先进反应堆型
先进小型核反应堆发展前景及其所面临的问题

第19卷第4期2018年8月南华大学学报(社会科学版)JournalofUniversityofSouthChina(SocialScienceEdition)Vol.19No.4Aug.2018[收稿日期]㊀2018-03-28[基金项目]㊀湖南省自然科学基金项目 核信号数字化成形甄别关键技术研究 资助(编号:2018JJ2316)[作者简介]㊀刘冲(1966-)ꎬ男ꎬ湖南祁阳人ꎬ南华大学电气工程学院副教授ꎬ博士ꎮ①中广核研究院有限公司工程师ꎮ先进小型核反应堆发展前景及其所面临的问题刘㊀冲ꎬ黄㊀勇①(南华大学电气工程学院ꎬ湖南衡阳421001)[摘㊀要]㊀采用标准化和模块化设计的小型核反应堆在安全性和经济性方面的优势ꎬ将扩大核能在新兴工业国家和发展中国家的市场ꎬ有望成为我国核电设备出口的重要组成部分ꎮ文章描述了小型核反应堆的发展现状ꎬ分析了小型核反应堆的优势㊁应用前景及推广应用可能面临的问题ꎬ提出了在我国开展小型反应堆研究和应用的建议和策略ꎮ[关键词]㊀核能ꎻ㊀小型反应堆ꎻ㊀先进反应堆ꎻ㊀模块化[中图分类号]㊀TL413+㊀[文献标识码]㊀A[文章编号]㊀1673-0755(2018)04-0010-05㊀㊀在当今全球工业经济迅速发展的时代ꎬ许多国家都面临着能源供应安全㊁环境约束等诸多现实问题ꎮ核能作为重要的新兴能源ꎬ不仅在满足世界日益增长的能源需求方面可以发挥非常重要的长期作用ꎬ而且对解决与全球气候和环境影响有关的挑战具有明显优势ꎮ小型反应堆(SMRꎬSmallandMedium ̄sizedReac ̄tors)核电站凭借初期投资少㊁建造周期短㊁可以有效解决中小电网输电问题等优势得到了世界各国ꎬ尤其是发展中国家的关注[1 ̄2]ꎮ采用标准化和模块化设计的先进小型反应堆ꎬ具有更高的安全性和灵活性[3]ꎬ因此ꎬ人们越来越重视小型核反应堆技术的研究㊁开发和应用ꎬ许多西方及亚洲核电国家甚至把加快先进小型反应堆研发上升到了国家战略[3]ꎮ进入21世纪以来ꎬ全球核工业再次掀起小型核电机组的开发热潮ꎬ一方面是因为大型堆的总造价高㊁建设周期长ꎬ另一方面也存在小型电网对小堆型核电机组的需求ꎮ国际原子能机构(IAEAꎬInternationalAtomicEnergyAgency)在本世纪初就发布了一系列小型反应堆发展报告ꎬ努力推动小型反应堆技术的研究和开发ꎬ并大力提倡小型核电厂在发展中国家的应用ꎬ鼓励发展和利用安全㊁可靠㊁经济上可行与核不扩散的中小型反应堆ꎮ由此可见ꎬ小型反应堆将成为全球核工业复兴的一个重要组成部分ꎮ一㊀小型核反应堆的发展现状根据国际原子能机构的定义ꎬ核电机组功率小于300MWe的反应堆为 小型反应堆 [1 ̄5]ꎮ按技术路线的不同ꎬ小型反应堆大致可分为轻水堆㊁高温气冷堆㊁液态金属冷却快中子反应堆和熔盐反应堆等几大类型[2ꎬ4]ꎮ小型反应堆的开发已经有几十年的历史ꎬ全球核工业已建造了数百座小型动力堆用作海军舰艇动力装置或中子源ꎬ许多国家在小型反应堆的研发㊁设计㊁建设和应用领域积累了大量的工程技术经验[5]ꎮ日本和韩国从20世纪90年代末就意识到了小型核电厂的潜在国际市场ꎬ并积极开展了针对发展中国家需求的小型反应堆研究ꎬ以便将来在国际市场上占据优势ꎮ美国凭借在AP600和AP1000研发㊁安全评审过程和综合测试结果与分析中积累的经验ꎬ对非能动安全系统的瞬态特性和设计原则有了很深刻的认识ꎬ多种先进小型压水堆方案开始从概念阶段走向全面工程设计和安全评估阶段ꎬ 非能动 的理念也引入到小型堆设计中ꎮ美国 国际革新安全反应堆 (IRISꎬInternationalReactorInnovativeandSecure)项目是最早进入全面工程设计和安全评估的先进小型压水堆ꎬ采用了一体化㊁模块化压水堆设计方案ꎬ在固有安全性方面较传统堆型有较大改善[6 ̄9]ꎬ有效地提高了反应堆的安全性和经济性ꎬ它的一些设计方案基本成为了现有先进小型压水堆的设计标准ꎬ众多其它的先进小型压水堆方案大多都参考了IRIS设计原则和安全评估方法ꎮ比如ꎬ美国的NuScale多功能小型压水堆和西屋小型压水堆(WestinghouseSMR)ꎬ充分利用了已有的非能动安全系统和部件设计ꎬ在技术成熟度上达到了较高的水平ꎮ法国Flexblue小型压水堆ꎬ是法国原子能与替代能源委员会同多个公司合作研发的一种下潜式㊁柱形全模块化移动式的海上浮动核电站ꎮ此外ꎬ法国原子技术公司也开发了具有非能动安全特性的NP300型压水堆ꎬ其设计目标是为海外市场提供电力㊁热力和海水淡化服务ꎮ俄罗斯的KLT ̄40S是一种用于破冰船上的小型反应堆ꎬ可用于偏远地区的供电与供热ꎮ阿根廷国家原子能委员会开发的先进小型核电厂则是采用一体化蒸汽发生器的模块式压水堆ꎬ用于发电㊁海水淡化或作为研究堆ꎮ韩国设计的SMART反应堆则具有一体化的蒸汽发生器和先进的安全特性ꎬ主要用于发电㊁供热以及海水淡化ꎬ等等ꎮ近年来ꎬ我国核电企业也加快了小型核反应堆研发和推广步伐ꎬ在满足海上钻井平台ꎬ海岛开发ꎬ偏远地区等供电㊁供热㊁海水淡化ꎬ核能制冷等多元化需求方面做了大量工作ꎮ我国的CNP300压水反应堆最早在秦山核电站建设投运ꎻ自主研发的NHR ̄200则是一个构造简单且高效率的一体化压水堆ꎬ可用于地区供热或海水淡化ꎻACPR50S海上核动力平台是中国广核集团自主研发㊁自主设计的紧凑型㊁多用途海上小型反应堆技术ꎬ是一个以满足最高核安全要求和海洋用户需求为目标的分布式海洋综合能源系统ꎬ其单堆热功率为200MWꎬ可为海上油气田开采㊁海岛开发等领域的供电㊁供热和海水淡化提供可靠㊁稳定的电力ꎻ中核集团研发的ACP100S海上小堆技术已被纳入我国能源创新 十三五 规划ꎮ作为小型反应堆ACP100的海上应用型号ꎬACP100S则是完全自主研发㊁自主设计的小型海上反应堆ꎮACP100S在研发设计原则上满足最新核安全法规及相关导则的要求ꎬ吸收和借鉴了第三代核电技术和先进设计理念ꎬ实现了研发和工程相结合㊁科研和试验验证相结合ꎮ事实上ꎬ中国核工业集团公司㊁中国广核集团公司㊁国家核电技术有限公司㊁中国电力投资集团公司㊁清华大学都在开展小堆的前期工作ꎬ中船重工集团也进行了海洋核动力平台的研发ꎬ初步形成了不同功率匹配的海洋核动力平台方案[6]ꎮ二㊀小型反应堆的应用前景随着世界各国经济的不断发展ꎬ对电力的需求在不断增加ꎬ越来越多的国家计划发展核电[6 ̄7]ꎬ而小型反应堆不仅具有核能发电㊁城市采暖供热㊁工业工艺供热/供电㊁海水淡化等多种功能ꎬ还可以与其它新能源组成联合能源系统ꎮ许多海岛国家和海岸线长的国家都明确表示对海上小堆型核电站的急切需求ꎬ这些国家将是核电技术和装备的主要目标市场ꎬ这也为我国核电行业进入海外市场提供了良好的机遇ꎮ(一)小型反应堆的优势小型堆以其安全性能高㊁运行灵活㊁适应性强㊁用途广等诸多优势ꎬ在未来具有较为广阔的发展空间[8ꎬ10 ̄12]ꎮ与传统的大功率反应堆相比ꎬSMR的选址也更为灵活ꎮ大型核电站至少需要300英亩的土地ꎬ而SMR仅需要40英亩ꎬ海上核电站还可以建设在海上移动平台上ꎮ传统核电站的投建成本约100~150亿美元ꎬ而修建两个SMR机组核电厂的耗资仅10~20亿美元ꎮ成本是决定产业命运的关键因素ꎬ这样的成本规模显然极具吸引力ꎬ更为重要的是SMR有望在未来9~10年内实现商业化批量生产ꎮ(二)小型反应堆是未来核电的现实选择小型反应堆不仅建造周期短㊁成本低ꎬ而且可以通过相应的交通工具运输ꎬ能够为偏远地区或海岛提供现实的㊁经济可行的能源保障ꎮ小型反应堆还可以作为应对各种紧急情况的备用电源ꎬ为遭受自然灾害袭击的地区提供电源ꎬ从而提升对突发性灾害的应急处理能力ꎮ在这方面ꎬ美国和俄罗斯等国家已经走在世界前列ꎮ美国政府已经着手部署规模小㊁建设方便的微型核反应堆发展规划ꎮ俄罗斯用于破冰船上的KLT ̄40S小型反应堆有望在近期投入运行ꎮ此外ꎬ由于大型核反应堆的一次性投资成本很高ꎬ许多发展中国家难以承担和解决核电站建设的一次性融资问题ꎬ而小型堆机组规模小㊁初期投入成本低ꎬ它既可以单个机组建造ꎬ也可以通过选择多个这样的系列化小型堆模块ꎬ分阶段㊁分批次的资金投入和滚动式发展的核电建设方式ꎬ来逐步增加核电站发电容量ꎬ最终建成一座大型核电站ꎮ与大型核电机组不同的是ꎬ其规模经济性是通过增加模块数量来实现的ꎮ因此ꎬ备受这些国家的关注ꎮ(三)海上小堆核电站市场巨大长期以来ꎬ由于住人岛屿远离大陆ꎬ电力供给和淡水供应一直是个难题ꎮ许多岛屿居民的电力和淡水供应得不到保障ꎬ难以满足经济发展的需要ꎮ近海石油㊁天然气开发ꎬ同样也面临着钻井平台电力保障供应和淡水供给的现实问题[8]ꎮ随着海洋资源开发平台规模扩大㊁数量增多ꎬ对动力能源需求更加11第4期刘㊀冲ꎬ黄㊀勇:先进小型核反应堆发展前景及其所面临的问题迫切ꎮ海上小堆技术的应用则是解决远海能源供给的重要途径ꎬ更加有助于提升一个国家的海上资源开发能力ꎮ因此ꎬ所有这些因素也是促成加速建造海上核电站的动因ꎬ 即插即用 型的小型模块化反应堆更受关注ꎬ应用前景广阔ꎬ海上核电站时代已经来临ꎮ在国外ꎬ按照规划ꎬ俄罗斯还将建设一批浮动式核电站ꎬ为大型工业项目㊁港口城市㊁海上油气钻探平台提供能源ꎮ包括印尼㊁马来西亚㊁阿尔及利亚和阿根廷在内的近20个国家都对此表示了浓厚的兴趣ꎬ亚洲被认为可能是海上核电站的最大市场ꎮ在国内ꎬ我国海域辽阔ꎬ西沙群岛㊁南沙群岛等远离大陆数百甚至上千公里ꎬ海上核电站将在我国海洋开发与建设中发挥重要作用ꎮ仅就海上石油钻采方面的需求而言ꎬ未来市场规模将超过1000亿元ꎬ仅渤海湾每年就将形成500亿元的核动力装备制造产值ꎬ同时带动相关配套产业的发展ꎬ可满足渤海海洋开发的市场需求ꎬ经济效益显著ꎮ此外ꎬ中国拟计划未来几年在南海各岛礁建造20座海上核动力浮动平台ꎬ按照每座造价20~30亿元造价ꎬ总造价大约为400~600亿元ꎮ海洋核动力平台的建造将支撑起我国对南海地区的实际控制㊁开发能力ꎬ完善南海地区的电力和能源系统ꎬ从而拉动南海地区的商业开发和我国相关产业的快速发展[13]ꎮ三㊀小型反应堆推广应用所面临的问题小型反应堆凭借着其自身的优势ꎬ得到了世界各国尤其是发展中国家的关注ꎮ因为应用范围㊁运营监管方式等不同于大型商业压水堆的特点ꎬ小型模块化反应堆将带来核能系统的全面革新ꎬ发展小堆被业内认为是再造一个新的核工业ꎮ中国核电产业要想走出国门ꎬ在海外开拓小型反应堆国际市场并取得长足发展ꎬ除了要面临来自激烈的国际竞争压力和不确定性政治风险外部因素影响外ꎬ小型反应堆技术问题㊁安全性与经济性问题等ꎬ也是我国核电行业必须面对的现实问题ꎮ(一)小堆技术问题虽然我国在小型模块化反应堆的设计㊁研发和建造上取得了一定的成果ꎬ但是ꎬ反应堆小型模块化不只是尺寸上的简单缩小ꎬ更是反应堆技术的系统性变革ꎮ尤其是海上核电站建造的环境大多是近海或远海ꎬ由于其特殊的运行环境和作业环境ꎬ现有的技术并不能直接应用并制造出经济性良好和性能安全可靠的民用海上核动力平台ꎬ其设计和装备制造仍具有很高的竞争门槛ꎬ同时还要兼顾技术上的自主性和成熟性㊁装备设施性能的先进性等ꎬ才能在目标市场上具有较强的竞争优势ꎮ与核电强国相比ꎬ我国在小型反应堆特别是海上小堆技术方面的研究起步较晚ꎬ到目前为此ꎬ我国还没有成型的商业化小堆技术方案完成建造ꎬ小型反应堆技术的成熟性和前景如何仍有待具体示范工程项目的验证ꎮ(二)小堆安全性问题在安全方面ꎬ世界各国在核电建设时都无一例外地始终坚持质量第一㊁安全第一的原则ꎮ在基于小堆技术的新型核电站的设计㊁建造和运行中ꎬ都要采用纵深防御机制和非能动安全技术ꎬ从设备上和措施上提供多层次的重叠保护ꎬ确保反应堆的反应性得到有效的控制㊁燃料组件得到充分冷却㊁放射性物质能有效屏蔽和任何情况下都不发生泄漏ꎮ由于小型反应堆电站的初期投资规模小㊁选址要求低㊁建设比较灵活ꎬ小型反应堆甚至可以应用于电负荷较高㊁人群较密的城区ꎮ因此ꎬ建造地域分布将会更加分散ꎬ特别是海上核电站所依赖的平台环境大多远离大陆ꎬ在运行过程中必将都会受到包括自然环境㊁意外事件㊁安全监管与安防条件等各种特殊外部因素影响ꎬ在现有的技术条件和运营管理经验下ꎬ促进小型反应堆核电产业发展ꎬ如何解决小型堆的安全性问题也是我国核电行业必须面临的新挑战ꎮ(三)小堆经济性问题包括海上小堆在内的小型反应堆ꎬ虽然具有很多优势ꎬ但也存在发展劣势ꎬ主要表现在:(1)建造成本问题ꎮ因为小型反应堆的单位功率的系统设备费㊁燃料费㊁操纵员培训费㊁人员管理费㊁审评费及后处理费等等都可能增加ꎬ这就意味着反应堆的单位千瓦材料成本有可能随着尺寸的减小而增加[5ꎬ14]ꎮ(2)建造周期问题ꎮ采用模块化设计㊁设备系统模块化工厂预制和现场模块化组装建设的小型堆ꎬ单堆的优势并不突出ꎮ比如小堆群项目ꎬ由于某些原因导致后续小堆项目不能按原计划进行ꎬ其规模经济性和整体的建设周期可能就不再具有优势ꎮ(3)审批方面的问题ꎮ由于目前各国的法律法规㊁核电项目审评程序等主要是针对大型核电站的ꎬ发展小堆就必须为其设施制造制定出新的审批和检查程序ꎬ这些都将延长工程的建设周期ꎬ从而影响经济效益ꎮ(4)退役问题ꎮ小堆的乏燃料处理更复杂ꎬ场址分布更加分散ꎬ使得小堆退役过程也更为复杂ꎬ需要投入更多的资金来建造专门的核设施退役和乏燃料处理工厂ꎮ21㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀南华大学学报(社会科学版)㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2018年因此ꎬ在小型堆开发与应用中ꎬ安全可靠性㊁完全自主知识产权的核心技术㊁完善的法律法规和标准体系㊁完整的装备制造产业链及其经济性等ꎬ都是关系到小堆技术能否进入国际市场的重要因素ꎮ四㊀小型堆研发与应用市场拓展的策略与措施纵观全球ꎬ新兴经济体国家因经济发展㊁电力短缺以及环境因素等问题急需清洁能源支持ꎬ未来核电发展及全球核电市场开始由发达国家向新兴经济体国家转移ꎮ目前ꎬ中国核电 走出去 的目标市场集中定位在 一带一路 沿线国家ꎬ小堆型核电的优势在这些国家的核电发展中尤为明显ꎬ因此ꎬ针对我国小堆核电技术 走出去 面临的现实状况提出以下建议ꎮ(一)加强顶层设计ꎬ形成国家战略核电作为高技术与资金密集型相结合的产业ꎬ加上核电行业涉及到国家安全㊁核技术与核扩散等一系列敏感问题ꎬ国家之间的核电合作基本上都是外交行为与商业行为ꎬ由国家层面主导和推动ꎮ国家相关部门在做 一带一路 ㊁互联互通等市场布局时ꎬ要专门研究沿线国家小型堆核电市场的布局㊁供给和竞争形势ꎬ明晰哪些国家有发展小型反应堆核电站的需求和潜在市场规模ꎮ(二)深化体制改革ꎬ规范经营秩序小型反应堆的大规模高速发展将对我国核电体制提出更高的要求ꎬ进一步深化核电体制改革成为现阶段急需解决的问题ꎮ政府应统筹规划和完善核电 走出去 战略ꎬ建立一个强有力的调节机制ꎬ由高层领导直接牵头ꎬ多部门共同参与ꎬ通过深化核电体制改革ꎬ建立科学㊁开放㊁公平的核电市场准入原则ꎬ规范企业经营秩序ꎬ整合我国小型堆研发的各方力量ꎬ核电企业抱团出海ꎬ才能真正发挥 国家队 的优势ꎮ(三)加快技术研发ꎬ创新合作模式要使中国核电真正走出去ꎬ打开 丝路 沿线国家小型堆核电市场ꎬ必须要加速小堆技术的全面研发ꎮ同时ꎬ要打破核电研究机构和企业各自为政的局面ꎬ研究机构与核电企业之间㊁核电企业内部都应开展各种形式的合作ꎬ在国内外小堆建设和运营中实现互利共赢ꎮ只有拥有自主知识产权的小堆反应堆核心技术和建立有效的合作机制ꎬ才能在核电强国觊觎的 丝路 沿线国家的小型堆核电市场和激烈的国际核电市场中立于不败之地ꎮ(四)加强风险评估ꎬ完善法律体系中国核电 走出去 必须充分考虑目标市场潜在的政治环境与安全风险ꎬ对这些风险做出充分评估和准确判断ꎬ采取有效应对措施和策略ꎬ制定出最优的投资模式ꎬ化风险为机遇ꎮ政府要主导进行权威性评估ꎬ建立政治风险防控信息平台ꎬ及时向国内企业发布相关地区的政治风险信息ꎬ有效规避所在地区存在的重大政治风险与战乱隐患ꎮ同时ꎬ建立相应的风险预警与特殊情况处置机制ꎬ帮助对外投资企业消除政治方面的系统性风险ꎮ还要发挥行业协会㊁商会㊁NGO(非政府组织)等非官方平台的沟通作用ꎬ为企业 走出去 及在东道国落地生根创造良好的社会环境ꎮ目前ꎬ我国涉核法律体系建设还远远落后于核电发展步伐ꎬ无法适应我国核电产业 走出去 的要求ꎬ应该尽快完善我国涉核法律建设ꎮ首先ꎬ要完善国内涉核法律体系建设ꎬ形成较为完善的核能法律法规体系ꎮ可以通过借鉴西方国家核安全立法先进经验ꎬ制定适合中国国情的法律ꎬ同时完善相应部门的规章制度[15 ̄16]ꎮ其次ꎬ要加快统一我国核电标准技术路线ꎬ尽快形成完整的核电标准体系ꎮ只有这样ꎬ才能提升我国在涉核国际规则制定中的话语权ꎬ从而使我国在国际涉核事务上占据主动权ꎬ为我国核电进军海外核电市场提供法律保障ꎮ五㊀结㊀语先进小型反应堆设计方案普遍采用了模块化㊁一体化设计和非能动安全系统ꎬ有效地提高了反应堆的安全性和经济性ꎮ目前ꎬ随着国际核电市场稳步复苏㊁核电技术不断改进和建设成本逐步下降ꎬ许多核电国家纷纷调整了核能发展战略ꎬ将小型反应堆作为未来核电发展的重点ꎬ目的是扩大核能在多种领域的应用ꎬ并提高在国际核能市场的竞争优势ꎮ我国应加快完善小型反应堆的安全法律法规㊁规范标准和健全管理体系的步伐ꎬ推行小型反应堆运营管理专业化模式ꎬ致力于发展小堆自主核心技术ꎬ加快推进性能更先进㊁安全系数更高的先进小型核反应堆的研发进程ꎬ积极参与小型堆核电的国际市场竞争ꎮ[参考文献][1]㊀IAEA.StatusofSmallandMediumSizedReactorDesigns[R].Vienna:IAEAꎬ2012.[2]㊀刘志铭ꎬ丁亮波.世界小型核电反应堆现状众发展概况[J].国际电力ꎬ2005ꎬ9(6):27 ̄31.[3]㊀陈培培ꎬ周赟.世界先进小型压水堆发展状况[J].核动力工程ꎬ2012ꎬ33(5):136 ̄139.[4]㊀张国旭ꎬ解衡ꎬ谢菲.小型模块式压水堆设计综述[J].31第4期刘㊀冲ꎬ黄㊀勇:先进小型核反应堆发展前景及其所面临的问题原子能科学技术ꎬ2015ꎬ49(增刊1):40 ̄47.[5]㊀郭志峰ꎬ王海丹.中小型核电反应堆的市场前景[J].国外核新闻ꎬ2011(5):18 ̄19.[6]㊀熊厚华ꎬ杜继富ꎬ曾正魁ꎬ等.模块式小型反应堆研发现状及前景分析[J].价值工程ꎬ2015(2):30 ̄31. [7]㊀陈传涓ꎬ李家杰ꎬ杨泽华ꎬ等.小型反应堆技术及我国应用前景[C]//.宁波:先进核电站技术研讨会ꎬ2013(9):5 ̄12.[8]㊀IAEA.AdvanceinSMRtechnologydevelopment[R].Vi ̄enna:IAEAꎬ2014.[9]㊀林一平ꎬ陈玲玲.建造浮动式核电站群势在必行[J].交通与运输ꎬ2017(1):53 ̄55.[10]㊀周蓝宇ꎬ齐实ꎬ周涛.小型模块化反应堆发展趋势及前景[J].科技创新与应用ꎬ2017(21):195 ̄196. [11]㊀李佳佳ꎬ刘峰ꎬ赵芳.国外海上浮动核电站的产业发展现状[J].船舶工程ꎬ2017ꎬ39(4):7 ̄11.[12]㊀陈培培ꎬ周赟.我国发展先进小型轻水反应堆的一些思考[J].中国核电ꎬ2012ꎬ5(1):136 ̄139.[13]㊀陈文军ꎬ姜胜耀.中国发展小型堆核能系统的可行性研究[J].核动力工程ꎬ2013ꎬ34(2):153 ̄156.[14]㊀张宇.我国小型堆项目开发前景分析和探讨[J].能源工程ꎬ2012(6):14 ̄17.[15]㊀胡帮达.我国核安全法规体系的问题及其完善[J].世界环境ꎬ2017(2):16 ̄17.[16]㊀刘峰ꎬ李佳佳ꎬ刘丽红ꎬ等.国外海上浮动核电站政策和标准规范[J].船舶工程ꎬ2017ꎬ39(4):12 ̄15.TheDevelopmentProspectandProblemsofAdvancedSmallNuclearReactorLIUChongꎬHUANGYong(UniversityofSouthChinaꎬHengyang421001ꎬChina)Abstract:㊀Theadvantagesinsafetyandeconomyenablessmallmodularreactors(SMRs)ꎬwhicharecharacterizedbystandard ̄izedandmodulardesignsꎬtoexpandnuclearenergymarketsinemergingindustrialcountriesanddevelopingcountriesꎬandbecomeanimportantpartofChina'sexportofnuclearpowerequipment.ThispaperdescribesthedevelopmentstatusandapplicationprospectsofSMRsꎬanalyzesthepossibleproblemsofpopularizationandapplicationꎬandputsforwardsomesuggestionsandstrategiesforthere ̄searchandapplicationofSMRsinChina.Keywords:㊀nuclearenergyꎻ㊀SMRsꎻ㊀advancedreactorsꎻ㊀modularization41㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀南华大学学报(社会科学版)㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2018年。
新一代先进反应堆

新一代反应堆
1
第一代反应堆到第四代反应堆
第一代反应堆集中了世界上(主要是美国、俄罗斯、法国、英国) 建造的首批原型堆。 目前正在运行的是第二代反应堆。主要有美国、欧洲、日本的压水 堆(PWR)和沸水堆(BWR);俄罗斯设计的轻水堆(VVER);东欧 国家的压力管式沸水堆(RBMK),以及加拿大和印度的坎杜重水堆 (CANDU)。 第三代反应堆已做好建造的准备。实际上,日本已经建造了2 台机 组(柏崎·刈羽6 号和7 号)。根据需要和各国的情况,2010~ 2015 年期间,第三代反应堆将替代正在运行的第二代。 第四代反应堆还处于研发阶段,目前已有多种研发规划,预计将于 2030 年达到技术成熟,2035~2040 年开始建造首批机组。
6
因此,在自1992 年开始的欧洲压水堆(EPR)的研究和 设计工作中,安全被作为首要参考因素。加强安全主要 表现在,为了进一步降低事故发生概率,增加了安全装 置的冗余度,而且非能动安全设计可确保机组在发生事 故时仍能正常运行。
EPR 的设计和改进是法德15 年的研发成果。该反应堆有 以下明显优点:
13
14
15
. 安全性大幅提高, . 造价降低, . 长寿命废物量降低, . 竞争力提高。
7
在核领域,第二代与第三代之间的过渡已开始多年。例 如,日本1997 年投入运行的柏崎·刈羽核电站两台机组, 法国分别于1996 和1999 年投入运行的舒兹和希沃N4 系 列都属于这一类。韩国已计划2010 年建造第三代反应堆。 美国也计划2010 年建造水冷或气冷堆。中国也有同样的 计划
法国建造和运行了3 座产钚堆(G1、G2和G3),和6 座发电堆。尽 管更大规模的反应堆具有令人感兴趣的特点(热效率高、可使燃 料得到更充分的利用),但是,由于受到技术限制,投资费用高, 提高安全性困难,因此第一代反应堆的功率通常较低。
核反应堆——堆型简介

核反应堆——堆型简介核电站是利用一座或若干座动力反应堆所产生的热能来发电或发电兼供热的动力设施。
目前,商业运行中的核电站都是利用核裂变反应来发电。
世界上当前运行和在建的核电站反应堆主要有压水堆(Pressurized Water Reactor,PWR)、沸水堆(Boiling Water Reactor,BWR)、加压重水堆(Pressurized Heavy Water Reactor,PHWR)、高温气冷堆(High Temperature Gas Reactor,HTGR)和快中子堆(Liquid Metal-cooled Fast BreederReactor,LMFBR)等五种堆型,但应用最广泛的是压水堆。
下面将简要介绍这五种类型核反应堆的基本特征和主要特点。
1、压水堆压水堆是采用加压轻水(H2O)作冷却剂和慢化剂,利用热中子引起链式反应的热中子反应堆。
最初是美国为核潜艇设计的一种热中子反应堆堆型。
四十多年来,这种堆型得到了很大的发展,经过一系列的重大改进,已经成为技术上最成熟的一种堆型。
压水堆核电站采用以稍加浓铀作核燃料,燃料芯块中铀-235的富集度约3%。
核燃料是高温烧结的圆柱形二氧化铀陶瓷燃块,参见图1 (a)。
柱状燃料芯块被封装在细长的锆合金包壳管中构成燃料元件(参见图1(b)),这些燃料元件以矩形点阵排列为燃料组件,组件横断面边长约20cm,长约3m,参见图1 (c)。
几百个组件拼装成压水堆的堆芯。
堆芯宏观上为圆柱形,参见图2。
轻水不仅价格便宜,而且具有优良的热传输性能,所以在压水堆中,轻水不仅作为中子的慢化剂,同时也用作冷却剂,且水在反应堆内不沸腾。
要使水不沸腾——获得高的温度参数,就必须增加冷却剂的系统压力使其处于液相状态,所以压水堆是一种使冷却剂处于高压状态的轻水堆。
压水堆冷却剂入口水温一般在300℃左右,出口水温330℃左右,堆内压力15.5MPa。
我国大亚湾核电站、岭澳核电站、秦山第一核电站、秦山第二核电站、江苏田湾核电站均属于这种堆型。
反应堆堆型简介

CANDU的缺点
重水昂贵; 重水昂贵; 堆本体庞大; 堆本体庞大; 系统复杂; 系统复杂; 轻水堆的三条缺点, 也同样存在。 轻水堆的三条缺点,CANDU也同样存在。 也同样存在 其燃料转化比虽高于轻水堆, (其燃料转化比虽高于轻水堆,但还是不能 增殖) 增殖)
石墨沸水堆 RMBK
这是前苏联开发的一种用石墨作为慢化剂、 这是前苏联开发的一种用石墨作为慢化剂、 轻水作为冷却剂的核电站反应堆。 轻水作为冷却剂的核电站反应堆。发生切 尔诺贝利事故的就是这种反应堆。 尔诺贝利事故的就是这种反应堆。 这种堆毛病多多(参阅第七章的有关课件), 这种堆毛病多多(参阅第七章的有关课件), 今后不会再建了。 今后不会再建了。
堆、高温气冷堆) 高温气冷堆)
根据堆的用途分类
实验反应堆(用于科学实验、教学培训等) 实验反应堆(用于科学实验、教学培训等) 生产堆(生产军用钚) 生产堆(生产军用钚) 动力堆(发电,推进等; 地上,海洋,天空) 动力堆(发电,推进等; 地上,海洋,天空) 供热堆
实验反应堆
数量甚大, 种类繁多. 数量甚大 种类繁多 美国在三哩岛事故发生 之前,仅大学里用于教学科研的实验堆就有 之前 仅大学里用于教学科研的实验堆就有 好几十个. 好几十个 中国也有若干实验反应堆
反应堆的分类
世界上现有的, 曾经有过的,以及将来要建的 世界上现有的 曾经有过的 以及将来要建的 反应堆种类很多, 反应堆种类很多,对它们的分类也有不同 的分法。例如,可以 的分法。例如 可以 根据中子能谱分类 根据所用慢化剂分类 根据所用的冷却剂分类 根据堆的用途分类 。。。
根据中子能谱分类
热中子反应堆 快中子反应堆 中能中子反应堆(没有太多优点 没有太多优点) 中能中子反应堆 没有太多优点
第三代核反应堆-EPR

第三代核反应堆-EPREPR是法马通和西门子联合开发的反应堆。
2001年1月,法马通公司与西门子核电部合并,组成法马通先进核能公司(Framatome ANP,AREV A集团的子公司)。
法国电力公司和德国各主要电力公司参加了项目的设计。
法德两国核安全当局协调了EPR的核安全标准,统一了技术规范。
新一代核反应堆EPR已经完成了技术开发层面的工作,现已进入建设阶段。
一、EPR实现了三大目标:1、满足了欧洲电力公司在“欧洲用户要求文件”中提出的全部要求。
2、达到了法国核安全局对未来压水堆核电站提出的核安全标准。
3、提高核电的经济竞争力,EPR的发电成本将比N4系列低10%。
二、EPR的主要特征1、EPR是目前国际上最新型反应堆(法国N4和德国近期建设的Konvoi 反应堆)的基础上开发的,吸取了核电站运行三十多年的经验。
2、EPR是渐进型、而不是革命型的产品,保持了技术的连续性,没有技术断代问题。
EPR采纳了法国原子能委员会和德国核能研发机构的技术创新成果。
3、EPR是新一代反应堆,具有更高的经济和技术性能:降低发电成本,充分利用核燃料(UO2或MOX),减少长寿废物的产量,运行更加灵活,检修更加便利,大量降低运行和检修人员的放射性剂量。
4、EPR属压水堆技术。
法国在运行的核电站都是压水堆。
目前,全球共有440台在运行的核电机组,其中209台是压水堆。
压水堆是上国际上使用最广泛的堆型。
5、EPR可使用各类压水堆燃料:低富集铀燃料(5%)、循环复用的燃料(源于后处理的再富集铀,或源于后处理的钚铀氧化物燃料MOX)。
EPR堆芯可全部使用MOX燃料装料。
这样,一方面可实现稳定乃至减少钚存量的目标,同时也可降低废物的产量;6、EPR的电功率约为1600兆瓦。
具有大规模电网的地区适于建设这种大容量机组。
另外,人口密度大、场址少的地区也适于采用大容量机组。
未来20年,半数以上的新核电站将建在这类地区。
7、EPR的技术寿期为60年,目前在运行的反应堆的技术寿期为40年。
先进核反应堆及多用途模块化小型堆建造与技术开发方案(三)

先进核反应堆及多用途模块化小型堆建造与技术开发方案一、实施背景随着全球能源需求的不断增长和环境污染问题的日益严重,寻求清洁、高效、可持续的能源解决方案成为当务之急。
核能作为一种低碳、高能效的能源形式,具有巨大的潜力。
然而,传统的大型核电站存在建设周期长、投资大、安全风险高等问题。
因此,开发先进核反应堆及多用途模块化小型堆成为一种重要的技术路径。
二、工作原理先进核反应堆及多用途模块化小型堆是一种基于先进核技术的小型核反应堆系统,具有高度安全性、高效能源利用和灵活多样的能源输出能力。
其核心是采用先进的燃料设计和被动安全系统,能够在事故情况下自动停止核链式反应,大大降低了核事故的风险。
同时,模块化设计使得核反应堆可以在工厂制造并进行快速安装,大大缩短了建设周期。
三、实施计划步骤1. 技术研发阶段:进行先进核反应堆的燃料设计、被动安全系统的研发以及模块化设计的优化。
2. 原型建造阶段:根据研发成果,建造先进核反应堆的原型,并进行实际测试和验证。
3. 小型堆建造阶段:根据原型的成功经验,开始批量建造小型核反应堆,并进行模块化设计和工厂制造。
4. 安装和调试阶段:将建造好的小型核反应堆模块化单元运输到目标地点进行安装和调试。
5. 运行和监测阶段:启动小型核反应堆,进行长期的运行和监测,收集数据并进行分析。
四、适用范围先进核反应堆及多用途模块化小型堆适用于多个领域,包括但不限于以下几个方面:1. 提供清洁能源:小型核反应堆可以为偏远地区、岛屿和发展中国家提供稳定的清洁能源供应。
2. 电力供应:小型核反应堆可以作为电网的补充,满足电力需求的峰值和调峰需求。
3. 热能供应:小型核反应堆可以用于供热,满足工业和居民的热能需求。
4. 海水淡化:小型核反应堆可以用于驱动海水淡化设备,解决水资源短缺问题。
五、创新要点1. 先进燃料设计:采用先进的燃料设计,提高燃料利用率和核反应堆的经济性。
2. 被动安全系统:设计具有被动安全系统的核反应堆,能够在事故情况下自动停止核链式反应,提高核安全性。
第四代反应堆的六种类型

第四代反应堆的六种类型
第四代反应堆是指采用新型反应堆结构、新型燃料、新型冷却剂和新型控制系统的反应堆。
它具有更高的安全性、更高的可靠性、更高的热效率和更低的核废料产生量。
第四代反应堆的六种类型主要有:
1、质子反应堆:采用质子反应堆结构,燃料为铀系燃料,冷却剂为水或氦气,控制系统
采用控制棒技术。
2、中子反应堆:采用中子反应堆结构,燃料为钚系燃料,冷却剂为氦气,控制系统采用
控制棒技术。
3、热中子反应堆:采用热中子反应堆结构,燃料为钚系燃料,冷却剂为氦气,控制系统
采用控制棒技术。
4、超热中子反应堆:采用超热中子反应堆结构,燃料为钚系燃料,冷却剂为氦气,控制
系统采用控制棒技术。
5、热电反应堆:采用热电反应堆结构,燃料为钚系燃料,冷却剂为氦气,控制系统采用
控制棒技术。
6、质子-中子反应堆:采用质子-中子反应堆结构,燃料为铀系燃料和钚系燃料,冷却剂
为氦气,控制系统采用控制棒技术。
《先进型反应堆》课件

优点
1 安全性
先进型反应堆具有高度安全性,能够有效预防核事故,并减少对人类和环境的危险。
2 经济性
这些反应堆在能源生产领域具有高效和经济的特点,可以为社会创造巨大的价值。
3 环境友好型
相比传统能源,先进型反应堆减少了对大气和水资源的污染,使其成为环境友好型的能 源选择。
缺点
1 建设成本高
建设先进型反应堆需要巨大的投资,这是发展过程中面临的主要挑战。
2 政治和公众的反对
由于核能的特殊性质,先进型反应堆可能面临政治和公众的担忧和反对。
Байду номын сангаас
先进型反应堆的分类
轻水反应堆
轻水反应堆使用水作为冷却 剂和减速剂,是目前最常见 的反应堆类型。
液态金属冷却反应堆
液态金属冷却反应堆使用液 态金属作为冷却剂,具有高 热传导性和更高的工作温度。
气冷式反应堆
气冷式反应堆使用气体作为 冷却剂,减少了对水资源的 依赖,同时具有更好的灾害 适应性。
《先进型反应堆》PPT课 件
首先,让我们来探索先进型反应堆的奥秘和潜力。它们代表着未来能源发展 的重要方向。
概述
反应堆是一种利用核裂变或核聚变过程释放巨大能量的设备。先进型反应堆具有很多独特特点,让我们一起了 解!
原理
核聚变与核裂变是先进型反应堆的核心原理。了解这些原理有助于我们理解这些反应堆的工作原理。
先进型反应堆的未来发展趋势
未来,先进型反应堆将继续发展演进,潜力巨大,将为人类创造更美好的生活。
结论
通过加强对先进型反应堆的研究和发展,国家将能够解决能源短缺和环境问 题,实现可持续发展的目标。
发展历程
1
国外的先进型反应堆
国外已经在研发和使用先进型反应堆方
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)EPR简介
• 换料停堆时间缩短到接近10天。由于设备标准化和 部分维修任务可在机组运行状态下进行(归功于安 全系统4重冗余)使维修简化。 • 废物和流出物减少。 • 对运行和维修人员的辐射防护加强:集体剂量的目 标小于0.4人希弗/堆年,而目前OECD国家的平均水 平为1人希弗/堆年。 • 对操纵员友好的人机接口使可靠性大大提高并使人 员干预减少。
(1)EPR简介
• • • • 每兆瓦时长寿锕系元素产生量减少15% 相对于释热比,发电量增加14% EPR堆芯设计运行裕量大,灵活性好 适应用户的各种需要,如采用不同类型的燃 料(UO2,UO2-Gd2O3,MOX)、不同的燃料管 理战略和燃料循环长度(到24个月),降功 率运行和延寿运行。
(1)EPR简介
世界首台ABWR机组: 东京电力公司柏崎刈羽核电厂6/7号机
三、第三代先进PWR
1、 EPR 2、 AP600/1000
1、EPR-欧洲压水堆
(1)EPR简介 (2)技术特点 (3)安全特性
(1)电厂供应商的合作:法马通和西门子KWU(现为AREVA公 司); • 两国电力公司的合作:(现已合并为E.ON、EnBW、RWE Power) • 两国核安全当局合作:以求制定出共同的核安全法规。 • 在世界上现役轻水堆几千个堆年运行经验反馈的基础上并 吸收包括法国 N4 机组 和 德国KONVOI 机组在内的最新 反应堆技术而开发出来的。 • 综合了几十年研发(R&D)计划取得的成果,特别是由法 国原子能委员会和Karlsruhe 研究中心所获得的研究成果。
(2)EPR技术特点
• 反应堆保护系统以N4机组的经验反馈为基础,采用经 过验证的数字化技术。 • 全计算机化主控室采用最先进的数字化技术,使操纵 员能够全面调节对电厂运行有重要影响的所有参数。 EPR充分采用现役电站的经验反馈并结合最新的技术 发展,提供了极为友好的人机接口。 • 主要安全系统包含4个子系统或列,每列都能独立执 行全部安全功能。 • 在反应堆厂房周围的4个安全防护厂房中,每一个里 都布置有一列安全系统,以防止系统发生共模故障。
(3)被动安全壳冷却 –空气自然循环 / 蒸发安全壳外表面水 –AP1000非能动安全壳冷却系统与传统压水堆的安全壳喷 淋系统的主要功能相同,其作用是发生LOCA事故或主蒸 汽管破裂事故发生在安全壳内时,排出安全壳内的热量。 –非能动安全壳冷却系统以钢安全壳作为传热界面,将空 气从外层屏蔽壳入口引 入,通过外部环廊到达底部, 在空气折流板底部转向180度,进入内部环廊,再沿安 全壳内壁向上流动。由于内部环廊空气被加热和水蒸气 存在,造成内外环廊空 气密度差,形成空气的自然循 环,空气最终从屏蔽壳顶部烟囱排出。在安全壳顶部设 有可供72小时的冷却水贮存箱,水依靠重力向下流,在 钢安全壳弧顶和壳壁外 侧形成一层水膜。当安全壳内 压力或温度过高时,系统自动开启。由形成的水膜和空 气自然循环导出安全壳内的热量,降低安全壳的压力, 保证安全壳不受损坏。
BWR追求简易化的历史
刻意追求简易-直接循环 采用验证技术 传统式BWR 初期的BWR
内置循环泵 取消堆芯周围管道 (1990年代~至今) 内置射流泵 减少周围管道式 (1970年代~至今)
ABWR
带蒸气包/汽水分离器 双重循环式 (1950年代~60年代)
内置汽水分离器 直接循环式 (1960年代)
经济性好: • 发电成本比在役最先进的核电机组低10%, • 比联合循环的大型燃气机电站低20%。
(2)EPR技术特点
• 现有的设计、设备制造以及核电厂建造等方面 的工业能力可很容易得到推广和利用。 • 操纵员在现役电站运行中已掌握的专门技能同 样可应用到EPR的运行中去。 客户能够避免设计、建造或运行方面的风险 EPR设计满足世界未来核电厂更高安全水平的 要求。
先进沸水堆
• 利用先进技术和成熟的经验,代表当今核电站发展水平。 它与GE研制的前六代沸水堆(BWR1-BWR6)及欧洲沸水堆 相比,就单相系统或设备的设计而言,在技术上没有明 显的突破,但它集以往沸水堆技术及经验之大成, 更符 合先进轻水堆URD设计规范,在整体上体现出了它综合 的优势。 • 精密控制棒驱动系统维修率低,高性能的防辐射材料, 长寿命的中子监视器,改进的水化学系统等等。 • 先进沸水堆通过改进堆芯及燃料的设计使功率振荡衰减 比非常小,堆的稳定性大大提高。 • 先进堆堆内设置自动运行,保护器禁止堆运行在高功率 密度/低流量区,来防止两相流不稳定性的发生。
• 被动安全相关系统
–只采用被动过程,不需要主动的泵、柴油发 电机等….
• 一组时序控制的阀门 • 过程开始后不需要其它支持系统大大减少对操作 员的依赖
–缓解基准设计事故,无非核级系统
2013-7-19
Westinghouse Electric Company
AP1000被动安全特性
(1) 被动衰变热排出
(3)安全特性-防范外部灾害
• 为防范外部灾害设置实体保护: 抗飞机撞击: 反应堆厂房、控制室、乏燃料厂房和4座安全厂房中的2座 通过足够厚的钢筋混凝土外墙进行保护以抵御军用飞机的 高速撞击。 其它两座安全厂房分开布置在反应堆厂房相对应的两侧, 由于它们相距较远,这样仅有一座安全厂可能被飞机撞毁, 而不会对安全造成影响。 同样,用于应急供电的柴油发电机组分置在两个不同的厂 房,并通过实体隔离进行保护。
自然循环
(2)被动安全注入
• 自然循环 • 安全注入系统由两台堆芯补给水箱(CMT)、两台 安全注射箱和换料水箱 IRWST 组成,连接于反应堆 冷却剂环路并充满硼水,注射依靠重力和气体储能 的释放。当正常上充水系统失效时,可应付小泄漏 及由失水事故引起的大泄漏,CMT、安全 注射水箱 和IRWST 为堆芯提供冷却。依靠 IRWST 提供冷却 水注入保持LOCA后期冷却和余热去除,和安全壳冷 却系统一起建立再循环,使堆芯保持淹没。
(1)EPR简介
• 160万千瓦级压水堆,其单机容量为世界之最 • 机组热效率为当今轻水堆之最:36/37%; • 从第一罐混凝土计建造周期不超过48个月;
• 设计寿命增加到60年;
• 燃料U235富集度5%;燃料组件卸料燃耗深70000MWd/t • 燃料利用率提高;每兆瓦时铀消耗量节约17%
• 机组整个寿期的平均可用因子达92%,这样换料周期延长, 停堆换料和在役检查时间缩短。
沸水堆的发展历程
• 四个发展阶段 50—60年代采用带蒸气汽包和蒸气分离器的双重 式循环; 70年代取消蒸汽发生器采用直接循环; 80年代采用堆内型喷射泵; 90年代采用堆内型再循环泵。 • 三次标准改进 第一次在76—77年,第二次在78—80年,第三次 在81—85年。三次改进后沸水堆的设计,安全性 发生了较大的变化,成为了我们目前所研究的先 进沸水堆。
d) 新型测控设备(主控室)
采用了最新技术-包括安全系统在内,全部使用数码
技术和多重传送技术
小型主控台
大型显示盘
提高了可靠性 信息集中化的 人机接口 增大自动化程 度,运行易于 掌握 提高了检修性
BWR与ABWR主要差别
效率:BWR 33,ABWR 35% 工期:BWR58月,ABWR 48月 剂量水平:BWR 1 人.Sv /年, ABWR 0.36 人.Sv /年 启动时间:ABWR缩短1/3 放射性废物量:ABWR每堆年减少一半
(3)安全特性-强化防范堆熔事件的措施©
• 采用缓解严重事故后果的设施: 安全壳将防止放射性向外扩散; 在安全壳内布置有混凝土小室和氢催化复合器 (属非能动设备)以防因氢累积引起氢气爆燃 堆芯熔融物在反应堆安全壳厂房内部的专门区域 进行收集和滞留然后得以冷却,从换料水池来的 水非能动地淹没熔融物。
(3)安全特性-强化防范堆熔事件的措施
• EPR采取措施防范堆芯熔化,包括采用安全 装置进一步降低这种严重事故的概率小于 10-6/堆年(比N4还要低一个量级): 增加一回路和蒸汽发生器的水装量; 采用4×100%冗余(4系列概念)来增加安 全系统的可靠性; 这些系统的每列在设计方面都遵循多样化 原则。
ABWR的技术特征
a)内置循环泵(RIP: Reactor Internal Pump) 因为堆芯外围没有再循环管道,
所以其他管道破损,堆水不丧失/保证堆芯不裸露(安全性提高) 减少了职业性辐照剂量
b)先进型控制棒驱动机构(FMCRD: Fine Motion Control RodDrive) 安全性提高 (有液压式应急驱动、电驱动后援双重驱动源) 可同时操作复数控制棒,缩短了起动时间 具有微调功能,增大了可运行性
2、AP1000-安全革新
• 传统核电站-主动安全理念
子系统、设备可靠 多系统冗余 电力(或高气压)驱动, 电源、备用电源可靠、冗余 自然力驱动 重力、自然循环、自然对流、蒸发及冷凝 简化安全系统、减少动力源(可靠) 减少操作员干预
• AP1000-被动安全理念
AP1000 的安全战略
(3)安全特性
• EPR符合法国和德国核安全当局1993年联合提 出的共同建议和1995年发布的对主要问题的 立场 • 2000年10月,负责反应堆安全的法国常设专 家组与德国的有关专家一起对指导EPR设计的 技术导则进行了评审并给予确认。 • EPR满足欧洲用户要求(EUR)和美国电力研 究院(EPRI)发布的用户要求文件(URD)
(2)EPR技术特点
• EPR主要设计特点是它的简化设计,机械设备、 供电系统和相关的仪控均以4环路/4安全系列 概念设计。 • 运行和安全功能分开,以简化系统的结构。 • 运行和安全系统的设置为任何类型的异常事 件提供了逐步缓解的措施。
(2)EPR技术特点
• 堆芯周围有一圈中子反射层,提高了燃料利用 率并防止与辐照有关的压力容器老化现象的发 生。 • 压力容器采用抗考化最佳的钢材制造并减少焊 缝数量。 • 蒸汽发生器装有轴向节能器,使蒸汽压力提高 到78个饱和蒸汽压力,从而获得较高的电厂效 率(36/37%)。 • 主冷却泵采用革新的水力设计进行制造,表现 为采用静压轴承,已在N4成功实施。