不喜欢语文喜欢语文男1310女720为了判断喜欢语文学科是否与性别有关系,根据表中的数据,得到K2的观测值k= ≈4.844,因为k≥3.841,根据下表中的参考数据:P(K2≥k0)0.500.400.250.150.100.050.0250.0100.0050.001k00.4550.708 1.323 2.072 2.706 3.841 5.024 6.6357.87910.828判定喜欢语文学科与性别有关系,那么这种判断出错的可能性为()A . 95%B . 50%C . 25%D . 5%4. (5分)若双曲线的一条渐近线经过点(3,-4),则此双曲线的离心率为()A .B .C .D .5. (5分)程序框图如图所示,当A=时,输出的k的值为()A . 23B . 24C . 25D . 266. (5分) (2017高二上·孝感期末) 代数式的展开式中,常数项是()A . ﹣7B . ﹣3C . 3D . 77. (5分)(2017·葫芦岛模拟) 设f(x)=. ,直线x=0,x=e,y=0,y=1所围成的区域为M,曲线y=f(x)与直线y=1围成的区域为N,在区域M内任取一个点P,则点P在区域N内概率为()A .B .C .D .8. (5分) (2018高二下·邯郸期末) 已知函数,是奇函数,则()A . 在上单调递减B . 在上单调递减C . 在上单调递增D . 在上单调递增9. (5分)(2018·银川模拟) 圆锥的底面半径为a,侧面展开图是半圆面,那么此圆锥的侧面积是()A . 2B . 4C .D . 310. (5分)在中,角所对的边分别为,若,且,则下列关系一定不成立的是()A .B .C .D .11. (5分)已知=(1,2+sinx),=(2,cosx),=(-1,2),(-),则锐角x等于()A . 15°B . 30°C . 45°D . 60°12. (5分) (2016高一上·蓟县期中) 函数的单调递减区间为()A . (﹣∞,+∞)B . (﹣∞,0)∪(0,+∞)C . (﹣∞,0),(0,+∞)D . (0,+∞)二、填空题(本大题共4小题,每小题5分,共20分。

山东省日照市五莲县第一中学2019-2020学年高三3月过程检测(实验班)数学试题

山东省日照市五莲县第一中学2019-2020学年高三3月过程检测(实验班)数学试题

山东省日照市五莲县第一中学2019-2020学年高三3月过程检测(实验班)数学试题一、选择题(共8小题)1.集合{|(1)(2)0}A x x x =+-,{|2}B x x =<,则A B =( ) A. [0,2]B. [0,1]C. (0,2]D. [1,0]- 2.若复数z =11i ai ++为纯虚数,则实数a 的值为( ) A. 1 B. 0 C. -12 D. -13.设{}n a 为等差数列,p ,q ,k ,l 为正整数,则“p q k l +>+”是“p q k l a a a a +>+”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件 4.已知132a -=,21log 3b =,121log 3c =,则( ). A. a b c >> B. a c b >> C. c a b >> D. c b a >>5.据《孙子算经》中记载,中国古代诸侯的等级从低到高分为 :男、子、伯、候、公,共五级.现有每个级别的诸侯各一人,共五人要把80个橘子分完且每人都要分到橘子,级别每高一级就多分m 个(m 为正整数),若按这种方法分橘子,“公”恰好分得30个橘子的概率是( )A. 18B. 17C. 16D. 156.17世纪德国著名的天文学家开普勒曾经这样说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割.如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿.”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是一个顶角为36︒的等腰三角形(另一种是顶角为108︒的等腰三角形).例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金ABC ∆中,51BC AC -=.根据这些信息,可得sin 234︒=( )A. 1254-B. 358+-C. 514+-D. 458+- 7.已知1F ,2F 分别是双曲线2222:1(0,0)x y C a b a b-->>的左、右焦点,直线l 为双曲线C 的一条渐近线,1F 关于直线l 的对称点1F '在以2F 为圆心,以半焦距c 为半径的圆上,则双曲线C 的离心率为( )A. 2B. 3C. 2D. 38.已知ABC ∆为等边三角形,动点P 在以BC 为直径的圆上,若AP AB AC λμ=+,则2λμ+的最大值为( )A. 12B. 31+C. 52D. 32+ 二、多项选择题(共4小题)9.已知2a b >,则( )A. 23b b a <-B. 3322a b a b ab +>+C. ab a b >+D. 12112ab a b+>+ 10.如图,已知矩形ABCD 中,2AB AD =,E 为边AB的中点,将ADE ∆沿直线DE 翻折成1A DE ∆,若M 为线段1A C 的中点,则ADE ∆在翻折过程中,下列说法正确的是( )A. 线段BM 的长是定值B. 存在某个位置,使1DE A C ⊥C. 点M 的运动轨迹是一个圆D. 存在某个位置,使MB ⊥平面1A DE11.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线()32222:16C x y x y +=恰好是四叶玫瑰线.给出下列结论正确的是( )A. 曲线C 经过5个整点(即横、纵坐标均为整数的点)B. 曲线C 上任意一点到坐标原点O 的距离都不超过2C. 曲线C 围成区域的面积大于4πD. 方程()3222216(0)x y x y xy +=>表示的曲线C 在第一象限和第三象限12.已知函数()sin()(0)f x x ωϕω=+>满足()()00112f x f x =+=-,且()f x ()00,1x x +上有最小值,无最大值.则( ) A. 0112f x ⎛⎫+=- ⎪⎝⎭ B. 若00x =,则()sin 26f x x ππ⎛⎫=- ⎪⎝⎭C. ()f x 的最小正周期为3D. ()f x 在(0,2019)上的零点个数最少为1346个三、填空题13.为做好社区新冠疫情防控工作,需将六名志愿者分配到甲、乙、丙、丁四个小区开展工作,其中甲小区至少分配两名志愿者,其它三个小区至少分配一名志愿者,则不同的分配方案共有_______种.(用数字作答)14.已知函数()2cos f x x x λ=++,在区间上0,2π⎡⎤⎢⎥⎣⎦任取三个数1x ,2x ,3x ,均存在以1f x ,2f x ,()3f x 为边长的三角形,则λ的取值范围是_______.15.设抛物线22(0)y px p =>的焦点为(1,0)F ,准线为1,过焦点的直线交抛物线于A ,B 两点,分别过A ,B 作l 的垂线,垂足为C ,D ,若||4||AF BF =,则p =_________,三角形CDF 的面积为________.16.在三棱锥P ABC -中,底面ABC 是以AC 为斜边的等腰直角三角形,且2AB =,5PA PC ==PB 与底面ABC 所成的角的正弦值为13,则三棱锥P ABC -的外接球的体积为_______. 四、解答题:共70分.解答应写出文字说明,证明过程或演算步骤. 17.如图,在ABC ∆中,4C π=,角B 平分线BD 交AC 于点D ,设CBD θ∠=,其中1tan 2θ=.(1)求sin A ;(2)若28CA CB ⋅=,求AB 的长.18.在①()22130n n n a a a +-=>,②211390n n n n a a a a ---﹣﹣=,③222n S n n =-+这三个条件中任选一个,补充在下面问题中.已知:数列{}n a 的前n 项和为n S ,且11a =,______.(1)求数列{}n a 的通项公式;(2)对大于1的自然数n ,是否存在大于2的自然数m ,使得1a ,n a ,m a 成等比数列.若存在,求m 的最小值;若不存在,说明理由.19.如图,在直角梯形ABCD 中,//AB DC ,90ABC ∠=︒,22AB DC BC ==,E 为AB 的中点,沿DE 将ADE ∆折起,使得点A 到点P 位置,且PE EB ⊥,M 为PB 的中点,N 是BC 上的动点(与点B ,C 不重合).(Ⅰ)证明:平面EMN ⊥平面PBC 垂直;(Ⅱ)是否存在点N ,使得二面角B EN M --的余弦值66?若存在,确定N 点位置;若不存在,说明理由.20.沙漠蝗虫灾害年年有,今年灾害特别大.为防范罕见暴发的蝗群迁飞入境,我国决定建立起多道防线,从源头上控制沙漠蝗群.经研究,每只蝗虫的平均产卵数y 和平均温度x 有关,现收集了以往某地的7组数据,得到下面的散点图及一些统计量的值.71192i i x==∑,71569i i y ==∑,7118542i i i x y ==∑,7215414i i x ==∑,7125.2848i i z ==∑,71733.7079i i i x z ==∑.(其中ln i z y =,7117i i z z ==∑). (1)根据散点图判断, y a b x =+与dx y ce =(其中 2.718e =…自然对数的底数)哪一个更适宜作为平均产卵数y 关于平均温度x 的回归方程类型?(给出判断即可,不必说明理由)并由判断结果及表中数据,求出y 关于x 的回归方程.(计算结果精确到小数点后第三位)(2)根据以往统计,该地每年平均温度达到28℃以上时蝗虫会造成严重伤害,需要人工防治,其他情况均不需要人工防治,记该地每年平均温度达到28℃以上的概率为(01)p p <<. ①记该地今后5年中,恰好需要3次人工防治的概率为()f p ,求()f p 的最大值,并求出相应的概率p . ②当()f p 取最大值时,记该地今后5年中,需要人工防治的次数为X ,求X 的数学期望和方差. 附:线性回归方程系数公式()()()121ˆni ii n i i x x y y b x x ==--=-∑∑,ˆˆa y bx =-. 21.已知圆22:4O x y +=,定点(1,0)A ,P 为平面内一动点,以线段AP 为直径的圆内切于圆O ,设动点P的轨迹为曲线C(1)求曲线C 的方程(2)过点3)Q 的直线l 与C 交于,E F 两点,已知点(2,0)D ,直线0x x =分别与直线,DE DF 交于,S T两点,线段ST 的中点M 是否在定直线上,若存在,求出该直线方程;若不是,说明理由.22.已知函数()cos x f x e ax x =--,其中a R ∈.(1)求证:当1a -时,()f x 无极值点;(2)若函数()()1(1)g x f x n x =++,是否存在a ,使得()g x 在0x =处取得极小值?并说明理由.。

2020届山东省日照市五莲县第一中学高三3月过程检测(实验班)数学试题及答案

2020届山东省日照市五莲县第一中学高三3月过程检测(实验班)数学试题及答案

绝密★启用前2020届山东省日照市五莲县第一中学高三3月过程检测(实验班)数学试题注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上一、单选题1.集合{|(1)(2)0}A x x x =+-,{|2}B x =<,则A B =() A .[0,2] B .[0,1] C .(0,2] D .[1,0]-解:∵(1)(2)0x x +-,∴12x -,∴[1,2]A =-,2<,∴04x <,∴[0,4)B =,∴[]0,2A B =.故选:A.点评:本题考查了交集及其运算,考查了不等式的解法.2.若复数z =11i ai ++为纯虚数,则实数a 的值为() A .1B .0C .-12D .-1 答案:D利用复数的运算法则、纯虚数的定义即可得出.解:设z =bi ,b ∈R 且b ≠0,则11i ai++=bi ,得到1+i =-ab +bi , ∴1=-ab ,且1=b ,解得a =-1.故选:D.点评:本题考查复数的运算和纯虚数的概念.3.设{}n a 为等差数列,p ,q ,k ,l 为正整数,则“p q k l +>+”是“p q k l a a a a +>+”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案:D根据不等式p q k l a a a a +>+,得到等差数列公差的正负性和p ,q ,k ,l 之间的关系,结合充分性、必要性的定义选出正确答案即可.解:设等差数列的公差为d , 1111(1)(1)(1)(1)p q k l a p d a q d a a a a a k d a l d ⇒+-+++->+>++-+-[()()]0d p q k l ⇒+-+>0d p q k l >⎧⇒⎨+>+⎩或0d p q k l<⎧⎨+<+⎩,显然由p q k l +>+不一定能推出p q k l a a a a +>+,由p q k l a a a a +>+也不一定能推出p q k l +>+,因此p q k l +>+是p q k l a a a a +>+的既不充分也不必要条件,故本题选D.点评:本题考查了等差数列的通项公式,考查了充要条件的判断.4.已知132a -=,21log 3b =,121log 3c =,则(). A .a b c >>B .a c b >>C .c a b >>D .c b a >> 答案:C 试题分析:因为13212112(0,1),log 0,log 1,33a b c -=∈==所以.b a c <<选C . 【考点】比较大小 5.据《孙子算经》中记载,中国古代诸侯的等级从低到高分为:男、子、伯、候、公,共五级.现有每个级别的诸侯各一人,共五人要把80个橘子分完且每人都要分到橘子,级别每高一级就多分m 个(m 为正整数),若按这种方法分橘子,“公”恰好分得30个橘子的概率是()A .18B .17C .16D .15答案:B分析:先根据等差数列列关于m 以及首项的不定方程,根据正整数解确定m 可能取法,最后根据古典概型概率公式求结果.详解:设首项为1a ,因为和为80,所以11115+5480822a m m a ⨯⨯⨯=∴=- 因为*1m a N ∈,,所以111111124681012147654321a a a a a a a m m m m m m m =======⎧⎧⎧⎧⎧⎧⎧⎨⎨⎨⎨⎨⎨⎨=======⎩⎩⎩⎩⎩⎩⎩或或或或或或 因此“公”恰好分得30个橘子的概率是17, 选B.点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.6.17世纪德国著名的天文学家开普勒曾经这样说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割.如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿.”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是一个顶角为36︒的等腰三角形(另一种是顶角为108︒的等腰三角形).例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金ABC ∆中,51BC AC -=.根据这些信息,可得sin 234︒=()A .154-B .358+-C .514-D .458+- 答案:C要求sin 234︒的值,需将角234︒用已知角表示出来,从而考虑用三角恒等变换公式解题.已知角有36︒,正五边形内角108︒,72ACB ∠=︒,已知三角函数值有12cos72BC AC ︒==,所以234=272+90=144+90︒⨯︒︒︒︒,从而sin 234=cos144︒︒. 解:由题可知72ACB ∠=︒,且112cos724BC AC ︒==,21cos1442cos 7214︒=︒-=-, 则()sin 234sin 14490cos144︒=︒+︒=︒=. 点评:本题考查三角恒等变换,考查解读信息与应用信息的能力. 7.已知1F ,2F 分别是双曲线2222:1(0,0)x y C a b a b-->>的左、右焦点,直线l 为双曲线C 的一条渐近线,1F 关于直线l 的对称点1F '在以2F 为圆心,以半焦距c 为半径的圆上,则双曲线C 的离心率为()ABC .2D .3答案:C根据对称性可得11221OF OF OF F F c ='=='=,可得02160F OF ∠'=,011120FOF ∠'=,渐近线的倾斜角为060,即可得b a解: 解:如图,根据对称性可得11221OF OF OF F F c ''====,∴2160F OF '∠=︒,11120FOF '∠=︒, 所以渐近线的倾斜角为60°,b a= 则双曲线C2=. 故选:C.点评:本题考查了双曲线的性质、离心率,考查转化能力.8.已知ABC ∆为等边三角形,动点P 在以BC 为直径的圆上,若AP AB AC λμ=+,则2λμ+的最大值为()A .12B .313+C .52D .322+ 答案:C设等边ABC ∆的边长为2,以边BC 的中点为原点,OA 所在直线为y 轴建立平面直角坐标系,设点(cos ,sin )P θθ,通过向量的坐标运算,将λ、μ用θ表示出来,然后利用辅助角公可求出2λμ+的最大值 解:解:设ABC ∆的边长为2,不妨以线段BC 的中点O 为坐标原点,建立如下图所示的平面直角坐标系xOy ,则点3)A 、(1,0)B -、(1,0)C ,以线段BC 直径的圆的方程为221x y +=,设点(cos ,sin )P θθ,则(1,3)AB =-,(1,3)AC =, (cos ,sin 3)AP θθ=,由于AP AB AC λμ=+,则cos sin λμθθ-+=⎧⎪⎨=⎪⎩解得11cos 26211cos 22λθθμθθ⎧=--⎪⎪⎨⎪=-+⎪⎩, 所以,11112cos 2cos 262262λμθθθθ⎛⎫⎛⎫+=--+-+ ⎪ ⎪⎝⎭⎝⎭313cos sin 22226πθθθ⎛⎫=-+=-- ⎪⎝⎭, 因此,2λμ+的最大值为52, 故选:C.点评: 本题考查平面向量的基本定理,涉及圆的参数方程、辅助角公式,关键在于引入合适的变量来表示问题涉及的参数.二、多选题9.已知2a b >,则()A .23b b a <-B .3322a b a b ab +>+C .ab a b >+D .12112ab a b +>+ 答案:BC根据不等式的性质,逐一判断即可.解:解:2a b >,A 错误,比如3a =,2b =,43>不成立;B ,()3322222()()()()0a b a b ab a a b b a b a b a b +-+=---=-+>成立; C ,由1(1)(1)(1)1011b ab a b a b b b a b a b b ⎡⎤⎛⎫⎛⎫--=--=--=--+> ⎪ ⎪⎢⎥--⎝⎭⎝⎭⎣⎦, 故C 成立,D ,1211(2)(2)022a b ab a b ab--+--=,故D 不成立, 故选:BC.点评:本题考查不等式比较大小,常利用了作差法,因式分解法等.10.如图,已知矩形ABCD 中,2AB AD =,E 为边AB 的中点,将ADE ∆沿直线DE 翻折成1A DE ∆,若M 为线段1A C 的中点,则ADE ∆在翻折过程中,下列说法正确的是()A .线段BM 的长是定值B .存在某个位置,使1DE AC ⊥C .点M 的运动轨迹是一个圆D .存在某个位置,使MB ⊥平面1A DE答案:AC取CD 中点F ,连接BF ,MF ,根据面面平行的判定定理可得平面//BMF 平面1A DE ,由面面平行的性质定理可知//BM 平面1A DE ,可判断D ;在BFM ∆中,利用余弦定理可求得BM a =为定值,可判断A 和C ;假设1DE A C ⊥,由线面垂直的判定定理可得DE ⊥平面1A CE ,由线面垂直的性质定理可知1DE A E ⊥,与11DA A E ⊥矛盾,可判断B .解:解:取CD 的中点F ,连接BF ,MF ,∵M ,F 分别为1A C 、CD 中点,∴1MF A D ∥,∵1A DC ⊂平面1A DE ,MF ⊄平面1A DE ,∴MF 平面1A DE ,∵DF BE ∥且DF BE =,∴四边形BEDF 为平行四边形,∴BF DE ,∵DE ⊂平面1A DE ,BF ⊄平面1A DE ,∴BF ∥平面1A DE ,又BF MF F =,BF 、MF ⊂平面BMF ,∴平面//BMF 平面1A DE ,∵BM ⊂平面BMF ,∴BM ∥平面1A DE ,即D 错误,设22AB AD a ==,则112MF A D a ==,BF DE ==,145A DE MFB ︒∠=∠=,∴BM a ==,即BM 为定值,所以A 正确,∴点M 的轨迹是以B 为圆心,a 为半径的圆,即C 正确,∵DE CE ==,2CD AB a ==,∴222DE CE CD +=,∴DE CE ⊥,设1DE A C ⊥,∵1A C 、CE ⊂平面1A CE ,1AC CE C =,∴DE ⊥平面1A CE ,∵1A E ⊂平面1A CE ,∴1DE A E ⊥,与11DA A E ⊥矛盾,所以假设不成立,即B 错误.故选:AC.点评:本题考查立体几何中的翻折问题,涉及到线段长度的求解、直线与平面位置关系的判定、点的轨迹的求解、反证法的应用等知识点,考查学生的空间立体感和推理论证能力.11.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线()32222:16C x y x y +=恰好是四叶玫瑰线.给出下列结论正确的是()A .曲线C 经过5个整点(即横、纵坐标均为整数的点)B .曲线C 上任意一点到坐标原点O 的距离都不超过2C .曲线C 围成区域的面积大于4πD .方程()3222216(0)x y x y xy +=>表示的曲线C 在第一象限和第三象限 答案:BD先确定曲线C 经过点2,2),再将2x <2y <(1,1),(1,2)和(2,1)逐一代入曲线C的方程进行检验即可判断A ;利用基本不等式222x y xy +即可判断B ;将以O 为圆心、2为半径的圆的面积与曲线C 围成区域的面积进行比较即可判断C ;因为0xy >,所以x 与y 同号,仅限与第一和三象限,从而判断D .解: 解:把2x ,2y C ,可知等号两边成立,所以曲线C 在第一象限过点(2,2),由曲线的对称性可知,该点的位置是图中的点M ,对于A 选项,只需要考虑曲线在第一象限内经过的整点即可,把(1,1),(1,2)和(2,1)代入曲线C 的方程验证可知,等号不成立,所以曲线C 在第一象限内不经过任何整点,再结合曲线的对称性可知,曲线C 只经过整点(0,0),即A 错误;对于B 选项,因为222(0,0)x y xy x y +>>, 所以222x y xy +, 所以()()()22232222222161644x y x y x y x y ++=⨯=+, 所以224x y +,即B 正确;对于C 选项,以O 为圆点,2为半径的圆O 的面积为4π,显然曲线C 围成的区域的面积小于圆O 的面积,即C 错误;对于D 选项,因为0xy >,所以x 与y 同号,仅限与第一和三象限,即D 正确.故选:BD.点评:本题考查曲线的轨迹方程,涉及特殊点代入法、均值不等式、圆的面积等知识点,有一定的综合性,考查学生灵活运用知识和方法的能力.12.已知函数()sin()(0)f x x ωϕω=+>满足()()00112f x f x =+=-,且()f x 在()00,1x x +上有最小值,无最大值.则()A .0112f x ⎛⎫+=- ⎪⎝⎭ B .若00x =,则()sin 26f x x ππ⎛⎫=- ⎪⎝⎭C .()f x 的最小正周期为3D .()f x 在(0,2019)上的零点个数最少为1346个答案:AC 根据正弦函数图象的对称性可判断A ;根据已知三角函数值求角的方法,可得052,6x k k Z ωϕππ+=-∈,0(1)2,6x k k Z πωϕπ++=-∈,两式相减可求出ω,进而求得周期,从而可判断B 和C 选项;因为3T =,所以函数()f x 在区间(0,2019)上的长度恰好为673个周期,为了算出零点“至少”有多少个,可取(0)0f =,进而可判断D .解:解:由题意得,()f x 在()00,1x x +的区间中点处取得最小值, 即0112f x ⎛⎫+=- ⎪⎝⎭,所以A 正确; 因为()()00112f x f x =+=-, 且()f x 在()00,1x x +上有最小值,无最大值, 所以不妨令052,6k k Z ωϕππ+=-∈, ()012,6x k k Z πωϕπ++=-∈, 两式相减得,23πω=, 所以23T πω==,即B 错误,C 正确;因为3T =,所以函数()f x 在区间(0,2019)上的长度恰好为673个周期,当(0)0f =,即k ϕπ=时,()f x 在区间(0,2019)上的零点个数至少为673211345⨯-=个,即D 错误.故选:AC.点评:本题考查与三角函数有关的命题的真假关系,结合三角函数的图象与性质,利用特殊值法以及三角函数的性质是解题的关键,综合性较强.三、填空题13.为做好社区新冠疫情防控工作,需将六名志愿者分配到甲、乙、丙、丁四个小区开展工作,其中甲小区至少分配两名志愿者,其它三个小区至少分配一名志愿者,则不同的分配方案共有_______种.(用数字作答)答案:660根据题意,分析可得甲、乙、丙、丁四个小区分配人数依次为3,1,1,1或2,2,1,1,据此分2种情况讨论,由加法原理计算可得答案.解:解:根据题意,将六名志愿者分配到甲、乙、丙、丁四个小区开展工作,其中甲小区至少分配两名志愿者,其它三个小区至少分配一名志愿者,则甲、乙、丙、丁四个小区分配人数依次为:3,1,1,1或2,2,1,1,若甲小区分3人,甲小区有36C 种情况,剩下的3个小区有33A 种情况,此时有3363120C A =种分配方法,若甲小区分2人,甲小区有36C 种情况,剩下的3个小区有2343C A 种情况,此时有223643540C C A =种分配方法,则有120540660+=种不同的分配方法;故答案为:660.点评:本题考查排列组合的简单应用,涉及分步乘法和分类加法计数原理的应用.14.已知函数()2cos f x x x λ=++,在区间上0,2π⎡⎤⎢⎥⎣⎦任取三个数1x ,2x ,3x ,均存在以1f x ,2f x ,()3f x 为边长的三角形,则λ的取值范围是_______.答案:5,6π⎫-+∞⎪⎭由三角形中两短边之和大于第三边可知,原问题等价于函数()f x 在[0,]2π上的最小值的两倍大于最大值,由此利用导数求出最小值及最大值,进而建立不等式解出即可.解:解:由()2cos f x x x λ=++,得()12sin f x x '=-,0,2x π⎡⎤∈⎢⎥⎣⎦, 令()0f x '=,解得6x π=,易知函数()f x 在06,π⎡⎤⎢⎥⎣⎦上单调递增, 在,62ππ⎛⎤ ⎥⎝⎦上单调递减,故max ()66f x f ππλ⎛⎫==+ ⎪⎝⎭, min ()22f x f ππλ⎛⎫==+ ⎪⎝⎭, 依题意,022f ππλ⎛⎫=+>⎪⎝⎭,且226f f f πππ⎛⎫⎛⎫⎛⎫+> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即26ππλλ+>+,解得56πλ>.故答案为:5,6π⎫+∞⎪⎭. 点评:本题考查利用导数研究函数在闭区间上的最值,同时还涉及了三角形中三边的关系,考查转化思想及运算能力.15.设抛物线22(0)y px p =>的焦点为(1,0)F ,准线为1,过焦点的直线交抛物线于A ,B 两点,分别过A ,B 作l 的垂线,垂足为C ,D ,若||4||AF BF =,则p =_________,三角形CDF 的面积为________.答案:25通过抛物线的焦点坐标,即可求解P ,利用抛物线的定义,结合||4||AF BF =,求出直线AB 的斜率值,写出直线AB 的方程,利用直线与抛物线方程联立求得AB 的值,求解CDF ∆的面积. 解:解:抛物线22(0)y px p =>的焦点为(1,0)F ,所以12p =, 所以2P =;如图所示,过点B 作BM l ∥,交直线AC 于点M ,由抛物线的定义知||||AF AC =,||||BF BD =,且||4||AF BF =,所以||3||AM BF =,||5||AB BF =,所以3||||5AM AB =,4||BM BF =, 可知:AFx BAM ∠=∠,所以直线AB 的斜率为4tan 3BM k BAM AM =∠==, 设直线AB 的方程为4(1)3y x =-,点()11,A x y ,()22,B x y , 由24(1)34y x y x⎧=-⎪⎨⎪=⎩, 消去y 整理得241740x x -+=,所以12174x x +=,所以1225||4AB x x p =++=, 所以254||||sin 545CD AB BAM =∠=⨯=; 所以CDF ∆的面积为15252⨯⨯=, 故答案为:2;5.点评:本题考查抛物线的方程与性质的应用问题,涉及联立方程组、韦达定理、焦点弦和三角形面积的计算问题.16.在三棱锥P ABC -中,底面ABC 是以AC 为斜边的等腰直角三角形,且2AB =,5PA PC ==,PB 与底面ABC 所成的角的正弦值为13,则三棱锥P ABC -的外接球的体积为_______.答案:8989π或92π 如图所示,取AC 的中点D ,连接BD ,PD ,由BC AB =,PA PC =,利用等腰三角形的性质,线面垂直的判定定理即可得出:AC ⊥平面PBD ,进而得出:平面PBD ⊥平面ABC ,可得PBD ∠为PB 与底面ABC 所成的角,其正弦值为13.在PBD △中,设PB x =,利用余弦定理可得:x ,讨论当13PB =时,作PQ ⊥平面ABC ,求得19PQ h ==,根据三棱锥和外接球的性质,列式求出外接球的半径,即可求出外接球的体积;当3PB =时,取PB 的中点O ,连接OD ,利用余弦定理可得OD ,可得点O 为三棱锥P ABC -的外接球的球心,即可得出外接球的体积V . 解:解:如图所示,取AC 的中点D ,连接BD ,PD .∵BC AB =,PA PC =,∴AC BD ⊥,AC PD ⊥,∴AC ⊥平面PBD ,又AC ⊂平面ABC ,∴平面PBD ⊥平面ABC ,∴PBD ∠或PBD ∠的补角为PB 与底面ABC 所成的角,其正弦值为13,222AC AB ==,223PD PA AD =-=,在PBD △中,设PB x =,由余弦定理可得:22222(2)(3)cos 22x PBD x+-∠=±=, 解得:3x =或13,即13PB =或3PB =, 当13PB =时,如下图所示,设PBD △中BD 边上的高为PQ h =,由于平面PBD ⊥平面ABC ,则PQ ⊥平面ABC ,则1sin 3PQ PBQ PB ∠==,解得:19PQ h ==, 所以2222112239BQ PB h ⎛⎫⎛⎫=-=-= ⎪ ⎪⎝⎭⎝⎭, 得112DQ BQ BD =+=, 设底面圆的半径为r ,所以2r BD ==设球心O 到底面ABC 外接圆圆心D 的距离为d ,球的半径为R ,则有:()222222d h DQ R d r R ⎧-+=⎪⎨+=⎪⎩,即:2222221112992d R d R ⎧⎛⎛⎫⎪-+= ⎪⎪ ⎝⎭⎝⎭⎨⎪+=⎪⎩, 解得:92d =,又因为()222229892224d R R ⎛⎫+=⇒+== ⎪⎝⎭,即:89R =, 所以外接球的体积为:34489898989334V R πππ==⨯⨯=. 当3PB =时,取PB 的中点O ,连接OD ,则22233221(2)22224OD ⎛⎫=+-= ⎪⎝⎭, 解得12OD =, ∴222OD DB OB +=,∴OD DB ⊥,可得点O 为三棱锥P ABC -的外接球的球心,其外接球的半径32R =, 外体积3439322V ππ⎛⎫=⨯= ⎪⎝⎭. 综上得:三棱锥P ABC -的外接球的体积为:896π或92π. 故答案为:896π或92π. 点评: 本题考查等腰三角形的性质、球的体积计算公式、余弦定理、线面、面面垂直的判定与性质定理,考查了推理能力与计算能力.四、解答题17.如图,在ABC ∆中,4C π=,角B 的平分线BD 交AC 于点D ,设CBD θ∠=,其中1tan 2θ=.(1)求sin A ;(2)若28CA CB ⋅=,求AB 的长.答案:(1)7210;(2)5. (1)根据tan θ求出sin θ和cos θ的值,利用角平分线和二倍角公式求出cos ABC ∠,即可求出sin A ;(2)根据正弦定理求出AC ,BC 的关系,利用向量的夹角公式求出AC ,可得BC ,正弦定理可得答案解:解:(1)由CBD θ∠=,且1tan 2θ=, 0,2πθ⎛⎫∈ ⎪⎝⎭, 221sin cos ,sin cos 2θθθθ=+∴=22215cos cos cos 144θθθ+==, ∴cos sin 55θθ==, 则4sin ABC sin 22sin cos 2555θθθ∠==== 243cos ABC 2cos 12155θ∴∠=-=⨯-= 22234sin sin 2sin 22cos 24422255A πππθθθθ⎡⎤⎛⎫⎛⎫⎛⎫=-+=+=+=⋅+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ 210; (2)由正弦定理,得sin sin BC AC A ABC =∠472510AC =,72BC AC 8∴=, 又2||||282CA CB CB CA ⋅=⋅=,||||282CB CA ∴⋅=由上两式解得AC =,又由sin sin AB AC C ABC =∠452AC =, 解得5AB =点评:本题考查了二倍角公式和正弦定理的灵活运用和计算能力,是中档题.18.在①()22130n n n a a a +-=>,②211390n n n n a a a a ---﹣﹣=,③222n S n n =-+这三个条件中任选一个,补充在下面问题中.已知:数列{}n a 的前n 项和为n S ,且11a =,______.(1)求数列{}n a 的通项公式;(2)对大于1的自然数n ,是否存在大于2的自然数m ,使得1a ,n a ,m a 成等比数列.若存在,求m 的最小值;若不存在,说明理由.答案:(1)详见解析(2)详见解析(1)若条件①()22130n n n a a a +-=>成立,由题意可发现数列2{}n a 是以1为首项,3为公差的等差数列,计算出数列2{}n a 的通项公式,即可计算出数列{}n a 的通项公式;若条件②211390n n n n a a a a ---﹣﹣=成立,通过递推关系得出{}n a 是首项为1,公差为3的等差数列,即可求出通项公式;若条件③222n S n n =-+成立,通过n a 和n S 的关系即可求出{}n a 的通项公式;(2)先假设存在大于2的自然数m ,使得1a ,n a ,m a 成等比数列,根据等比中项的性质有21m n a a a =,分三种情况讨论3个条件分别成立时,然后代入n a 和m a ,得出关于m 的表达式,用n 表示m ,通过数列的单调性和二次函数的性质,判断可得m 的最小值. 解:解:若条件①()22130n n n a a a +-=>成立, (1)211a =,2213n n a a +-=,故数列{}2na 是以1为首项,3为公差的等差数列. ∴2*13(1)32,n a n n n N =+-=-∈.∵0n a >,∴*n a n ∈N .(2)由题意,假设对大于1的自然数n ,存在大于2的自然数m , 使得1a ,n a ,m a 成等比数列,则21m n a a a =⋅,即32m a n =-,∵m a =32n =-, 整理,得22(32)23423n m n n -+==-+, 构造数列{}n b :令2342,1n b n n n =-+>且*n N ∈, ∵()2213(1)4(1)234261n n b b n n n n n +-=+-++--+=-, 当1n >且*n N ∈时,610n ->,即1n n b b +>.∴数列{}n b 是单调递增数列.当2n =时,数列{}n b 取最小值26b =.∴对大于1的自然数n ,存在大于2的自然数m ,且m 的最小值为6. 若条件②211390n n n n a a a a ---﹣﹣=成立,(1)211390n n n n a a a a ---﹣﹣=,,()()()13330n n n n a a a a -∴+--+=,即:()()1330n n n a a a -+--=,11a =,13n n a a -∴-=,{}n a ∴是首项为1,公差为3的等差数列,()()*13132n n N a n n ∴⨯-=-∈=+.(2)若1a ,n a ,m a 成等比数列,则21n m a a a =⋅,即()23232n m -=-,整理得:2222342333m n n n ⎛⎫=-+=-+ ⎪⎝⎭, 1n >且n 为整数,2n ∴=时,min 6m =,即存在大于2的自然数m ,使得1a ,n a ,m a 成等比数列,m 的最小值为6.若条件③222n S n n =-+成立,(1)222n S n n =-+,()()211212n S n n -∴=---+,()1231n n n S S a n n --==->11a =,所以()()1,1231n n a n n ⎧=⎪=⎨->⎪⎩,(2)若1a ,n a ,m a 成等比数列,则21n m a a a =⋅,即:()22323n m -=-,整理得:2233266222m n n n ⎛⎫=-+=-+ ⎪⎝⎭, 1n >且n 为整数,2n ∴=时,min 2m =,即存在大于2的自然数m ,使得1a ,n a ,m a 成等比数列,m 的最小值为2. 点评:本题主要考查数列由递推关系求通项公式,以及等比数列的性质应用.考查了转化思想,构造法,利用数列单调性和二次函数的性质求最值,逻辑思维能力和数学运算能力.19.如图,在直角梯形ABCD 中,//AB DC ,90ABC ∠=︒,22AB DC BC ==,E 为AB 的中点,沿DE 将ADE ∆折起,使得点A 到点P 位置,且PE EB ⊥,M 为PB 的中点,N 是BC 上的动点(与点B ,C 不重合).(Ⅰ)证明:平面EMN ⊥平面PBC 垂直;(Ⅱ)是否存在点N ,使得二面角B EN M --N 点位置;若不存在,说明理由.答案:(Ⅰ)见解析(Ⅱ)存在,此时N 为BC 的中点.(Ⅰ)证明PE ⊥平面EBCD ,得到平面PEB ⊥平面EBCD ,故平面PBC ⊥平面PEB ,EM ⊥平面PBC ,得到答案.(Ⅱ)假设存在点N 满足题意,过M 作MO EB ⊥于O ,MQ ⊥平面EBCD ,过Q 作QR EN⊥于R ,连接MR ,则EN MR ⊥,过Q 作QR EN ⊥于R ,连接MR ,MRQ ∠是二面角B EN M --的平面角,设2PE EB BC ===,BN x =,计算得到答案. 解:(Ⅰ)∵PE EB ⊥,PE ED ⊥,EBED E =,∴PE ⊥平面EBCD .又PE ⊂平面PEB ,∴平面PEB ⊥平面EBCD ,而BC ⊂平面EBCD ,BC EB ⊥,∴平面PBC ⊥平面PEB , 由PE EB =,PM AB =知EM PB ⊥,可知EM ⊥平面PBC , 又EM ⊂平面EMN ,∴平面EMN ⊥平面PBC .(Ⅱ)假设存在点N 满足题意,过M 作MO EB ⊥于O ,由PE EB ⊥知//PE MQ , 易证PE ⊥平面EBCD ,所以MQ ⊥平面EBCD ,过Q 作QR EN ⊥于R ,连接MR ,则EN MR ⊥(三垂线定理), 即MRQ ∠是二面角B EN M --的平面角, 不妨设2PE EB BC ===,则1MQ =,在Rt EBN ∆中,设BN x =(02x <<),由Rt ~Rt EBN ERQ ∆∆得,BN ENRQ EQ=即1x RQ =,得RQ =tan MQ MRQ RQ x∠==,依题意知cos MRQ ∠=tan MRQ x∠==1(0,2)x =∈, 此时N 为BC 的中点.综上知,存在点N ,使得二面角B EN M --的余弦值6,此时N 为BC 的中点.点评:本题考查了面面垂直,根据二面角确定点的位置,意在考查学生的空间想象能力和计算能力,也可以建立空间直角坐标系解得答案.20.沙漠蝗虫灾害年年有,今年灾害特别大.为防范罕见暴发的蝗群迁飞入境,我国决定建立起多道防线,从源头上控制沙漠蝗群.经研究,每只蝗虫的平均产卵数y 和平均温度x 有关,现收集了以往某地的7组数据,得到下面的散点图及一些统计量的值.71192ii x==∑,71569ii y==∑,7118542i ii x y==∑,7215414ii x==∑,7125.2848ii z==∑,71733.7079i i i x z ==∑.(其中ln i z y =,7117i i z z ==∑). (1)根据散点图判断, y a b x =+与dxy ce =(其中 2.718e =…自然对数的底数)哪一个更适宜作为平均产卵数y 关于平均温度x 的回归方程类型?(给出判断即可,不必说明理由)并由判断结果及表中数据,求出y 关于x 的回归方程.(计算结果精确到小数点后第三位)(2)根据以往统计,该地每年平均温度达到28℃以上时蝗虫会造成严重伤害,需要人工防治,其他情况均不需要人工防治,记该地每年平均温度达到28℃以上的概率为(01)p p <<.①记该地今后5年中,恰好需要3次人工防治的概率为()f p ,求()f p 的最大值,并求出相应的概率p .②当()f p 取最大值时,记该地今后5年中,需要人工防治的次数为X ,求X 的数学期望和方差.附:线性回归方程系数公式()()()121ˆniii nii x x y y bx x ==--=-∑∑,ˆˆay bx =-. 答案:(1)dx y ce =更适宜;回归方程为0.272 3.849ˆx ye -=(2)①当35p =时,max 216()625f p =②详见解析(1)由图象可知,dxy ce =更适宜作为平均产卵数y 关于平均温度x 的回归方程类型,对dxy ce=两边取自然对数,求出回归方程,再化为y 关于x 的回归方程;(2)①由()f p 对其求导数,利用导数判断函数单调性,求出函数的最值以及对应p 的值; ②由()f p 取最大值时的p 的值,得出~(,)X B n p ,由()E x np =,()(1)D x np p =-计算得出答案. 解:解:(1)根据散点图可以判断,dx y ce =更适宜作为平均产卵数y 关于平均温度x 的回归方程类型,对dxy ce =两边取自然对数, 得:ln ln y c dx =+,令ln z y =,ln a c =,b d =, 则z a bx =+,因为()()()77112772211740.1820ˆ0.272147.71437ii i ii i i i i ixx z z x z xzbx x xx ====---===≈--∑∑∑∑,ˆˆ 3.6120.27227.429 3.849az bx =-=-⨯≈-, 所以z 关于x 的回归方程为ˆ0.272 3.849zx =-,所以y 关于x 的回归方程为0.272 3.849ˆx ye -=; (2)①由3325()(1)f p c p p =-,得:325()(1)(35)f p C p p p '=--,又01p <<, 令()0f p '>, 解得305p <<, 所以()f p 在30,5⎛⎫ ⎪⎝⎭上单调递增,在3,15⎛⎫ ⎪⎝⎭上单调递减,所以()f p 有唯一的极大值为35f ⎛⎫ ⎪⎝⎭,也是最大值, 所以当35p =时, max 3216()5625f p f ⎛⎫== ⎪⎝⎭;②由①知,当()f p 取得最大值时,35p =, 所以3~5,5X B ⎛⎫ ⎪⎝⎭,所以X 的数学期望为3()535E X =⨯=, 方差为336()51555D X ⎛⎫=⨯⨯-= ⎪⎝⎭. 点评:本题考查线性回归方程的求法与应用问题,概率的计算与应用问题,数学期望与方差的计算问题,同时还涉及了利用导数求单调性及最值,对计算能力的要求较高.21.已知圆22:4O x y +=,定点(1,0)A ,P 为平面内一动点,以线段AP 为直径的圆内切于圆O ,设动点P 的轨迹为曲线C (1)求曲线C 的方程(2)过点Q 的直线l 与C 交于,E F 两点,已知点(2,0)D ,直线0x x =分别与直线,DE DF 交于,S T 两点,线段ST 的中点M 是否在定直线上,若存在,求出该直线方程;若不是,说明理由.答案:(1)22143x y +=;(220y +-=. (1)设以AP 为直径的圆心为B ,切点为N ,取A 关于y 轴的对称点A ',连接A P ',计算得到4A P AP '+=,故轨迹为椭圆,计算得到答案.(2)设直线的方程为(2)x ty =+-,设112200(,),(,),(,)E x y F x y M x y ,联立方程得到101(2)2s y y x x =--,202(2)2T y y x x =--,计算0022y x =-. 解:(1)设以AP 为直径的圆心为B ,切点为N ,则2,2OB BA OB BA =-+=, 取A 关于y 轴的对称点A ',连接A P ',故2()42A P AP OB BA '+=+=>, 所以点P 的轨迹是以,A A '为焦点,长轴为4的椭圆,其中2,1a c ==,曲线方程为22143x y +=.(2)设直线的方程为(2)x ty =+-,设112200(,),(,),(,)E x y F x y M x y , 直线DE 的方程为11011(2),(2)22s y y y x y x x x =-=---,同理202(2)2T y y x x =--, 所以12000122(2)(2)12s T y y y y y x x x x =+=-+---,即0120122222y y y x x x =+=---,联立222222(2),(34)(12)9034120x ty t y t y t x y ⎧=+-⎪∴++-+-=⎨+-=⎪⎩,所以22121222912,3434t t y y y y t t --=+=++,代入得22009222t y x -⨯=-0020y =+-=,所以点M 都在定直线32230x y +-=上.点评:本题考查了轨迹方程,定直线问题,意在考查学生的计算能力和综合应用能力. 22.已知函数()cos xf x e ax x =--,其中a R ∈. (1)求证:当1a -时,()f x 无极值点;(2)若函数()()1(1)g x f x n x =++,是否存在a ,使得()g x 在0x =处取得极小值?并说明理由.答案:(1)证明见解析(2)存在;详见解析(1)求导,由1a -,可知导函数大于零恒成立,由此即可得出()f x 无极值点;(2)先必要性探路可知2a =,再证明当2a =时,0x =是函数()g x 的极小值点,即证明其充分性,由此即可得出结论. 解:解:(1)证明:()sin x f x e a x '=-+, 显然0x e >,1sin 1x -,当1a -时,sin 010x e a x a -+>--, 即()0f x '>,∴函数()f x 在其定义域上为增函数, 故()f x 无极值点;(2)()cos ln(1)xg x e ax x x =--++,1()sin 1x g x e a x x '=-+++, 显然0x =是()g x 的极小值点的必要条件, 为(0)20g a '=-=,即2a =, 此时1()sin 21xg x e x x '=++-+, 显然当0,2x π⎛⎫∈ ⎪⎝⎭时, 11()sin 21sin 2sin 011x g x e x x x x x x '=++->+++->>++, 当1,04x ⎛⎫∈-⎪⎝⎭时, 223(1)11(31)122x x x x x ⎛⎫+-+=++> ⎪⎝⎭,故213112x x x <-++, 令2()12x x m x x e -⎛⎫=++ ⎪⎝⎭,则2()02xx m x e -'=-,故()m x 是减函数,故当0x <时,()(0)1m x m >=,即212xx e x <++,令1()sin 2h x x x =-, 则1()cos 2h x x '=-,当10x -<<时,1()cos102h x '>->, 故()h x 在(1,0)-单调递增,故当10x -<<时,()(0)0h x h <=, 即1sin 2x x <, 故当1,04x ⎛⎫∈-⎪⎝⎭时, 22213()sin 21122012222xx x xg x e x x x x x x ⎛⎫⎛⎫'=++-+++-+-+=+< ⎪ ⎪+⎝⎭⎝⎭,因此,当2a =时,0x =是()g x 的极小值点,即充分性也成立.综上,存在2a =,使得()g x 在0x =处取得极小值. 点评:本题考查利用导数研究函数的单调性和极值,考查逻辑推理能力以及运算求解能力,考查化归与转化思想.。

2020年山东省日照市寨里中学高三数学理联考试题含解析

2020年山东省日照市寨里中学高三数学理联考试题含解析

2020年山东省日照市寨里中学高三数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 下列四个结论中正确的结论个数是( )①命题“若p,则q”的逆命题是“若q,则p”.②设,是两个非零向量,则“∥”是“?=||?||”成立的充分不必要条件.③某学校有男、女学生各500名.为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是分层抽样.④设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,回归方程为=0.85x﹣85.71,则可以得出结论:该大学某女生身高增加1cm,则其体重约增加0.85kg.A.1 B.2 C.3 D.4参考答案:C考点:命题的真假判断与应用.专题:简易逻辑.分析:①利用逆命题的定义可知②“∥”说明共线,“?=||?||”说明同向.③关键看调查的对象是否存在明显的分层情况.④对于线性回归直线方程,每增加一个x,大约增加0.85.可判断解:对于①命题“若p,则q”的逆命题是“若q,则p”.正确.对于②“∥”说明共线,“?=||?||”说明同向.∴“∥”是“?=||?||”成立的必要不充分条件.错.对于③某学校有男、女学生各500名.因为抽取的人明显分男女两层次的人,则宜采用的抽样方法是分层抽样.正确对于④设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,回归方程为=0.85x﹣85.71,则可以得出结论:该大学某女生身高增加1cm,则其体重约增加0.85kg.符合线性回归直线的定义,正确.故选:C.点评:本题主要考查了逆命题的定义,向量共线条件,分层抽样的定义,线性回归直线的有关知识,属于简单题型.2. 已知函数,若,且,则的取值范围是( )A. B.C. D.参考答案:B略3. 已知S n是等比数列{a n}的前n项和,若,,则数列{a n}的公比q为()A. 3B. 2C. -3D. -2参考答案:A【分析】讨论不成立,当直接利用等比数列的通项公式和前n项和公式列式求出结果.【详解】由时,,故.∵,∴.又,解得,.故选A【点睛】本题考查的知识要点:数列的通项公式和前n项和公式的求法及应用,主要考查学生的运算能力和转化能力,属于基础题型.4. 已知,则不等式的解集为A. (-∞,-3)B. (3,+∞)C. (-∞,-3)∪(3,+∞)D. (-3,3)参考答案:C分析:由函数奇偶性的定义,确定函数为偶函数,进而将不等式,转化为不等式,可得或,解不等式求并集,即可得到所求解集.详解:当时,,,又有当时,,,即函数为偶函数.不等式转化为不等式,可得或,解得或,不等式的解集为.故选C.点睛:本题考查分段函数与解不等式综合,考查运用函数的基本性质转化不等式并求解的方法,属于中档题.5. 设、、是三个不同的平面,a、b是两条不同的直线,给出下列4个命题:①若a∥,b∥,则a∥b;②若a∥,b∥,a∥b,则∥;③若a⊥,b⊥,a⊥b,则⊥;④若a、b在平面内的射影互相垂直,则a⊥b. 其中正确命题是A. ④B. ③C. ①③D. ②④参考答案:B略6. 已知f(x)=则下列函数的图象错误的是 ( ).参考答案:D略7. 已知双曲线的右焦点为,直线与一条渐近线交于点A,△OAF的面积为(O为原点),则抛物线的焦点坐标为( )A.(0,0) B (,0) C.(1,0) D.(2,0)参考答案:C8. 已知函数f(x)=sinwx+coswx(w>0),y=f(x)的图象与直线y=2的两个相邻交点的距离等于π,则f(x)的单调递增区间是()A.[kπ﹣,kπ+],k∈Z B.[kπ+,kπ+],k∈ZC.[kπ﹣,kπ+],k∈Z D.[kπ+,kπ+],k∈Z参考答案:C【考点】两角和与差的正弦函数;正弦函数的单调性.【分析】先把函数化成y=Asin(ωx+φ)的形式,再根据三角函数单调区间的求法可得答案.【解答】解:f(x)=sinwx+coswx=2sin(wx+),(w>0).∵f(x)的图象与直线y=2的两个相邻交点的距离等于π,恰好是f(x)的一个周期,∴=π,w=2.f(x)=2sin(2x+).故其单调增区间应满足2kπ﹣≤2x+≤2kπ+,k∈Z.kπ﹣≤x≤kπ+,故选C.【点评】本题主要考查三角函数单调区间的求法.求三角函数的周期、单调区间、最值都要把函数化成y=Asin(ωx+φ)的形式在进行解题.9. 复数(是虚数单位),则A. B. C. D.2参考答案:.试题分析:因为,所以,故应选.考点:1、复数的基本运算;2、复数的基本概念;10. 等差数列的前项和为,已知,则()....参考答案:C在等差数列数列中,,即,解得.所以,选C. 二、填空题:本大题共7小题,每小题4分,共28分11. 若某空间几何体的三视图如图所示,则该几何体的体积是( )A. 2B. 1C.D.参考答案:B略12. 如图,在△ABC中,D是BC的中点,E在边AB上,,AD与CE交于点O.若,则______.参考答案:【分析】首先用、表示出、,结合得,进一步可得结果.【详解】由题得,,因为,所以,,.故答案为:【点睛】本题考查向量的数量积的应用,考查三角形加法和减法法则和平面向量的基底法,意在考查学生对这些知识的理解掌握水平和分析推理能力.13. 设双曲线经过点,且与具有相同渐近线,则的方程为________;渐近线方程为________.参考答案:,s14. 若圆柱的侧面展开图是边长为4cm的正方形,则圆柱的体积为cm3(结果精确到0.1cm3)参考答案:5.1【考点】旋转体(圆柱、圆锥、圆台).【分析】由圆柱的侧面展开图是边长为4的正方形知该圆柱的高为4,底面周长为4,由此求出底面圆的半径r,再计算该圆柱的体积.【解答】解:∵圆柱的侧面展开图是边长为4的正方形,∴该圆柱的高h=4,底面周长2πr=4,底面半径r=;∴该圆柱的体积为:V=πr2h=π??4==≈5.1(cm3).故答案为:5.115. 已知圆柱的底面半径为1,母线长与底面的直径相等,则该圆柱的体积为▲.参考答案:16. 若直线:,则该直线的倾斜角是 .参考答案:17. 函数的定义域为,且其图象上任一点满足方程,给出以下四个命题:①函数是偶函数;②函数不可能是奇函数;③,;④,.其中真命题的个数是()A.1 B.2 C.3 D.4参考答案:③④从以上情况可以看出:①④表示偶函数,②③表示奇函数,命题①②不正确;由图①②可知,,故命题③正确;由于双曲线的渐近线为,所以命题④正确.故选.考点:函数的定义,函数的奇偶性、单调性,双曲线.三、解答题:本大题共5小题,共72分。

山东省日照市2019-2020学年高考数学三模考试卷含解析

山东省日照市2019-2020学年高考数学三模考试卷含解析

山东省日照市2019-2020学年高考数学三模考试卷一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.复数1z 在复平面内对应的点为()22,3,2,z i =-+则12z z =( ) A .1855i -+ B .1855i -- C .815i -+D .815i --【答案】B 【解析】 【分析】求得复数1z ,结合复数除法运算,求得12z z 的值. 【详解】易知123z i =+,则()()1223(23)(2)(23)(2)2225z i i i i i z i i i ++--+--===-+-+--1818555i i --==--. 故选:B 【点睛】本小题主要考查复数及其坐标的对应,考查复数的除法运算,属于基础题.2.如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,且2AE EO =u u u v u u u v ,则ED =u u u v( )A .1233AD AB -u u uv u u u vB .2133AD AB +u u uv u u u vC .2133AD AB -u u uv u u u vD .1233AD AB +u u uv u u u v【答案】C 【解析】 【分析】画出图形,以,?AB AD u u u v u u u v 为基底将向量ED u u u v进行分解后可得结果.【详解】画出图形,如下图.选取,?AB AD u u u v u u u v为基底,则()211333AE AO AC AB AD ===+u u u v u u u v u u u v u u u v u u u v ,∴()121 333ED AD AE AD AB AD AD AB u u u v u u u v u u u v u u u v u u u v u u u v u u uv u u u v =-=-+=-. 故选C . 【点睛】应用平面向量基本定理应注意的问题(1)只要两个向量不共线,就可以作为平面的一组基底,基底可以有无穷多组,在解决具体问题时,合理选择基底会给解题带来方便.(2)利用已知向量表示未知向量,实质就是利用平行四边形法则或三角形法则进行向量的加减运算或数乘运算.3.以下四个命题:①两个随机变量的线性相关性越强,相关系数的绝对值越接近1;②在回归分析中,可用相关指数2R 的值判断拟合效果,2R 越小,模型的拟合效果越好; ③若数据123,,,,n x x x x L 的方差为1,则1232+1,2+1,2+1,,2+1n x x x x L 的方差为4;④已知一组具有线性相关关系的数据()()()11221010,,,,,,x y x y x y L ,其线性回归方程ˆˆˆybx a =+,则“()00,x y 满足线性回归方程ˆˆˆy bx a =+”是“1210010x x x x +++=L ,1210010y y y y ++=L ”的充要条件;其中真命题的个数为( )A .4B .3C .2D .1【答案】C 【解析】 【分析】①根据线性相关性与r 的关系进行判断, ②根据相关指数2R 的值的性质进行判断, ③根据方差关系进行判断,④根据点()00,x y 满足回归直线方程,但点()00,x y 不一定就是这一组数据的中心点,而回归直线必过样本中心点,可进行判断. 【详解】①若两个随机变量的线性相关性越强,则相关系数r 的绝对值越接近于1,故①正确; ②用相关指数2R 的值判断模型的拟合效果,2R 越大,模型的拟合效果越好,故②错误;③若统计数据123,,,,n x x x x L 的方差为1,则1232+1,2+1,2+1,,2+1n x x x x L 的方差为224=,故③正确; ④因为点()00,x y 满足回归直线方程,但点()00,x y 不一定就是这一组数据的中心点,即1210010x x x x +++=L ,1210010y y y y ++=L 不一定成立,而回归直线必过样本中心点,所以当1210010x x x x +++=L ,1210010y y y y ++=L 时,点 ()00,x y 必满足线性回归方程 ˆˆˆybx a =+;因此“()00,x y 满足线性回归方程ˆˆˆy bx a =+”是“1210010x x x x +++=L ,1210010y y y y ++=L ”必要不充分条件.故 ④错误; 所以正确的命题有①③. 故选:C. 【点睛】本题考查两个随机变量的相关性,拟合性检验,两个线性相关的变量间的方差的关系,以及两个变量的线性回归方程,注意理解每一个量的定义,属于基础题.4.当0a >时,函数()()2xf x x ax e =-的图象大致是( )A .B .C .D .【答案】B 【解析】由()0f x =,解得20x ax -=,即0x =或x a =,0,a >∴Q 函数()f x 有两个零点,,A C ∴,不正确,设1a =,则()()()()22,'1xxf x x x e f x x x e =-∴=+-,由()()2'10xf x x x e =+->,解得15x -+>或15x --<由()()2'10xf x x e =-<,解得:1515x ---+<<,即1x =-是函数的一个极大值点,D ∴不成立,排除D ,故选B.【方法点晴】本题通过对多个图象的选择考察函数的解析式、定义域、值域、单调性,导数的应用以及数学化归思想,属于难题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意选项一一排除.5.已知椭圆22:13x C y +=内有一条以点11,3P ⎛⎫ ⎪⎝⎭为中点的弦AB ,则直线AB 的方程为( )A .3320x y --=B .3320x y -+=C .3340x y +-=D .3340x y ++=【答案】C 【解析】 【分析】设()11,A x y ,()22,B x y ,则221113x y +=,222213x y +=,相减得到22033k +=,解得答案. 【详解】设()11,A x y ,()22,B x y ,设直线斜率为k ,则221113x y +=,222213x y +=, 相减得到:()()()()1212121203x x x x y y y y -+++-=,AB 的中点为11,3P ⎛⎫⎪⎝⎭, 即22033k +=,故1k =-,直线AB 的方程为:43y x =-+. 故选:C . 【点睛】本题考查了椭圆内点差法求直线方程,意在考查学生的计算能力和应用能力.6.某几何体的三视图如图所示,图中圆的半径为1,等腰三角形的腰长为3,则该几何体表面积为( )A .7πB .6πC .5πD .4π【答案】C 【解析】 【分析】几何体是由一个圆锥和半球组成,其中半球的半径为1,圆锥的母线长为3,底面半径为1,计算得到答案. 【详解】几何体是由一个圆锥和半球组成,其中半球的半径为1,圆锥的母线长为3,底面半径为1,故几何体的表面积为21322152πππ⨯⨯+⨯=. 故选:C . 【点睛】本题考查了根据三视图求表面积,意在考查学生的计算能力和空间想象能力.7.已知集合{}2|320M x x x =-+≤,{|N x y ==若M N M ⋂=,则实数a 的取值范围为( ) A .(,1]-∞ B .(,1)-∞C .(1,)+∞D .[1,)+∞【答案】A 【解析】 【分析】解一元二次不等式化简集合M 的表示,求解函数y =的定义域化简集合N 的表示,根据M N M ⋂=可以得到集合M 、N 之间的关系,结合数轴进行求解即可.【详解】{}{}2|320|12M x x x x x =-+≤=≤≤,{{}||N x y x x a ===≥.因为M N M ⋂=,所以有M N ⊆,因此有1a ≤. 故选:A 【点睛】本题考查了已知集合运算的结果求参数取值范围问题,考查了解一元二次不等式,考查了函数的定义域,考查了数学运算能力.8.定义在R 上的偶函数f (x )满足f (x+2)=f (x ),当x ∈[﹣3,﹣2]时,f (x )=﹣x ﹣2,则( ) A .66f sinf cos ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭> B .f (sin3)<f (cos3)C .4433f sin f cos ππ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭< D .f (2020)>f (2019)【答案】B 【解析】 【分析】根据函数的周期性以及x ∈[﹣3,﹣2]的解析式,可作出函数f (x )在定义域上的图象,由此结合选项判断即可. 【详解】由f (x+2)=f (x ),得f (x )是周期函数且周期为2,先作出f (x )在x ∈[﹣3,﹣2]时的图象,然后根据周期为2依次平移,并结合f (x )是偶函数作出f (x )在R 上的图象如下,选项A ,130sincos 1626ππ<=<=<, 所以66f sinf cos ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,选项A 错误; 选项B ,因为334ππ<<,所以203312sin cos -<<<, 所以f (sin3)<f (﹣cos3),即f (sin3)<f (cos3),选项B 正确; 选项C ,434144sin,1033233cos sin cos ππππ==->->->, 所以4433f sin f cos ππ⎛⎫⎛⎫->-⎪ ⎪⎝⎭⎝⎭,即4433f sin f cos ππ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭,选项C 错误;选项D ,(2020)(0)(1)(2019)f f f f =<=,选项D 错误. 故选:B. 【点睛】本题考查函数性质的综合运用,考查函数值的大小比较,考查数形结合思想,属于中档题. 9.已知纯虚数z 满足()122i z ai -=+,其中i 为虚数单位,则实数a 等于( ) A .1- B .1C .2-D .2【答案】B 【解析】 【分析】先根据复数的除法表示出z ,然后根据z 是纯虚数求解出对应的a 的值即可. 【详解】因为()122i z ai -=+,所以()()()()()21222421212125ai i a a iai z i i i ++-+++===--+, 又因为z 是纯虚数,所以220a -=,所以1a =. 故选:B. 【点睛】本题考查复数的除法运算以及根据复数是纯虚数求解参数值,难度较易.若复数z a bi =+为纯虚数,则有0,0a b =≠.10.过抛物线24y x =的焦点F 的直线交该抛物线于A ,B 两点,O 为坐标原点.若3AF =,则直线AB 的斜率为( ) A .2± B .2-C .22D .22±【答案】D 【解析】 【分析】根据抛物线的定义,结合||3AF =,求出A 的坐标,然后求出AF 的斜率即可. 【详解】解:抛物线的焦点(1,0)F ,准线方程为1x =-,设(,)A x y ,则||13AF x =+=,故2x =,此时22y =±,即(2,22)A ±.则直线AF 的斜率222221k ±==±-. 故选:D . 【点睛】本题考查了抛物线的定义,直线斜率公式,属于中档题.11.某人2018年的家庭总收人为80000元,各种用途占比如图中的折线图,2019年家庭总收入的各种用途占比统计如图中的条形图,已知2019年的就医费用比2018年的就医费用增加了4750元,则该人2019年的储畜费用为( )A .21250元B .28000元C .29750元D .85000元【答案】A 【解析】 【分析】根据 2018年的家庭总收人为80000元,且就医费用占10% 得到就医费用8000010%8000⨯=,再根据2019年的就医费用比2018年的就医费用增加了4750元,得到2019年的就医费用,然后由2019年的就医费用占总收人15%,得到2019年的家庭总收人再根据储畜费用占总收人25%求解. 【详解】因为2018年的家庭总收人为80000元,且就医费用占10% 所以就医费用8000010%8000⨯=因为2019年的就医费用比2018年的就医费用增加了4750元, 所以2019年的就医费用12750元, 而2019年的就医费用占总收人15%所以2019年的家庭总收人为127501585000÷%= 而储畜费用占总收人25%所以储畜费用:850002521250⨯%= 故选:A 【点睛】本题主要考查统计中的折线图和条形图的应用,还考查了建模解模的能力,属于基础题. 12.已知双曲线的两条渐近线与抛物线22,(0)y px p =>的准线分别交于点、,O 为坐标原点.若双曲线的离心率为2,三角形AOB 3p=( ).A .1B .32C .2D .3【答案】C 【解析】试题分析:抛物线22,(0)y px p =>的准线为x =-p2,双曲线的离心率为2,则222221=4c b e a a==+,3b a =3y x =,求出交点3()2p pA -,3(,)2p pB -,132AOB S ∆=⨯ 2332p p ==2p =;选C 考点:1.双曲线的渐近线和离心率;2.抛物线的准线方程; 二、填空题:本题共4小题,每小题5分,共20分。

山东省日照市2020届高三实验班过程检测数学答案

山东省日照市2020届高三实验班过程检测数学答案

解析:设
z
bi
,b
R
且b
0
1 i
,则
1 ai
bi
,得到 1
i
ab
bi
,1
ab ,
且1 b ,解得 a 1,故选 D.
3.答案:D 解析:D 设等差数列的公差为 d ,
ap aq ak al a1 ( p 1)d a1 (q 1)d a1 (k 1)d a1 (l 1)d
F1 关于直线 l
的对称点为 F1 ,设
F1 为 (x,
y) ,
x
y c
a b

y
0 2
bx c a2

解得
x
b2
c
a2

y
2ab c
, F1(b2
c
a2

2ab c
)

F1
在以
F2
为圆心,以半焦距 c
为半径
的圆上,(b2 a2 c)2 ( 2ab 0)2 c2 ,整理可得 4a2 c2 ,即 2a c ,
5 1
AC 4
4
则 sin 2340 sin(1440 900) cos1440
5 1
.
4
7.答案:C
解析:方法一:直线
l
为双曲线
C
:
x2 a2
y2 b2
1(a
0,b 0) 的一条渐近线,则直线 l

y
b a
x

F1

F2
是双曲线
C
的左、右焦点,
F1 (c,
0)

F2
(c,
0)

山东省日照市2019-2020学年高考三诊数学试题含解析

山东省日照市2019-2020学年高考三诊数学试题含解析

山东省日照市2019-2020学年高考三诊数学试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.抛物线方程为24y x =,一直线与抛物线交于A B 、两点,其弦AB 的中点坐标为(1,1),则直线的方程为( ) A .210x y --= B .210x y +-=C .210x y -+=D .210x y ---=【答案】A 【解析】 【分析】设()11,A x y ,()22,B x y ,利用点差法得到1212422y y x x -==-,所以直线AB 的斜率为2,又过点(1,1),再利用点斜式即可得到直线AB 的方程. 【详解】解:设()()1122,,,A x y B x y ,∴122y y +=,又21122244y x y x ⎧=⎨=⎩,两式相减得:()2212124y y x x -=-, ∴()()()1212124y y y y x x +-=-,∴1212422y y x x -==-,∴直线AB 的斜率为2,又∴过点(1,1),∴直线AB 的方程为:12(1)y x -=-,即2 10x y --=, 故选:A. 【点睛】本题考查直线与抛物线相交的中点弦问题,解题方法是“点差法”,即设出弦的两端点坐标,代入抛物线方程相减后可把弦所在直线斜率与中点坐标建立关系.2.若函数32()39f x x ax x =++-在3x =-时取得极值,则a =( ) A .2 B .3C .4D .5【答案】D 【解析】 【分析】对函数求导,根据函数在3x =-时取得极值,得到()30f '-=,即可求出结果.因为()3239f x x ax x =++-,所以()2323f x x ax =++',又函数()3239f x x ax x =++-在3x =-时取得极值,所以()327630f a -=-+=',解得5a =. 故选D 【点睛】本题主要考查导数的应用,根据函数的极值求参数的问题,属于常考题型.3.已知()21AB =-u u u r ,,()1,AC λ=u u u r,若cos 10BAC ∠=,则实数λ的值是( )A .-1B .7C .1D .1或7【答案】C 【解析】 【分析】根据平面向量数量积的坐标运算,化简即可求得λ的值. 【详解】由平面向量数量积的坐标运算,代入化简可得cos 10AB AC BAC AB AC ⋅∠===u u u r u u u r u u u r u u u r . ∴解得1λ=. 故选:C. 【点睛】本题考查了平面向量数量积的坐标运算,属于基础题.4.tan570°=( ) A.3B .-3CD.2【答案】A 【解析】 【分析】直接利用诱导公式化简求解即可. 【详解】tan570°=tan (360°+210°)=tan210°=tan (180°+30°)=tan30°=3.【点睛】本题考查三角函数的恒等变换及化简求值,主要考查诱导公式的应用,属于基础题.5.已知集合M={y|y=,x>0},N={x|y=lg(2x-)},则M∩N为()A.(1,+∞)B.(1,2)C.[2,+∞)D.[1,+∞)【答案】B【解析】,,∴.故选.6.已知正四面体A BCD-外接球的体积为86π,则这个四面体的表面积为()A.183B.163C.143D.123【答案】B【解析】【分析】设正四面体ABCD的外接球的半径R,将该正四面体放入一个正方体内,使得每条棱恰好为正方体的面对角线,根据正方体和正四面体的外接球为同一个球计算出正方体的棱长,从而得出正四面体的棱长,最后可求出正四面体的表面积.【详解】将正四面体ABCD放在一个正方体内,设正方体的棱长为a,如图所示,设正四面体ABCD的外接球的半径为R,则34863Rππ=,得6R=.因为正四面体ABCD的外接球3a=226R=2.而正四面体ABCD的每条棱长均为正方体的面对角线长,所以,正四面体ABCD 4=,因此,这个正四面体的表面积为244⨯=故选:B . 【点睛】本题考查球的内接多面体,解决这类问题就是找出合适的模型将球体的半径与几何体的一些几何量联系起来,考查计算能力,属于中档题.7.已知集合{}0,1,2,3A =,{|22}B x x =-≤≤,则A B I 等于( )A .{}012,, B .{2,1,0,1,2}-- C .{}2,1,0,1,2,3-- D .{}12, 【答案】A 【解析】 【分析】进行交集的运算即可. 【详解】{0A =Q ,1,2,3},{|22}B x x =-剟, {0A B ∴=I ,1,2}.故选:A . 【点睛】本题主要考查了列举法、描述法的定义,考查了交集的定义及运算,考查了计算能力,属于基础题.8.设集合{|3}{|02}A x x B x x x =<=,或,则A B ⋂=( ) A .()0-∞,B .()23,C .()()023-∞⋃,, D .()3-∞, 【答案】C 【解析】 【分析】直接求交集得到答案. 【详解】集合{|3}{|02}A x x B x x x =<=,或,则()()023A B ⋂=-∞⋃,,. 故选:C . 【点睛】本题考查了交集运算,属于简单题.9.已知ABC V 的垂心为H ,且6,8,AB BC M ==是AC 的中点,则HM AC ⋅=u u u u r u u u r( ) A .14 B .12C .10D .8【答案】A 【解析】 【分析】由垂心的性质,得到0BH AC ⋅=u u u r u u u r,可转化HM AC BM AC ⋅=⋅u u u u r u u u r u u u u r u u u r ,又1()()2BM AC BA BC BC BA ⋅=+⋅-u u u u r u u u r u u u r u u u r u u u r u u u r 即得解. 【详解】因为H 为ABC V 的垂心,所以BH AC ⊥, 所以0BH AC ⋅=u u u r u u u r ,而HM HB BM =+u u u u r u u u r u u u u r,所以()HM AC HB BM AC BM AC ⋅=+⋅=⋅u u u u r u u u r u u u r u u u u r u u u r u u u u r u u u r ,因为M 是AC 的中点,所以1()()2BM AC BA BC BC BA ⋅=+⋅-u u u u r u u u r u u u r u u u r u u u r u u u r2211()(6436)1422BC BA =-=-=u u ur u u u r . 故选:A 【点睛】本题考查了利用向量的线性运算和向量的数量积的运算率,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.10.当输入的实数[]230x ∈,时,执行如图所示的程序框图,则输出的x 不小于103的概率是( )A .914B .514C .37D .928【答案】A 【解析】 【分析】根据循环结构的运行,直至不满足条件退出循环体,求出x 的范围,利用几何概型概率公式,即可求出结论. 【详解】程序框图共运行3次,输出的x 的范围是[]23247,, 所以输出的x 不小于103的概率为24710314492472322414-==-.故选:A. 【点睛】本题考查循环结构输出结果、几何概型的概率,模拟程序运行是解题的关键,属于基础题.11.直线1y kx =+与抛物线C :24x y =交于A ,B 两点,直线//l AB ,且l 与C 相切,切点为P ,记PABV 的面积为S ,则S AB -的最小值为( ) A .94-B .274-C .3227-D .6427-【答案】D 【解析】 【分析】设出,A B 坐标,联立直线方程与抛物线方程,利用弦长公式求得AB ,再由点到直线的距离公式求得P 到AB 的距离,得到PAB ∆的面积为S ,作差后利用导数求最值.【详解】设()11,A x y ,()22,B x y ,联立214y kx x y=+⎧⎨=⎩,得2440x kx --=则124x x k +=,()21212242y y k x x k +=++=+则21244AB y y p k =++=+由24x y =,得24x y =12y x ⇒'= 设()00,P x y ,则012x k = 02x k ⇒=,20y k =则点P 到直线1y kx =+的距离1d =≥从而()21212S AB d k =⋅=+()()()22322141241S AB k k d d d -=++=-≥.令()3224f x x x =- ()()2681f x x x x ⇒-'=≥当413x ≤≤时,()0f x '<;当43x >时,()0f x '>故()min 464327f x f ⎛⎫==-⎪⎝⎭,即S AB -的最小值为6427- 本题正确选项:D 【点睛】本题考查直线与抛物线位置关系的应用,考查利用导数求最值的问题.解决圆锥曲线中的面积类最值问题,通常采用构造函数关系的方式,然后结合导数或者利用函数值域的方法来求解最值.12.已知a b r r ,满足a =r 3b =r ,6a b ⋅=-r r ,则a r 在b r 上的投影为( )A .2-B .1-C .3-D .2【答案】A 【解析】 【分析】根据向量投影的定义,即可求解. 【详解】a r 在b r 上的投影为6cos 23a b a bθ⋅-===-rr r r .故选:A 【点睛】本题考查向量的投影,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。

2020届山东省新高考高三优质数学试卷分项解析-专题03-函数及其应用(解析版)

2020届山东省新高考高三优质数学试卷分项解析-专题03-函数及其应用(解析版)

专题3 函数及其应用1.关于函数图象的考查: (1)函数图象的辨识与变换;(2)函数图象的应用问题,运用函数图象理解和研究函数的性质,数形结合思想分析与解决问题的能力; 2.关于函数性质的考查:以考查能力为主,往往以常见函数(二次函数、指数函数、对数函数)为基本考察对象,以绝对值或分段函数的呈现方式,与不等式相结合,考查函数的基本性质,如奇偶性、单调性与最值、函数与方程(零点)、不等式的解法等,考查数学式子变形的能力、运算求解能力、等价转化思想和数形结合思想.其中函数与方程考查频率较高.涉及函数性质的考查;3.常见题型,除将函数与导数相结合考查外,对函数独立考查的题目,不少于两道,近几年趋向于稳定在选择题、填空题,易、中、难的题目均有可能出现.,预测2020年将保持对数形结合思想的考查,主要体现在对函数图象、函数性质及其应用的考查,客观题应特别关注分段函数相关问题,以及与数列、平面解析几何、平面向量、立体几何的结合问题.主观题依然注意与导数的结合.一、单选题1.(2019·山东师范大学附中高三月考)函数()312xf x x ⎛⎫=- ⎪⎝⎭的零点所在区间为( )A .()1,0-B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .()1,2【答案】C 【解析】311(1)(1)()302f --=--=-<,301(0)0(102f =-=-<,@13211112()()()02228f =-=-<,31111(1)1()10222f =-=-=>,321115(2)2()80222f =-=-=>,由()1102f f ⎛⎫⋅< ⎪⎝⎭. 故选:C2.(2020届山东省泰安市高三上期末)函数()3ln xf x x=的部分图象是( ) A . B .C .D .【答案】A 【解析】:()()()33ln ln ,x xf x f x f x x x=-==--, ()f x 为奇函数,排除B 当1x >时,()3ln 0xf x x=>恒成立,排除CD 故答案选A3.(2020·河南高三月考(理))已知(2)f x +是偶函数,()f x 在(]2-∞,上单调递减,(0)0f =,则(23)0f x ->的解集是( )A .2()(2)3-∞+∞,,B .2(2)3, C .22()33-,D .22()()33-∞-+∞,, 【答案】D 【解析】》因为(2)f x +是偶函数,所以()f x 关于直线2x =对称; 因此,由(0)0f =得(4)0f =;又()f x 在(]2-∞,上单调递减,则()f x 在[)2,+∞上单调递增;所以,当232x -≥即0x ≤时,由(23)0f x ->得(23)(4)f x f ->,所以234x ->, 解得23x <-; 当232x -<即0x >时,由(23)0f x ->得(23)(0)f x f ->,所以230x -<, 解得23x >; 因此,(23)0f x ->的解集是22()()33-∞-+∞,,. 》4.(2020·全国高三专题练习(文))函数()()22log ,1,1,1,x x f x f x x ≥⎧=⎨+<⎩,若方程()2f x x m =-+有且只有两个不相等的实数根,则实数m 的取值范围是 ( ) A .(),4-∞ B .(],4-∞C .()2,4-D .(]2,4-【答案】A 【解析】令()2g x x m =-+,画出()f x 与()g x 的图象,平移直线,当直线经过()1,2时只有一个交点,此时4m =,向右平移,不再符合条件,故4m < 故选:A$5.(2020届山东省烟台市高三上期末)设0.5log 3a =,30.5b =,0.513c -⎛⎫= ⎪⎝⎭,则,,a b c 的大小关系为( )A .a b c <<B .a c b <<C .b a c <<D .b c a <<【答案】A 【解析】由题,因为0.5log y x =单调递减,则0.50.5log 3log 10a =<=;因为0.5xy =单调递减,则3000.50.51b <=<=;因为3xy =单调递增,则0.50.5013313c -⎛⎫==>= ⎪⎝⎭,所以01a b c <<<<,—故选:A6.(2020届山东省潍坊市高三上期中)函数ln ()xf x x x=-的大致图象为( )A .B .C .D .【答案】A 【解析】函数的定义域为(,0)(0,)-∞+∞,||||()()()ln x ln x f x x x f x x x--=--=--=--,则函数()f x 是奇函数,图象关于原点对称,排除B ,D ,"当0x >且0x →,()f x →+∞,排除C . 故选:A.7.(2020届山东省潍坊市高三上期中)已知3log 2a =,143b =,2ln 3c =,则a ,b ,c 的大小关系为( ) A .a b c >> B .b a c >> C .c b a >>D .c a b >>【答案】B 【解析】因为3log 2(0,1)a =∈,1431b =>,203c ln =<,则a ,b ,c 的大小关系:b a c >>.|故选:B.8.(2020届山东省泰安市高三上期末)若()33log 21log a b ab +=+2+a b 的最小值为( )A .6B .83C .3D .163【答案】C 【解析】∵()3log 21a b +=+∴()33log 21log a b ab +=+()3log 3ab =, ∴23a b ab +=,且0a >,0b >,《∴123a b+=, ∴()112223a b a b a b ⎛⎫+=++ ⎪⎝⎭122143b a a b ⎛⎫=+++ ⎪⎝⎭5233b a a b ⎛⎫=++ ⎪⎝⎭5233≥+⋅3=, 当且仅当b aa b =且123a b+=即1a b ==时,等号成立; 故选:C .9.(2020届山东省日照市高三上期末联考)三个数0.87,70.8,0.8log 7的大小顺序是( )A .70.80.8log 70.87<< B .0.870.8log 770.8<<C .70.80.80.87log 7<<D .0.870.870.8log 7<<,【答案】A 【解析】0.871>,700.81<<,0.8log 70<,故70.80.8log 70.87<<.故选A.10.(2020届山东省济宁市高三上期末)若0.1212,ln 2,log 5a b c ===,则( ) A .b c a >> B .b a c >> C .c a b >> D .a b c >>【答案】D 【解析】,0.10221a =>=;0ln1ln 2ln 1b e =<=<=;221log log 105c =<=,即a b c >> 故选:D11.(2020·山东省淄博实验中学高三上期末)“0x <”是“ln(1)0x +<”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B 【解析】由题意得,ln(1)001110x x x +<⇔<+<⇔-<<,故是必要不充分条件,故选B .)12.(2020届山东省滨州市三校高三上学期联考)若a ,b ,c ,满足2log 3a =,25b =,3log 2c =,则( )A .b c a <<B .c a b <<C .a b c <<D .c b a <<【答案】B 【解析】2221log log 3log 242=<<=,故12a <<;又22542b =>=,故2b >; 33log 2log 31c =<=,c a b ∴<<,)故选:B.13.(2020届山东省九校高三上学期联考)若函数()y f x =的大致图像如图所示,则()f x 的解析式可以为( )A .()22x xxf x -=+B .()22x xxf x -=-C .()22x xf x x-+=D .()22x xf x x--=【答案】C 【解析】对四个选项解析式分析发现B ,D 两个均为偶函数,图象关于y 轴对称,与题不符,故排除;(极限思想分析,0,222,022xxx x xx +--→+→→+,A 错误;220,222,x xx xx x-+-+→+→→+∞,C 符合题意.故选:C14.(2020届山东省枣庄、滕州市高三上期末)函数()y f x =是R 上的奇函数,当0x <时,()2xf x =,则当0x >时,()f x =( ) A .2x - B .2x - C .2x -- D .2x【答案】C 【解析】`0x <时,()2xf x =.当0x >时,0x -<,()2xf x --=,由于函数()y f x =是奇函数,()()2xf x f x -∴=--=-,因此,当0x >时,()2xf x -=-,故选C.15.(2020届山东省德州市高三上期末)已知1232a b -=⋅,()212log 23c b x x -=++,则实数a ,b ,c 的大小关系是( ) A .a b c >> B .b a c >> C .c b a >> D .a c b >>【答案】A 【解析】…1232a b -=⋅,1232a b -+∴=>,11a b ∴-+>,则a b >.()2223122x x x ++=++≥,()21122log 23log 21c b x x ∴-=++≤=-,b c ∴>.因此,a b c >>. 故选:A.16.(2020·山东省淄博实验中学高三上期末)已知定义在[]5,12m m --上的奇函数()f x ,满足0x >时,()21x f x =-,则()f m 的值为( )A .-15B .-7C .3D .15【答案】A 【解析】?因为奇函数的定义域关于原点中心对称 则5120m m -+-=,解得4m =-因为奇函数()f x 当0x >时,()21xf x =-则()()()4442115f f -=-=--=-故选:A17.(2020届山东省临沂市高三上期末)函数()22xf x =-(0x <)的值域是( )A .1,2B .(),2-∞C .()0,2D .1,【答案】A$【解析】0x <,021x ∴<<, 120x ∴-<-<1222x ∴<-<. 即()()2221,xf x =-∈故选:A18.(2020届山东实验中学高三上期中)若,a b 是任意实数,且a b >,则( ))A .22a b >B .1b a<C .()10g a b ->D .1122a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭【答案】D 【解析】a 、b 是任意实数,且a b >,如果0a =,2b =-,显然A 不正确;如果0a =,2b =-,显然B 无意义,不正确; 如果0a =,12b =-,显然C ,102lg <,不正确;因为指数函数12xy ⎛⎫= ⎪⎝⎭在定义域上单调递减,且a b >,1122ab⎛⎫⎛⎫∴< ⎪ ⎪⎝⎭⎝⎭满足条件,正确.故选:D .~19.(2020届山东省滨州市高三上期末)已知x ∈R ,则“121x⎛⎫ ⎪⎭>⎝”是“21x -<<-”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】由121x⎛⎫ ⎪⎭>⎝解得0x <,所以由“21x -<<-”能推出“0x <”,反之,不能推出; 因此“121x⎛⎫ ⎪⎭>⎝”是“21x -<<-”的必要不充分条件. 故选:B.~20.(2020届山东省济宁市高三上期末)已知奇函数()f x 在R 上单调,若正实数,a b 满足()()490f a f b +-=,则11a b+的最小值是( ) A .1B .92C .9D .18【答案】A 【解析】奇函数()f x 在R 上单调,()()490f a f b +-=,则()()()499f a f b f b =--=- 故49a b =-即49a b +=()()11111141452451999b a a b a b a b a b ⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭当4b a a b =即3,32a b ==时等号成立 ~故选:A21.(2020届山东省枣庄、滕州市高三上期末)已知ln ,1()(2),1x x f x f x k x ≥⎧=⎨-+<⎩若函数()1y f x =-恰有一个零点,则实数k 的取值范围是( ) A .(1,)+∞ B .[1,)+∞C .(,1)-∞D .(,1]-∞【答案】B 【解析】1x ≥时,()ln 1f x x ==,x e =,所以函数()1y f x =-在1x ≥时有一个零点,从而在1x <时无零点,即()1f x =无解.而当1x <时,21x ->,()(2)f x f x k =-+ln(2)x k =-+,它是减函数,值域为(,)k +∞, 要使()1f x =无解.则1k.|故选:B.22.(2020届山东省潍坊市高三上期末)函数()y f x =与()y g x =的图象如图所示,则()()y f x g x =⋅的部分图象可能是( )A .B .C .D .【答案】A 【解析】由图象可知()y f x =的图象关于y 轴对称,是偶函数,()y g x =的图象关于原点对称,是奇函数,并且定义域{}0x x ≠,$()()y f x g x ∴=⋅的定义域是{}0x x ≠,并且是奇函数,排除B ,又0,2x π⎛⎫∈ ⎪⎝⎭时,()0f x >,()0g x <,()()0f x g x ∴⋅<,排除C,D.满足条件的只有A. 故选:A23.(2020届山东省滨州市高三上期末)已知31log 3aa ⎛⎫= ⎪⎝⎭,133log bb =,131log 3cc ⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系是( ) A .c b a << B .a b c << C .b c a << D .b a c <<【答案】C 【解析】/在同一直角坐标系内,作出函数13x y⎛⎫= ⎪⎝⎭,3logy x=,3xy=,13logy x=的图像如下:因为31log3aa⎛⎫=⎪⎝⎭,133logb b=,131log3cc⎛⎫=⎪⎝⎭,所以a是13xy⎛⎫= ⎪⎝⎭与3logy x=交点的横坐标;b是3xy=与13logy x=交点的横坐标;c是13xy⎛⎫= ⎪⎝⎭与13logy x=交点的横坐标;由图像可得:b c a<<.故选:C.24.(2020届山东师范大学附中高三月考)函数()312xf x x⎛⎫=- ⎪⎝⎭的零点所在区间为()A.()1,0-B.10,2⎛⎫⎪⎝⎭C.1,12⎛⎫⎪⎝⎭D.()1,2(【答案】C【解析】311(1)(1)()302f--=--=-<,301(0)0()102f=-=-<,13211112()()()022282f=-=-<,31111(1)1()10222f=-=-=>,321115(2)2()80222f =-=-=>,由()1102f f ⎛⎫⋅< ⎪⎝⎭. 故选:C25.(2020届山东省德州市高三上期末)已知()f x 为定义在R 上的奇函数,当0x ≥时,有()()1f x f x +=-,且当[)0,1x ∈时,()()2log 1f x x =+,下列命题正确的是( )A .()()201920200f f +-=B .函数()f x 在定义域上是周期为2的函数{C .直线y x =与函数()f x 的图象有2个交点D .函数()f x 的值域为[]1,1-【答案】A 【解析】函数()y f x =是R 上的奇函数,()00f ∴=,由题意可得()()100f f =-=, 当0x ≥时,()()()21f x f x f x +=-+=,()()()()()()2019202020192020100f f f f f f ∴+-=-=-=,A 选项正确;当0x ≥时,()()1f x f x +=-,则2616log 555f f ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,2449log 555f f ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭,4462555f f f ⎛⎫⎛⎫⎛⎫∴-≠-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则函数()y f x =不是R 上周期为2的函数,B 选项错误; 若x 为奇数时,()()10f x f ==,%若x 为偶数,则()()00f x f ==,即当x ∈Z 时,()0f x =,当0x ≥时,()()2f x f x +=,若n N ∈,且当()2,21x n n ∈+时,()20,1x n -∈,()()()20,1f x f x n =-∈,当()1,2x ∈时,则()10,1x -∈,()()()11,0f x f x ∴=--∈-,当()21,22x n n ∈++时,()21,2x n -∈,则()()()21,0f x f x n =-∈-, 所以,函数()y f x =在[)0,+∞上的值域为()1,1-,由奇函数的性质可知,函数()y f x =在(),0-∞上的值域为()1,1-, 由此可知,函数()y f x =在R 上的值域为()1,1-,D 选项错误;|如下图所示:由图象可知,当11x -<<时,函数y x =与函数()y f x =的图象只有一个交点, 当1x ≤-或1x ≥时,()()1,1f x ∈-,此时,函数y x =与函数()y f x =没有交点, 则函数y x =与函数()y f x =有且只有一个交点,C 选项错误. 故选:A.26.(2020届山东实验中学高三上期中)已知函数()()221,0log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若方程()f x a =有四个不同的解12341234,,,,x x x x x x x x <<<且,则()3122341x x x x x ⋅++⋅的取值范围是( ) A .(]1,1-B .[]1,1-C .[)1,1- D .()1,1-'【答案】A 【解析】先作()f x 图象,由图象可得12343121,1.2x x x x x ⎡⎫+=-=∈⎪⎢⎣⎭,,因此()31232343112x x x x x x x ⋅++=-+⋅为1,12⎡⎫⎪⎢⎣⎭单调递减函数,从而()(] 31223411,1x x xx x⋅++∈-⋅,选A.二、多选题27.(2020届山东省临沂市高三上期末)若104a=,1025b=,则()…A.2a b+=B.1b a-=C.281g2ab>D.lg6b a->【答案】ACD【解析】由104a=,1025b=,得lg4a=,lg25b=,则lg4lg25lg1002a b∴+=+==,25lg25lg4lg4b a∴-=-=,25lg101lg lg64=>>lg6b a∴->)24lg2lg54lg2lg48lg2ab∴=>=,故正确的有:ACD故选:ACD.28.(2020届山东省日照市高三上期末联考)已知定义在R上的函数()y f x=满足条件()()2f x f x+=-,且函数()1y f x=-为奇函数,则()A.函数()y f x=是周期函数B.函数()y f x=的图象关于点()1,0-对称C .函数()y f x =为R 上的偶函数D .函数()y f x =为R 上的单调函数【答案】ABC 【解析】、因为()()2f x f x +=-,所以()()()42f x f x f x +=-+=,即4T=,故A 正确;因为函数()1y f x =-为奇函数,所以函数()1y f x =-图像关于原点成中心对称,所以B 正确; 又函数()1y f x =-为奇函数,所以()()11f x f x --=--,根据()()2f x f x +=-,令1x -代x 有()()11f x f x +=--,所以()()11f x f x +=--,令1x -代x 有()()f x f x -=,即函数()f x 为R 上的偶函数,C 正确;因为函数()1y f x =-为奇函数,所以()10f -=,又函数()f x 为R 上的偶函数,()10f =,所以函数不单调,D 不正确. 故选:ABC.29.(2020届山东省潍坊市高三上期中)已知函数22,0()(2),0x x x f x f x x ⎧--<=⎨-≥⎩,以下结论正确的是( )A .(3)(2019)3f f -+=-B .()f x 在区间[]4,5上是增函数》C .若方程() 1f x k x =+恰有3个实根,则11,24k ⎛⎫∈-- ⎪⎝⎭D .若函数()y f x b =-在(,4)-∞上有6个零点(1,2,3,4,5,6)i x i =,则()61iii x f x =∑的取值范围是()0,6【答案】BCD 【解析】函数()f x 的图象如图所示:对A ,(3)963f -=-+=-,(2019)(1)(1)1f f f ==-=,所以(3)(2019)2f f -+=-,故A 错误; 对B ,由图象可知()f x 在区间[]4,5上是增函数,故B 正确;对C ,由图象可知11,24k ⎛⎫∈-- ⎪⎝⎭,直线() 1f x k x =+与函数图象恰有3个交点,故C 正确; ]对D ,由图象可得,当函数()y f x b =-在(,4)-∞上有6个零点(1,2,3,4,5,6)i x i =,则01b <<,所以当0b →时,()610i i i x f x =→∑;当1b →时,()616i i i x f x =→∑,所以()61i i i x f x =∑的取值范围是()0,6,故D 正确. 故选:BCD.30.(2020届山东省枣庄、滕州市高三上期末)如图所示,一座小岛距离海岸线上最近的P 点的距离是2km ,从P 点沿海岸正东12km 处有一个城镇.假设一个人驾驶的小船的平均速度为3/km h ,步行的速度为5/km h ,时间t (单位:h )表示他从小岛到城镇的时间,x (单位:km )表示此人将船停在海岸处距P 点的距离.设24,u x x =++24v x x =+-,则( )A .函数()v f u =为减函数B .15432t u v --=C .当 1.5x =时,此人从小岛到城镇花费的时间最少D .当4x =时,此人从小岛到城镇花费的时间不超过3h?【答案】AC 【解析】A.∵,u x =v x =,22u v u vx +-==, 由题意4uv =,4v u=在(0,)+∞上是减函数,A 正确.B.125x t -=+126510u v u v+-=+-,整理得15436t u v =++,B 错误;C.由A 、B 得1615363644t u u =++≥=,16u u =即4u =时取等号,4x =,解得31.52x ==,C 正确;D.4x =时,85t =+,7305t -===>,3t >,D 错. :故选:AC.31.(2020届山东省枣庄市高三上学期统考)下列函数既是偶函数,又在(),0-∞上单调递减的是( ) A .2xy = B .23y x-=C .1y x x=- D .()2ln 1y x =+【答案】AD 【解析】对于A 选项,2xy =为偶函数,且当0x <时,122xx y -==为减函数,符合题意. 对于B 选项,23y x -=为偶函数,根据幂函数单调性可知23y x -=在(),0-∞上递增,不符合题意. 对于C 选项,1y x x=-为奇函数,不符合题意. {对于D 选项,()2ln 1y x =+为偶函数,根据复合函数单调性同增异减可知,()2ln 1y x =+在区间(),0-∞上单调递减,符合题意. 故选:AD.32.(2020届山东省潍坊市高三上期末)把方程1169x x y y+=-表示的曲线作为函数()y f x =的图象,则下列结论正确的有( )A .()y f x =的图象不经过第一象限B .()f x 在R 上单调递增C .()y f x =的图象上的点到坐标原点的距离的最小值为3D .函数()()43g x f x x =+不存在零点 【答案】ACD;【解析】当0,0x y >>,方程是221169x y +=-不表示任何曲线,故A 正确;当0,0x y ≥≤ ,方程是221169x y -=-,即221916y x -= ,当0,0x y ≤≥ ,方程是221169x y -+=- ,即221169x y -=,当0,0x y ≤≤ ,方程是221169x y --=-,即221169x y+= ,如图画出图象由图判断函数在R 上单调递减,故B 不正确;、由图判断()y f x =图象上的点到原点距离的最小值点应在0,0x y ≤≤的图象上,即满足221169x y += ,设图象上的点(),P x y2222279191616x PO x y x x ⎛⎫=+=+-=+ ⎪⎝⎭当0x =时取得最小值3,故C 正确; 当()430f x x += ,即()34f x x =-, 函数()()43g x f x x =+的零点,就是函数()y f x = 和34y x =-的交点, 而34y x =-是曲线221916y x -=,0,0x y ≥≤和221169x y -=0,0x y ≤≥的渐近线,所以没有交点,由图象可知34y x =-和221169x y +=,0,0x y ≤≤没有交点,所以函数()()43g x f x x =+不存在零点,故D 正确.<故选:ACD33.(2020届山东省滨州市高三上期末)在平面直角坐标系xOy 中,如图放置的边长为2的正方形ABCD 沿x 轴滚动(无滑动滚动),点D 恰好经过坐标原点,设顶点(),B x y 的轨迹方程是()y f x =,则对函数()y f x =的判断正确的是( )A .函数()y f x =是奇函数B .对任意的x ∈R ,都有()()44f x f x +=-C .函数()y f x =的值域为0,22⎡⎣D .函数()y f x =在区间[]6,8上单调递增【答案】BCD 【解析】由题意,当42x -≤<-时,顶点(),B x y 的轨迹是以点(2,0)A -为圆心,以2为半径的14圆; ,当22x -≤<时,顶点(),B x y 的轨迹是以点(0,0)D 为圆心,以214圆;当24x ≤<时,顶点(),B x y 的轨迹是以点(2,0)C 为圆心,以2为半径的14圆; 当46x ≤<,顶点(),B x y 的轨迹是以点(4,0)A 为圆心,以2为半径的14圆,与42x -≤<-的形状相同,因此函数()y f x =在[]4,4-恰好为一个周期的图像; 所以函数()y f x =的周期是8; 其图像如下:A 选项,由图像及题意可得,该函数为偶函数,故A 错;B 选项,因为函数的周期为8,所以(8)()f x f x +=,因此(4)(4)f x f x +=-;故B 正确;·C 选项,由图像可得,该函数的值域为0,22⎡⎣;故C 正确;D 选项,因为该函数是以8为周期的函数,因此函数()y f x =在区间[]6,8的图像与在区间[]2,0-图像形状相同,因此,单调递增;故D 正确; 故选:BCD.34.(2020届山东师范大学附中高三月考)下列函数中,既是偶函数,又在(0,)+∞上单调递增的是( ) A .3y x = B .2yxC .xy e =D .2lg y x =【答案】CD 【解析】本题主要考查函数的单调性和函数的奇偶性.|A 项,对于函数3y x =,因为()33()()f x x x f x -=-=-≠,所以函数3y x =不是偶函数.故A 项不符合题意.B 项,对于函数2yx ,因为当1x =时,1y =,当2x =,14y =,所以函数2y x 在区间(0,)+∞上不是单调递增的.故B 项不符合题意.C 项,对于函数x y e =,因为定义域为R ,()()x x g x g x e e --===,所以函数xy e =为偶函数,因为函数xy e =,当0x >时,xx y e e ==,而1e >,函数x y e =在R 上单调递增,所以函数xy e =在区间(0,)+∞上为增函数.故C 项符合题意.D 项,对于函数2lg y x =,因为函数()22lg )(l ()g h x x x h x -=-==,所以函数2lg y x =是偶函数.而2yx 在(0,)+∞上单调递增,lg y x =在(0,)+∞上单调递增,所以函数2lg y x =在(0,)+∞上单调递增.故D 项符合题意. 故选:CD.35.(2020届山东实验中学高三上期中)设定义在R 上的函数()f x 满足()()2f x f x x -+=,且当0x ≤时,()f x x '<.己知存在()()()220111122x x f x x f x x ⎧⎫∈-≥---⎨⎬⎩⎭,且0x 为函数()x g x e a =-(,a R e ∈为自然对数的底数)的一个零点,则实数a 的取值可能是( )A .12B .2C .2e D【答案】BCD—【解析】令函数21()()2T x f x x =-,因为2()()f x f x x -+=,22211()()()()()()()022T x T x f x x f x x f x f x x ∴+-=-+---=+--=,()T x ∴为奇函数,当0x 时,()()0T x f x x '='-<, ()T x ∴在(],0-∞上单调递减, ()T x ∴在R 上单调递减.存在0{|()(1)}x x T x T x ∈-,/∴得00()(1)T x T x -,001x x -,即012x ,()x g x e a =-;1()2x, 0x 为函数()y g x =的一个零点;当12x时,()0x g x e '=-, ∴函数()g x 在12x 时单调递减,由选项知0a >,取12x =<,又0g ee ⎛-=> ⎝,∴要使()g x 在12x时有一个零点,.只需使102g a ⎛⎫= ⎪⎝⎭, 解得e a, a ∴的取值范围为⎡⎫+∞⎪⎢⎪⎣⎭, 故选:BCD . 三、填空题36.(2020届山东省枣庄市高三上学期统考)若()3,0{1,0x x f x x x≤=>,则()()2f f -=__________. 【答案】9 【解析】《因为21(2)309f --==>,所以1((2))()99f f f -==,应填答案9. 37.(2020届山东省潍坊市高三上期中)已知函数()f x 是定义在R 上的偶函数,且在[)0,+∞上是减函数,10,3f ⎛⎫-= ⎪⎝⎭则不等式18log 0f x ⎛⎫> ⎪⎝⎭的解集为__________.【答案】1,22⎛⎫ ⎪⎝⎭【解析】()f x 是定义在R 上的偶函数,且在[0,)+∞上是减函数,1()03f -=,11()()033f f ∴=-=,则不等式18(log )0f x >等价为不等式181(|log |)()3f x f >,即181|log |3x <⇒1811log 33x -<<⇒122x <<,{即不等式的解集为1(,2)2, 故答案为:1(,2)2.38.(2020届山东省九校高三上学期联考)已知[]x 表示不超过x 的最大整数,如[]33=,[]1.51=,[]1.72-=-.令()2x f x x =⋅,[]()()g x f x x =-,则下列说法正确的是__________.①()g x 是偶函数 ②()g x 是周期函数③方程()0g x -=有4个根④()g x 的值域为[]0,2 【答案】②③|【解析】1111()([])()33333g f f =-==,1112()([])()33333g f f -=---== 显然11()()33g g -≠,所以()g x 不是偶函数,所以①错误;[][](1)(11)()()g x f x x f x x g x +=+-+=-=,所以()g x 是周期为1的周期函数,所以②正确; 作出函数y x =的图象和()g x 的图象:根据已推导()g x 是周期为1的周期函数,只需作出()g x 在[0,1)x ∈的图象即可,当[0,1)x ∈时[]()()()2x g x f x x f x x =-==⋅,根据周期性即可得到其余区间函数图象,如图所示:》可得()g x 值域为[0,2),函数y x =()g x 的图象一共4个交点,即方程()0g x x =有4个根, 所以③正确,④错误; 故答案为:②③39.(2020届山东省滨州市三校高三上学期联考)已知定义在R 上的函数满足(3)(3)f x f x -=-+,且()f x 图像关于1x =对称,当(1,2]x ∈时,2()log (21)f x x =+,则8252f ⎛⎫= ⎪⎝⎭________. 【答案】-2 【解析】因为()f x 图像关于1x =对称,则()(2)f x f x =-,()(2)(31)(31)(4)(8)f x f x f x f x f x f x =-=--=-++=-+=+,)故()f x 是以8为周期的周期函数,82511113851443131222222f f f f ff⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴=⨯++=+=++=---=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭23log (21)22=-⨯+=-故答案为:2-.40.(2020届山东师范大学附中高三月考)已知函数()f x 是定义在R 上的奇函数,当12x x ≠时,有1212[()()]()0f x f x x x --<恒成立,若(31)(2)0f x f ++>,则x 的取值范围是________.【答案】(,1)-∞- 【解析】根据已知条件:当12x x ≠时,有1212[()()]()0f x f x x x --<恒成立,得函数()f x 是定义在R 上的减函数,…又因为函数()f x 是定义在R 上的奇函数,所以(2)(2)f f -=-,故(31)(2)0f x f ++>等价于(31)(2)(2)f x f f +>-=-,所以312x +<-,即1x <-. 故答案为:(),1-∞-.41.(2020届山东省济宁市高三上期末)2019年7月,中国良渚古城遗址获准列入世界遗产名录,标志着中华五千年文明史得到国际社会认可.良渚古城遗址是人类早期城市文明的范例,实证了中华五千年文明史.考古科学家在测定遗址年龄的过程中利用了“放射性物质因衰变而减少”这一规律.已知样本中碳14的质量N 随时间t (单位:年)的衰变规律满足573002tN N -=⋅(0N 表示碳14原有的质量),则经过5730年后,碳14的质量变为原来的________;经过测定,良渚古城遗址文物样本中碳14的质量是原来的12至35,据此推测良渚古城存在的时期距今约在________年到5730年之间.(参考数据:22log 3 1.6,log 5 2.3≈≈) 【答案】124011 【解析】当5730t =时,100122N N N -=⋅=∴经过5730年后,碳14的质量变为原来的12令035N N =,则5730325t-= 2223log log 3log 50.757305t ∴-==-≈- 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前
试卷类型:A
高三实验班过程检测(数学试题答案)
一、单项选择题:本大题共 8 小题,每小题 5 分,共 40 分。在每小题给出的四个选项中,只有一
项是符合题目要求的。
1.答案:A 解析:求得 A [1, 2] , B [0, 4) ,所以 A B [0, 2] ,故选 A
2.答案:D
22.(12 分)
已知函数 f x ex ax cos x ,其中 a R . (1)求证:当 a 1 时, f x 无极值点; (2)若函数 g x f (x) ln(x 1) ,是否存在 a ,使得 g(x) 在 x 0 处取得极小值?并说明理由.
高三数学试题 第 6 页 共 6 页
的面积为_________.
16 . 在 三 棱 锥 P ABC 中 , 底 面 ABC 是 以 AC 为 斜 边 的 等 腰 直 角 三 角 形 , 且 AB 2 ,
PA PC 5 , PB 与底面 ABC 所成的角的正弦值为 1 ,则三棱锥 P ABC 的外接球的 3
体积为
.
高三数学试题 第 3 页 共 6 页
解析:设
z
bi
,b
R
且b
0
1 i
,则
1 ai
bi
,得到 1
i
ab
bi
,1
ab ,
且1 b ,解得 a 1,故选 D.
3.答案:D 解析:D 设等差数列的公差为 d ,
ap aq ak al a1 ( p 1)d a1 (q 1)d a1 (k 1)d a1 (l 1)d
d[( p
q)
(k
l)]
0
d
p
0 q
k
l

d
p
0 q
k
l
,显然由
p
q
k
l
不一定能推出
ap aq ak al ,由 ap aq ak al 也不一定能推出 p q k l ,因此 p q k l 是
ap aq ak al 的既不充分也不必要条件,故本题选 D.
4.答案:C 解析:有函数知, 0 a 1, b 0, c 1 ,故答案为 C
绝密★启用前
高三实验班过程检测
试卷类型:A
数学试题
2020.03
考生注意: 1.答题前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改
动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试 卷上无效。
an2
3 ( an
0
),② an2
anan1
3an1
9
0
,③ Sn
n2
2n 2 这三个条
件中任选一个,补充在下面问题中.
已知:数列{an} 的前 n 项和为 Sn ,且 a1 1,________.
(1)求数列{an} 的通项公式;
(2)对大于 1 的自然数 n ,是否存在大于 2 的自然数 m ,使得 a1, an, am 成等比数列.若存在,
f x1 , f x2 , f x3 为边长的三角形,则 的取值范围是_________.
15.设抛物线 y2 2 px( p 0) 的焦点为 F (1,0) ,准线为 l ,过焦点的直线交抛物线于 A , B 两点,
分别过 A ,B 作 l 的垂线,垂足为 C ,D ,若 | AF | 4 | BF | ,则 p ______ ,三角形 CDF
求 m 的最小值;若不存在,说明理由.
19.(12 分)
如图,在直角梯形 ABCD 中, AB DC, ABC 90, AB 2DC 2BC , E 为 AB 的中
点,沿 DE 将 ADE 折起,使得点 A 到点 P 位置,且 PE EB ,M 为 PB 的中点,N 是 BC 上 的动点(与点 B,C 不重合).
i 1
i 1
i 1
i 1
i 1
7
i 1
xi zi
733.7079 .(其中 zi
ln
y, z
1 7
7 i 1
zi
).
(1)根据散点图判断, y a b x 与 y ced x(其中 e 2.718自然对数的底数)哪一个更适宜
作为平均产卵数 y 关于平均温度 x 的回归方程类型?(给出判断即可,不必说明理由)并由判断 结果及表中数据,求出 y 关于 x 的回归方程.(计算结果精确到小数点后第三位)
5 1
AC 4
4
则 sin 2340 sin(1440 900) cos1440
5 1
.
4
7.答案:C
解析:方法一:直线
l
为双曲线
C
:
x2 a2
C.(0, 2]
1 i 2.若复数 z= 1 ai ( i 表示虚数单位)为纯虚数,则实数 a 的值为(
D. [1, 0]

A.1
B.0
1
C.-
2
D.-1
3.设an 为公差不为 0 的等差数列,p,q,k,l 为正整数,则“ p q k l ”是“ ap aq ak al ”
的( )
A.充分而不必要条件
设动点 P 的轨迹为曲线 C .
(1)求曲线 C 的方程;
(2)过点 Q(2, 3) 的直线 l 与 C 交于 E , F 两点,已知点 D(2,0) ,直线 x x0 分别与直线 DE ,
DF 交于 S ,T 两点.线段 ST 的中点 M 是否在定直线上,若存在,求出该直线方程;若不是,说
明理由.
13.为做好社区新冠疫情防控工作,需将六名志愿者分配到甲、乙、丙、丁四个小区开展工作, 其中甲小区至少分配两名志愿者,其它三个小区至少分配一名志愿者,则不同的分配方案共
有________种.(用数字作答)
14.已知函数
f
(x)
x
2 cos
x
,在区间
0,
π 2
上任取三个数
x1,
x2 ,
x3
,均存在以
三角形与一个正五边形组成,如图所示,在其中一个黄金△ ABC 中, BC =
5 1
.
根据这些
AC 2
信息,可得 sin 234 ( )
12 5
A.
4
B. 3 5 8
C. 5 1 4
D. 4 5 8
7.已知
F1 ,
F2 分别是双曲线 C
:
x2 a2
y2 b2
1(a
0, b
0) 的左、右焦点,直线 l
为双曲线 C
的一条
渐近线, F1 关于直线 l 的对称点 F1 在以 F2 为圆心,以半焦距 c 为半径的圆上,则双曲线 C 的
离心率为 ( )
A. 2
B. 3
C.2
D.3
8.已知 ABC 为等边三角形,动点 P 在以 BC 为直径的圆上,若 AP AB AC ,则 2
的最大值为( )
蝗虫的平均产卵数 y 和平均温度 x 有关,现收集
了以往某地的 7 组数据,得到下面的散点图及一 些统计量的值.
平均温度 xi C
21
23
25
27
29
32
35
平均产卵数 yi 个
7
11
21
24
66
115
325
7
7
7
7
7
xi 192 , yi 569 , xi yi 18542 xi2 5414 , zi 25.2848 ,
5.答案:B 解析:设首项为 a1 ,因为和为 80,所以 5 a1 + 5×4×m=80,故 m=8- a1 .因为 m, a1 ∈N*,
所以
因此“公”
恰好分得 30 个橘子的概率是
6.答案:C 解析:由题可知 ACB 720 ,
1 BC 且 cos 720 2
5 1 , cos1440 2cos2722 1
A. 1 2
B.1 3 3
C. 5 2
D. 2 3 2
二、多项选择题:本大题共 4 小题,每小题 5 分,共 20 分。在每小题给出的四个选项中,有多
项符合题目要求的,全部选对得 5 分,选对但不全的得 3 分,有选错的得 0 分。
9. 已知 a b 2 ,则 ( )
A. b2 3b a
B. a3 b3 a2b ab2
0) 满足
f
(x0 )
f
( x0
1)
1 2
,且
f
(x) 在 (x0 , x0
1)

有最小值,无最大值. 则( )
A.
f
( x0
1) 2
1
B.若
x0
0
,则
f
(x)
sin(2 x
)
6
C. f (x) 的最小正周期为 3 D. f (x) 在 (0, 2019) 上的零点个数最少为 1346 个
三、填空题:本大题共 4 小题,每小题 5 分,共 20 分,其中第 15 题第一空 2 分,第二空 3 分。
B. 存在某个位置,使 DE A1C C. 点 M 的运动轨迹是一个圆
D. 存在某个位置,使 MB 平面A1DE
高三数学试题 第 2 页 共 6 页
11.数学中的数形结合,也可以组成世间万物的绚丽画面. 一些优美的曲线是数学形象美、对称 美、和谐美的结合产物,曲线 C:(x2+y2)3=16x2y2 恰好是四叶玫瑰
(2)根据以往统计,该地每年平均温度达到 28℃以上时蝗虫会造成严重伤害,需要人工防治,
其他情况均不需要人工防治,记该地每年平均温度达到 28℃以上的概率为 p 0 p 1 .
相关文档
最新文档