汽车双叉臂式独立悬挂介绍-附件

合集下载

汽车悬架哪种好?麦弗逊式独立悬架多连杆式双叉臂式双横臂式

汽车悬架哪种好?麦弗逊式独立悬架多连杆式双叉臂式双横臂式

汽车悬架哪种好?麦弗逊式独⽴悬架多连杆式双叉臂式双横臂式TAG:麦弗逊式独⽴悬架多连杆式独⽴悬架双叉臂式独⽴悬架(双连杆式,双摇臂式,双A臂式)双横臂式悬架拖曳臂式悬挂扭⼒梁式悬挂 ⼤多车型的前悬都为麦弗逊形式,虽然麦弗逊式悬挂技术含量并不⾼,但其是⼀种经久耐⽤的独⽴悬架,具有很强的道路适应能⼒。

多连杆式独⽴悬架的整体效果相对更优秀,由于成本较⾼,四轮多连杆的车屈指可数,⼤多数出于成本考虑⽤了前麦弗逊式悬挂。

麦弗逊式悬挂是当今世界⽤的最⼴泛的轿车前悬挂之⼀。

麦弗逊式悬挂由螺旋弹簧、减震器、三⾓形下摆臂组成,绝⼤部分车型还会加上横向稳定杆。

主要结构简单的来说就是螺旋弹簧套在减震器上组成,减震器可以避免螺旋弹簧受⼒时向前、后、左、右偏移的现象,限制弹簧只能作上下⽅向的振动,并可以⽤减震器的⾏程长短及松紧,来设定悬挂的软硬及性能。

麦弗逊式悬挂结构简单,所以它轻量、响应速度快。

并且在⼀个下摇臂和⽀柱的⼏何结构下能⾃动调整车轮外倾⾓,让其能在过弯时⾃适应路⾯,让轮胎的接地⾯积最⼤化,虽然麦弗逊式悬架并不是技术含量很⾼的悬架结构,但麦弗逊式悬挂在⾏车舒适性上的表现还是令⼈满意,不过由于其构造为直筒式,对左右⽅向的冲击缺乏阻挡⼒,抗刹车点头作⽤较差,悬挂刚度较弱,稳定性差,转弯侧倾明显。

需要特别说明的是作为超级跑车的保时捷911也采⽤了麦弗逊式前悬挂,这⾜以证明这款悬挂具有⼴泛的适应性。

连杆⽀柱式悬架则是由麦弗逊式悬挂⽽衍⽣出来的悬挂,⼀般出现在后悬架中,它的下部不再是A臂,⽽是两根平⾏连杆和⼀根纵向拉杆。

由于麦弗逊式悬挂先天性的侧向⽀撑不⾜,由此很多⼚家通过各种调整和变化以加强其侧向⽀撑的能⼒。

连杆⽀柱式独⽴悬挂其实是麦弗逊式的⼀个变种,结构特性与麦弗逊是完全相同的。

这种悬挂与前⾯所说的标准多连杆最⼤的差别在于,车轮上端不再有连杆作为⽀撑,⽆法与标准多连杆式相提并论。

这种结构也⽆法实现多连杆式悬挂那么精准的定位和调校,因此它与标准多连杆式是⽆法相提并论的。

双叉臂式独立悬架

双叉臂式独立悬架

『典型的双叉臂式独立悬挂结构图』双叉臂式悬挂又称双A臂式独立悬挂,双叉臂悬挂拥有上下两个叉臂,横向力由两个叉臂同时吸收,支柱只承载车身重量,因此横向刚度大。

双叉臂式悬挂的上下两个A字形叉臂可以精确的定位前轮的各种参数,前轮转弯时,上下两个叉臂能同时吸收轮胎所受的横向力,加上两叉臂的横向刚度较大,所以转弯的侧倾较小。

『阿尔法·罗密欧159的前悬采用了双叉臂式悬挂』『大众途锐的双叉臂悬挂结构图』双叉臂式悬挂通常采用上下不等长叉臂(上短下长),让车轮在上下运动时能自动改变外倾角并且减小轮距变化减小轮胎磨损,并且能自适应路面,轮胎接地面积大,贴地性好。

『双叉臂式悬挂运动性出色,为法拉利、玛莎拉蒂等超级跑车所运用』相比麦弗逊式悬挂双叉臂多了一个上摇臂,不仅需要占用较大的空间,而且其定位参数较难确定,因此小型轿车的前桥出于空间和成本考虑一般不会采用此种悬挂。

但其具有侧倾小,可调参数多、轮胎接地面积大、抓地性能优异,因此绝大部分纯正血统的跑车的前悬挂均选用双叉臂式悬挂,可以说双叉臂式悬挂是为运动而生的悬挂,法拉利、玛莎拉蒂等超级跑车以及F1方程式赛车均采用了双叉臂式前悬挂。

国内采用双叉臂式前悬挂的轿车主要有一汽丰田皇冠和一汽丰田锐志,以及奥迪的豪华SUV Q7、大众途锐等。

另外需要说明的是,双横臂式悬挂和双叉臂式悬挂有着许多的共性,只是结构比双叉臂式简单些可以称之为简化版的双叉臂式悬挂。

同双叉臂式悬挂一样双横臂式悬挂的横向刚度也较大,一般也采用上下不等长摇臂设置。

『本田思域的双横臂式悬挂』双横臂式悬挂设计偏向运动性,其性能优于麦弗逊式式悬挂、但比起真正的双叉臂式悬挂以及多连杆前悬挂要稍差一些。

国内采用双横臂式前悬挂的主要有:广州本田雅阁、一汽轿车马自达6以及北京奔驰-戴克的克莱斯勒300C。

而采用双横臂式后悬挂的有东风本田思域。

『后悬采用双横臂式悬挂的思域具有不错的运动性』主要优点:横向刚度大、抗侧倾性能优异、抓地性能好、路感清晰;主要缺点:制造成本高、悬架定位参数设定复杂;『大众途锐前后悬均采用了双叉臂式独立悬挂』适用车型:运动型轿车、超级跑车以及高档SUV前后悬架。

典型麦弗逊式前悬架结构以及双叉式后悬架结构

典型麦弗逊式前悬架结构以及双叉式后悬架结构

下图为典型麦弗逊式前悬架结构以及双叉式后悬架结构双叉臂式悬架通常采用上下不等长叉臂(上短下长),让车轮在上下运动时能自动改变外倾角并减小轮距变化、减小轮胎磨损,并且能自适应路面,轮胎接地面积大,贴地性好。

上下控制臂能分担横向力,令车身在过弯时更加平稳。

能承受住越野时崎岖路面对底盘的强大冲击但更占用空间,结构复杂成本高,不适合经济型小车双叉臂式独立悬架拥有出色的侧向支撑、精确的车轮方向控制,但由于使用上下控制臂结构,过于稳定的特性却使车轮的响应速度较其他形式悬架要缓慢,上下控制臂的结构也导致这种悬架的横向安装空间大。

上叉臂式悬架常出现在车身宽大的豪华轿车、全尺寸SUV、皮卡甚至超级跑车,如凯迪拉克赛威SLS、雪铁龙C6、奥迪Q7、大众途锐,甚至国产中兴威虎皮卡,以及兰博基尼盖拉多、玛莎拉蒂3000GT等注重操控性能的跑车。

在这个言必谈操控、论必说运动的年代里,几乎所有汽车品牌多在大力的宣传自己产品优秀的操控性能,从欧系的宝马、奥迪、萨伯到日系的讴歌、英菲尼迪等高端品牌无不在极力宣传自己良好的操控性和运动性,就连一向以舒适性能为取向的奔驰、凯迪拉克、雷克萨斯等高端品牌也在新近的设计中加入了更多的运动取向。

从以福克斯为代表的紧凑型轿车到以迈腾为代表的中级车到以宝马5系Li为代表的高档车无不标榜自己的运动性能。

那么他们是否如宣传所说这么优秀,此次汽车探索就为大家解读影响汽车运动性能的汽车底盘的核心——悬挂系统,并分析不同悬挂对汽车操控性及舒适性的影响。

『悬挂在汽车底盘安放位置的示意图』●悬挂的概念和分类首先让我们来了解一下什么是悬挂:悬挂是汽车的车架与车桥或车轮之间的一切传力连接装置的总称,悬架的主要作用是传递作用在车轮和车身之间的一切力和力矩,比如支撑力、制动力和驱动力等,并且缓和由不平路面传给车身的冲击载荷、衰减由此引起的振动、保证乘员的舒适性、减小货物和车辆本身的动载荷。

典型的汽车悬挂结构由弹性元件、减震器以及导向机构等组成,这三部分分别起缓冲,减振和力的传递作用。

图解汽车之汽车悬挂系统结构解析

图解汽车之汽车悬挂系统结构解析

图解汽车(10)汽车悬挂系统结构解析【太平洋汽车网技术频道】悬挂对于汽车的操控性能有着决定性的作用,不同构造的悬挂有着不同的操控性能。

常见的悬挂有麦弗逊式悬挂、双叉臂式悬挂、多连杆悬挂等等,它们的结构是怎样的?对汽车操控性能又有着怎样的影响?下面我们一起来了解下吧。

[url=/images/html/viewpic_pcauto.htm?&channel=6251][/url]阅读提示:PCauto技术频道图解类文章都可以使用全新的高清图解形式进行阅读。

大家可以通过点击上面图片链接跳转到图解模式。

高清大图面积提升3倍,看着更清晰更爽,赶紧来体验吧!●悬挂的作用汽车悬挂是连接车轮与车身的机构,对车身起支撑和减振的作用。

主要是传递作用在车轮和车架之间的力,并且缓冲由不平路面传给车架或车身的冲击力,衰减由此引起的震动,以保证汽车能平顺地行驶。

[url=/images/html/viewpic_pcauto.htm?&channel=6251][/url]典型的悬挂系统结构主要包括弹性元件、导向机构以及减震器等部分。

弹性元件又有钢板弹簧、空气弹簧、螺旋弹簧以及扭杆弹簧等形式,而现代轿车悬挂系统多采用螺旋弹簧和扭杆弹簧,个别高级轿车则使用空气弹簧。

[url=/images/html/viewpic_pcauto.htm?&channel=6251][/url]●独立悬挂和非独立悬挂的区别汽车悬挂可以按多种形式来划分,总体上主要分为两大类,独立悬挂和非独立悬挂。

那怎么来区分独立悬挂和非独立悬挂呢?[url=/images/html/viewpic_pcauto.htm?&channel=6251][/url]独立悬挂可以简单理解为,左右两个车轮间没有硬轴进行刚性连接,一侧车轮的悬挂部件全部都只与车身相连。

而非独立悬挂两个车轮间不是相互独立的,之间有硬轴进行刚性连接。

[url=/images/html/viewpic_pcauto.htm?&channel=6251][/url]从结构上看,独立悬挂由于两个车轮间没有干涉,可以有更好的舒适性和操控性。

悬架系统介绍

悬架系统介绍
麦弗逊(Mcpherson)是美国伊利诺斯州人,1891年生。 大学毕业后他曾在欧洲搞了多年的航空发动机,并于1924 年加入了通用汽车公司的工程中心。30年代,通用的雪佛兰 分部想设计一种真正的小型汽车,总设计师就是麦弗逊。他 对设计小型轿车非常感兴趣,目标是将这种四座轿车的质量 控制在0.9吨以内,轴距控制在2.74米以内,设计的关键是 悬架。麦弗逊一改当时盛行的板簧与扭杆弹簧的前悬架方式, 创造性地将减振器和螺旋弹簧组合在一起,装在前轴上。实 践证明这种悬架形式的构造简单,占用空间小,而且操纵性 很好。后来,麦弗逊跳槽到福特,1950年福特在英国的子 公司生产的两款车,是世界上首次使用麦弗逊悬架的商品车。 麦弗逊悬架由于构造简单,性能优越的缘故,被行家誉为经 典的设计
工作过程:
主动悬架系统的控制中枢是一个微电脑控制模块,在整车行驶过程中,悬架上 的多种传感器分别收集各种行车信息(车速、制动力、踏板速度、车身垂直方向 的振幅及频率、转向盘角度及转向速度等数据 ),电脑不断接收这些数据并与预 先设定的临界值进行比较,选择相应的悬架状态。 同时,微电脑独立控制每一只车轮上的执行元件,通过动力装置产生的作用 力控制执行单元相应的功能特性,从而能在任何时候、任何车轮上产生符合要求 的悬架运动。 另外,主动悬架具有控制车身运动的功能。当汽车制动或拐弯时的惯性引起 弹簧变形时,主动悬架会产生一个与惯性力相对抗的力,减少车身位置的变化。 例如当车辆拐弯时悬架传感器会立即检测出车身的倾斜和横向加速度,电脑根据 传感器的信息,与预先设定的临界值进行比较计算,立即确定在什么位置上将多 大的负载加到悬架上,使车身的倾斜减到最小。
4)多连杆式独立悬架 所谓多连杆悬挂,顾名思义就是通过各种连杆配置把车轮与车身相连的 一套悬挂机构。而连杆数量在3根以上才称为多连杆,目前主流的连杆数量 为5连杆。因此其结构要比双叉和麦弗逊复杂很多。

双叉臂悬架工作原理

双叉臂悬架工作原理

双叉臂悬架工作原理1.引言1.1 概述双叉臂悬架是一种常见的汽车悬挂系统,其工作原理旨在提供更好的悬挂效果和行驶稳定性。

通过对车轮的独立控制和悬挂系统的灵活调节,双叉臂悬架可以使车辆在各种路况下保持平稳,并提供更好的操控性和乘坐舒适性。

本文将介绍双叉臂悬架的工作原理以及其在汽车行业中的应用。

首先,我们将从双叉臂悬架的定义和背景知识入手,了解其在汽车制造中的重要性和适用范围。

接着,我们将详细探讨双叉臂悬架的工作原理,包括前后悬挂结构和悬挂系统的工作方式。

通过了解悬挂系统如何工作,读者可以更好地理解双叉臂悬架的运作机制和优势。

在正文部分的结尾,我们将探讨双叉臂悬架的优势和应用,并对未来悬挂技术的发展进行展望。

了解双叉臂悬架的优势有助于我们更好地评估其在汽车工业中的应用前景,并对其在未来的改进和创新提供思路和启示。

通过本文的阅读,读者将能够全面了解双叉臂悬架的工作原理及其在汽车行业中的作用。

我们希望本文能够为读者提供有关双叉臂悬架的基本知识,激发对悬挂技术的兴趣,并为未来的研究和创新提供有益的参考。

1.2文章结构文章结构的目的是为了清晰地展现文章的组织结构,帮助读者更好地理解文章的内容。

本文的结构分为引言、正文和结论三个部分。

引言部分主要包括概述、文章结构以及目的。

概述部分可以简要介绍双叉臂悬架及其在汽车领域中的应用与重要性。

文章结构可以说明本文的组织结构,告诉读者将要介绍双叉臂悬架的定义和背景知识、工作原理以及优势与应用,并对未来悬挂技术进行展望。

目的部分可以指明本文的写作目的,例如是为了深入解析双叉臂悬架的工作原理,并探讨其在未来的发展方向。

通过明确的文章结构,读者可以更好地理解文章的内容和组织结构,并从中获取所需的知识与信息。

1.3 目的本文的目的是详细介绍和解析双叉臂悬架的工作原理。

双叉臂悬架作为一种常见的汽车悬挂方式,在汽车工业中起着举足轻重的作用。

通过对双叉臂悬架的定义和背景知识进行介绍,我们将深入了解其在汽车悬挂系统中的地位和重要性。

汽车悬挂系统结构原理详细图解

汽车悬挂系统结构原理详细图解

汽车悬挂系统结构原理图解Post by:2010-10-419:48:00什么是悬挂系统舒适性是轿车最重要的使用性能之一。

舒适性与车身的固有振动特性有关,而车身的固有振动特性又与悬架的特性相关。

所以,汽车悬架是保证乘坐舒适性的重要部件。

同时,汽车悬架做为车架(或车身)与车轴(或车轮)之间作连接的传力机件,又是保证汽车行驶安全的重要部件。

因此,汽车悬架往往列为重要部件编入轿车的技术规格表,作为衡量轿车质量的指标之一。

汽车车架(或车身)若直接安装于车桥(或车轮)上,由于道路不平,由于地面冲击使货物和人会感到十分不舒服,这是因为没有悬架装置的原因。

汽车悬架是车架(或车身)与车轴(或车轮)之间的弹性联结装置的统称。

它的作用是弹性地连接车桥和车架(或车身),缓和行驶中车辆受到的冲击力。

保证货物完好和人员舒适;衰减由于弹性系统引进的振动,使汽车行驶中保持稳定的姿势,改善操纵稳定性;同时悬架系统承担着传递垂直反力,纵向反力(牵引力和制动力)和侧向反力以及这些力所造成的力矩作用到车架(或车身)上,以保证汽车行驶平顺;并且当车轮相对车架跳动时,特别在转向时,车轮运动轨迹要符合一定的要求,因此悬架还起使车轮按一定轨迹相对车身跳动的导向作用。

悬架结构形式和性能参数的选择合理与否,直接对汽车行驶平顺性、操纵稳定性和舒适性有很大的影响。

由此可见悬架系统在现代汽车上是重要的总成之一。

一般悬架由弹性元件、导向机构、减振器和横向稳定杆组成。

弹性元件用来承受并传递垂直载荷,缓和由于路面不平引起的对车身的冲击。

弹性元件种类包括钢板弹簧、螺旋弹簧、扭杆弹簧、油气弹簧、空气弹簧和橡胶弹簧。

减振器用来衰减由于弹性系统引起的振动,减振器的类型有筒式减振器,阻力可调式新式减振器,充气式减振器。

导向机构用来传递车轮与车身间的力和力矩,同时保持车轮按一定运动轨迹相对车身跳动,通常导向机构由控制摆臂式杆件组成。

种类有单杆式或多连杆式的。

钢板弹簧作为弹性元件时,可不另设导向机构,它本身兼起导向作用。

双叉臂悬架设计

双叉臂悬架设计

双叉臂悬架设计双叉臂悬架设计是汽车工程中的重要部分。

它是一种独特的悬架系统,通过使用双叉形状的臂杆来连接车轮与车身。

这种设计可以提供更好的悬架几何特性和悬挂性能,对汽车的操控、乘坐舒适性以及行驶稳定性等方面具有重要意义。

双叉臂悬架设计在汽车工程领域中扮演着重要的角色。

通过合理的悬架几何布置和悬挂元件的选择,双叉臂悬架可以在车辆行驶过程中保持良好的稳定性和控制性能。

它能够有效减少车辆在弯道行驶时的侧倾,提高车辆的操控性能。

此外,双叉臂悬架设计还可以提供更好的乘坐舒适性。

通过合理的几何布置和悬挂元件的优化设计,双叉臂悬架可以有效减震并降低车辆通过凹凸路面时的颠簸感。

这将为乘客提供更加平稳和舒适的乘坐体验。

总之,双叉臂悬架设计在汽车工程中具有重要性。

它的良好悬挂性能和舒适性能对提高车辆的操控性能和乘坐舒适性都起到至关重要的作用。

因此,深入研究和设计双叉臂悬架是汽车工程领域的一个重要课题。

双叉臂悬架是一种常见的汽车悬挂系统,其工作原理如下:双叉臂悬架由两个控制臂组成,每个控制臂有一个连接到车身的环状接头和一个连接到车轮的球形接头。

这种设计允许控制臂在垂直方向上移动,从而适应不同的路面条件和车辆动态。

当车辆行驶时,悬挂系统中的阻尼器和弹簧提供支撑和减震的功能。

双叉臂悬挂通过控制臂的位置和角度来调节车轮的运动,以减少车身的摇摆和提供更平稳的驾驶体验。

双叉臂悬挂的优势在于其良好的悬挂性能和稳定性。

由于可以独立控制车辆的减震和支撑系统,双叉臂悬挂能够提供更好的操控性和驾驶舒适性,尤其在高速行驶和急转弯等情况下。

双叉臂悬挂还具有较高的可调整性和可靠性,可以根据不同的车辆需求和驾驶条件进行调节和优化。

因此,双叉臂悬挂是许多汽车制造商首选的悬挂系统之一。

以上是双叉臂悬架设计的工作原理及其优势的解释。

本文将讨论影响双叉臂悬架设计的关键要素,如悬架材料、几何构造等。

悬架材料:选择合适的悬架材料对双叉臂悬架设计至关重要。

常见的悬架材料包括钢铁、铝合金等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汽车双叉臂式独立悬挂介绍
很多朋友都对悬挂很感兴趣,希望了解更多相关知识,那么下面我们就来介绍:双叉臂式独立悬挂。

双叉臂式悬挂又称双A臂式独立悬挂,双叉臂悬挂拥有上下两个叉臂,横向力由两个叉臂同时吸收,支柱只承载车身重量,因此横向刚度大。

双叉臂式悬挂的上下两个A字形叉臂可以精确的定位前轮的各种参数,前轮转弯时,上下两个叉臂能同时吸收轮胎所受的横向力,加上两叉臂的横向刚度较大,所以转弯的侧倾较小。

双叉臂式悬挂通常采用上下不等长叉臂(上短下长),让车轮在上下运动时能自动改变外倾角并且减小轮距变化减小轮胎磨损,并且能自适应路面,轮胎接地面积大,贴地性好。

需要占用较大的空间,而且其定位参数较难确定,因此小型轿车的前桥出于空间和成本考虑一般不会采用此种悬挂。

但其具有侧倾小,可调参数多、轮胎接地面积大、抓地性能优异,因此绝大部分纯正血统的跑车的前悬挂均选用双叉臂式悬挂,可以说双叉臂式悬挂是为运动而生的悬挂。

另外需要说明的是,双横臂式悬挂和双叉臂式悬挂有着许多的共性,只是结构比双叉臂式简单些可以称之为简化版的双叉臂式悬挂。

同双叉臂式悬挂一样双横臂式悬挂的横向刚度也较大,一般也采用上下不等长摇臂设
置。

双横臂式悬挂设计偏向运动性,其性能优于悬挂、但比起真正的双叉臂式悬挂以及多连杆前悬挂要稍差一些。

主要优点:横向刚度大、抗侧倾性能优异、抓地性能好、路感清晰;
主要缺点:制造成本高、悬架定位参数设定复杂;
从结构上来看,悬架只有一根下控制臂和一根支柱式减震器,结构上的最简单化使它的组成部件通常要一专多能。

例如支柱减震器需充当转向主销,除要承受车辆本身的重量外,还要应对来自于路面的抖动和冲击。

如果车辆在运动中,一侧的悬挂受到惯性压缩,那么车轮的外倾角变化将增大,于是悬架越是压缩得厉害,这种形变就越是难以得到控制。

所以悬挂的应用范围多为小型或中型轿车,车型级别再往上走,结构简单的悬挂便会有些力不从心了。

在悬挂的组成结构上进行调整。

由悬挂只有下控制臂和支柱减震器两个连接部件,这样一来就形成了一个“L”形的结构,如果能在“L”形顶端再增加一根控制臂,那么悬挂的结构将得到加强。

于是通过对挂植入上控制臂,双叉臂式悬挂结构便应运而生。

双叉臂悬挂相对悬挂在物理学特性上的改变显而易见:当一侧悬挂因惯性收缩时,车轮的外倾角变化也相对较小,不过车轮外倾角的变化大小还可以通过改变上下控制臂的相对长度来改善。

因此,工程师在设计和匹配双叉臂悬挂时自由度更大,更能针对汽车的某一种特性如运动或舒适性作出
最为合理的调校。

事实上,在车辆的底盘设计之初,设计师便开始考虑如何在底盘上布置复杂的悬挂结构,给车辆带来更好的操控性或更平稳的舒适性。

为了使车轮能随时随地贴合地面,达到运动性和乘坐舒适性的统一,设计师往往会采用双叉臂悬挂结构,增加减震器阻尼和螺旋的硬度也是应对措施之一。

在这点上,悬挂会因为控制臂的单薄而使车轮外倾角增大,同时使车胎内侧负荷增大而加剧磨损。

双叉臂式悬挂由上下两根不等长V 字形或A字形控制臂以及支柱式液压减震器构成,通常上控制臂短于下控制臂。

上控制臂的一端连接着支柱减震器,另一端连接着车身;下控制臂的一端连接着车轮,而另一端则连接着车身。

上下控制臂还由一根连接杆相连,这根连杆同时也还与车轮相连接。

在整个悬挂构造中,通过对多个支点的连接提高了上下控制臂以及整个悬挂的整体性。

如果是前轮驱动的车型,那么装配在前轮上的双叉臂悬挂在上下控制臂之间除装配有传动机构外,还有转向机构,这使得其结构比不带转向机构的后轮要复杂得多。

在转向机构中,转向主销由转向托盘与上下控制臂的连接位置和角度确定,转向轮可绕主销转动,同时也可随下控制臂上下跳动。

在双叉臂悬挂中通常采用球头连接来满足前车轮的运动需要:上下控制臂与转向主销的连接部位既要支持前轮实现转向又要控制车轮的上下抖动。

不过由于上下控制臂的长度差问
题,这也对双叉臂悬挂的设计提出了严峻的考验——如果上下控制臂的长度差过小,车轮抖动时会造成左右轮距偏大,加快轮胎外侧磨损;反之,如果上下臂长度差过大,则会造成车轮转向时外倾角过大,使轮胎内侧磨损加快。

因此,通过增加上下控制臂的长度来减小轮距的变化和控制外倾角的变化不失为一个好办法。

值得一提的是,双叉臂悬挂的上下控制臂能起到抵消横向作用力的功效,这使得支柱减震器不再承受横向作用力,而只应对车轮的上下抖动,因此在弯道上具有较好的方向稳定性。

相关文档
最新文档