第七章 方差分析

合集下载

统计学方差分析

统计学方差分析

EXCEL演示
例 子
EXCEL演示
例 子
数据结构—无交互作用的双元素方差分析
分析步骤—无交互作用的双元素方差分析
01
02
03
构造F统计量
判断与结论
例题
Excel操作
数据结构—有交互作用的双元素方差分析
分析步骤—有交互作用的双元素方差分析
建立假设 构造检验F统计量 判断与结论
例题
Excel操作
构造F统计量
判断与结论
例题
Excel操作
方差分析概述
单因素方差分析
平方和分解: 若 ,则拒绝原假设 多重比较 因素A的第i个水平的效应
两因素方差分析 数据、模型、要检验的假设
无交互作用 对因素A 对因素B: 不全为零 不全为零
两因素方差分析 分析表与检验统计量 平方和分解: 判断
判断与结论
例7.2
两因素方差分析 数据、模型、要检验的假设
有交互作用
两因素方差分析 分析表与检验统计量
平方和分解: 判断
判断与结论
例7.3
例 子
EXCEL演示
【解】设这四种方式的销售量的均值分别用 表示,则要检验的假设为
【解】设这四种方式的销售量的均值分别用 表示,四个销售地点的平均销售量用 表示;则要检验的假设为 对销售方式: 对销售地点:
如果方差分析只针对一个因素进行,称为单因素方差分析。如果同时针对多个因素进行,称为多因素方差分析。本章介绍单因素方差分析和双因素方差,它们是方差分析中最常用的。
水平指因素的具体表现,如销售的四种方式就是因素的不同取值等级。有时水平是人为划分的,比如质量被评定为好、中、差。
水平
单元

第七章方差分析与F检验

第七章方差分析与F检验
第七章 方差分析
• 方差分析又称做变异分析,它的主 要功能在于分析实验数据中不同来 源的变异对总变异的贡献大小,如 实验处理引起的变异、被试个体差 异带来的变异、实验误差带来的变 异等,从而确定实验中的自变量是 否对因变量有重要影响。
第一节 方差分析的基本原理
一、方差分析的基本原理:综合的F检验 (一)综合虚无假设与部分虚无假设 方差分析主要处理多于两个以上的平均数
1、建立假设:H0:μ1=μ2=…=μk H1:至少有两个总体平均数是不
同的,即处理效应不全为0 2、计算离差平方和 3、求均方 4、计算F值 5、进行F检验
6、列出方差分析表
变异来源
组间变异 (处理)
组内变异 (误差)
总变异
自由度 平方和 均方 F
dfb=k-1
SSb MSA MSA/
Dfw=∑(n-1) SSw MSE MSE
(六)陈列方差分析表
二、方差分析的基本条件
1、数据所代表的总体必须是正态分布, 即样本必须来自属于正态分布。
2、变异具有可分解性。
3、各组内的方差应无显著差异。因此 理论上在做方差分析之前应先对各 组方差的一致性进行检验。
第二节 单因素完全随机化设 计的方差分析
完全随机设计的方差分析,就是对单因素 组间设计的方差分析。在这种实验研究 设计中,各种处理的分类仅以单个实验 变量为基础,因而把它称为单因素方差 分析或单向方差分析。
③计算均方
MSb=MSA=SSb/dfb=43.33/2=21.67 MSw=MSE=SSw/dfw=30.00/12=2.50 ④计算F值,进行F检验,做出决断
F= MSb/ MSw=21.67/2.50=8.67 查F表,F0.05(2,12)=3.88 8.67>3.88,拒绝虚无假设,可以认为在

第七章方差分析(心理)

第七章方差分析(心理)

ΣX 217.40 216.20 213.20 214.40 nk=12
(ΣX)2 47262.76 46742.44 45454.24 45967.36 185426.80
1 2 3 4 n ΣX ΣX2 X
n
4 283.9 20151.51
4 290.50 21098.45
4 286.80 20564.90
SSB
n
n
SSW
2 X X 2
n
2
SST X
2
X
n
dfT dfB dfW
组间自由度
dfB k 1
组内自由度
dfW n k
dfT n 1
总自由度
计算方差 组间方差
SSB MS B dfB
MSW SSW dfW
ij X t k n
X
n j 1 i 1
ij X j
n X
k j 1
j
Xt

2
令SSt X ij X t
j 1 i 1


2
总平方和,自由度为N 1,
k
SS b n X j X t
j 1 k n
k


2
n X j X t
随机区组设计由于同一区组接受所有实验处理,试实 验处理之间有相关,所以也称为相关组设计(被试内设 计)。它把区组效应从组内平方和中分离出来。这时, 总平方和=组间平方和+区组平方和+误差项平方和
随机区组设计中平方和的分解:
SST SSB SSR SSE
SST
2 X X 2
Fmax

第七章方差分析基础《卫生统计学》课件

第七章方差分析基础《卫生统计学》课件

方差分析简述方差分析也是统计检验的一种。

由英国著名统计学家:R.A.FISHER推导出来的,也叫F检验。

190240290340分组正常钙组中剂量钙(1.0%)高剂量钙(1.5%)1X 2X 3X X(2) 计算检验统计量可根据表7-5的公式来计算出离均差平方和、自由度、均方和F值。

从已知正态总体N(10,52)进行随机抽样,共抽取了k=10组样本,每组样本的样本含量n i=20,可算出各组的均数和标准差,得表7-7的结果。

如果采用t检验作两两比较,其比较次数为(1)10(101)45 222k k km⎛⎫--====⎪⎝⎭从理论上讲10个样本均来自同一正态总体N(10,52),应当无差异,但我们用两样本t检验时,已经规定犯第一类错误的概率不超过α=0.05,本次实验实际犯第一类错误的频率为5/45≈0.11,显然比所要控制的0.05要大。

因此不能直接用前面学过的两样本t检验对多样本均数作两两比较,而应采用专用的两两比较的方法。

(2) 计算检验统计量首先将三个样本均数由大到小排列,并编组次:, =11()2A B A B A B X X A BX X X X q S MS n n νν---==+误差误差(3) 确定值并作出推断结论自由度ν误差和对比组内包含组数a查附表4的q界值表得q界值,将算得的q值与相应q界值进行比较得各组的p值。

(3) 确定P值并作出推断结论自由度ν误差和实验组数 (不含对照组)查附表5.2的Dunnett –t(q, )界值表,得q,临界值,用计算得到的q,与临界值进行比较,得P值 。

(2) 计算检验统计量=11()A B A B A B X X A BX X X X t S MS n n νν---==+误差误差。

第七章 1单因素方差分析

第七章 1单因素方差分析

j 1
s
s
因为
nj [ nj ( X j X )] nj ( X j X )
j1
j1
s nj
Xij nX 0
j1 i1
所以 SA 的自由度为s 1.
SA与SE独立 , H0为真时,
S

A 2


2
(
s

1).
四、假设检验问题的拒绝域
检验假设 H1 : 1 2 s 0,
H0 :
1,
2,
,

不全为零
s
.
构造检验统计量 因为H0为真时,
F SA (s 1) . SE (n s)
S

E2~
2
(n

s
),
S

A2~
2
(
s

1),
SA (s 1) SA 2
SE (n s) (s 1)
SE 2 ~F (s 1, n s).
j1 i1
s
nj
2 ( X j X )[ ( Xij X j )]
j 1
i 1
s
nj
2 ( X j X )[ Xij nj X j ]
j 1
i 1
0
于是ST可分解为 ST SE SA,
s nj
其中 SE
( Xij X j )2

X n11
A2
X12 X 22

X n2 2
T1
T2
X 1
X2
1
2

As

X1s

统计学原理第七章 方差分析

统计学原理第七章 方差分析

三、方差分析的基本假定
1.观测值是来自于服从正态分布总体的随 机样本 2.各总体的方差相同。 3.各总体相互独立。
四、方差分析的基本步骤
• 第一步:提出假设 • 第二步:构造检验统计量F • 第三步:查表得Fα,进行统计决策(右侧 检验)
• 若F>F,则拒绝原假设 • 若F<F,则不能拒绝原假设
2.构造并计算检验统计量
• • • • SSR:行因素误差平方和 SSC:列因素误差平方和 SSE:随机因素误差平方和 SST:总因素误差平方和 SST=SSR+SSC+SSE
计算方差
平方和 自由度 方差
行因素
列因素 随机因素 总和
SSR
SSC SSE SST
K-1
r-1
(K-1)(r-1)
• 方差分析中涉及两个分类型自变量时, 称为双因素方差分析。
• 例如,在分析空调销售额的影响因素时, 除了品牌因素之外,还需考虑地区、价 格、质量等因素。
方差分析
单因素方差分析 双因素方差分析
无交互作用
有交互作用
• 1.无交互作用的双因素分析(无重复双 因素分析)
• 因素间的影响是相互独立的
• 2.有交互作用的双因素分析(可重复双 因素方差分析)
万元
1.提出假设:
• 原假设H0: μ1=μ2=μ3=μ4
• 品牌对空调销售额没有显著影响 • 品牌对空调销售额有显著影响
• 备择假设H1: μ1、μ2、μ3、μ4不完全相等
2.计算检验统计量
各水平的均值与方差 观测数
品牌A
品牌B 品牌C 品牌D
求和
2121
1746 1634 1408
平均
353.5

第七章 方差分析


第三节 平均数的多重比较
F检验是一种整体性检验,当经方差分析鉴别 多个正态总体的平均数有显著时,并不能说明 各组水平之间都存在显著差异,只是说至少有 一对差异显著,究竟哪些均数差异显著,哪些 差异不显著,则还需进行均数的多重比较。
一、图凯法
是一种能将所有各对平均值同时比较的方法。 设因素A分成两组,每组有相等的含量,并经
第二节 单因素方差分析
概念
观察的因素只有一个的实验叫单因素实验。对 此种实验结果进行方差分析的方法叫单因素方 差分析。
单因素方差分析所讨论的是k个总体标准差皆 相等的条件下,解决k个总体平均数是否相等 的问题。
一、计算步骤(见P140~142)
1、依据表中数据,计算各组内的 x,x2, xi,n 2、然后计算 x,x2,n, 并令
过方差分析判别各组之间存在显著性差异,为 了比较两者之间差异显著性,可按下式计算T
值: T QS x
其中Q值按预先确定的α水平,组数K和组内 自由度(N-k)查附表获得。
任何一对平均值之差,只要超过T值,就表明 这一对平均值之间的差别是显著的。
图凯法要求所有的样本含量都相等。
例题:P147~148 当各组被试不相等时,可采用S法检验进行两
X x, X 2 x2, N n
3、计算离差平方和:(总离差平方和、组间 离差平方和和组内离差平方和)
4、计算方差:(组间方差和组内方差) 5、计算F值
二、方差分析的计算
见课本P142~143
方差分析计算的两种情况:
当样本含量相等时:
当样本含量不等时: 例题7.2,P144~146
二、实验误差与条件误差
在方差分析的试验中,即使各水平的试验条件 完全相同,但由于随机抽样或试验过程中随机 因素的影响,其试验结果(指标)仍然会存在 偏差,我们称这种偏差为试验误差或随机误差。

第七章 方差分析


表示
调查分析师资格培训--天津商业大学
二、方差分析的数据结构模型
y = µ + αi + β j + γ k + L + ε
其中:y是所观测的变量 µ为常数,代表共同的环境对观测变量的影响,称为平 均效应 αβγ则代表各个因子的某个水平对观测的变量的影响 ε代表实验观测的随机误差,独立同分布于正态分布
调查分析师资格培训--天津商业大学
三、方差分析的意义
一个因子的各个水平作用是否相同,即这个 因子对所观察变量的影响是否显著。 如果是显著的找出该最佳的水平或者各个显 著因子的最佳配合
调查分析师资格培训--天津商业大学
第二节 单因子方差分析
单因子数据结构模型 模型参数估计 单因子方差分析表 各水平效应的多重比较
第四节 两个因子方差分析
两个因子数据结构模型 模型参数的估计 方差分析表的构造 各个水平效应的多重比较
调查分析师资格培训--天津商业大学
一、随机区组因子数据结构模型
yijk = µ + α i + β j + (αβ ) ij + ε ijk i = 1, L p; j = 1, L , q; k = 1, L , n
检验假设
H 0 : α1 = α 2 = L = α m = 0 H1 : 至少α i ≠ 0 or H 0 : µ1 = µ 2 = L = µ m
m ni m
H1 : 至少µi ≠ 0
m ni
总变动平方和分解(SST=SSA+SSE)
( yij − y ) 2 = ∑ ni ( yi − y ) 2 + ∑∑ ( yij − yi ) 2 ∑∑
i =1 j =1 i =1 i =1 j =1

高级统计学:第七章方差分析

第七章方差分析第一节方差分析的基本原理方差分析(Analysis of variance,简称ANOV A)是对多个总体均值是否相等这一假设进行检验的一种方法。

一、方差分析的内容1实例[例] 某饮料生产企业研制出一种新型饮料。

饮料的颜色共有四种,分别为橘黄色、粉色、绿色和无色透明。

这四种饮料的营养含量、味道、价格、包装等可能影响销售量的因素全部相同。

现从地理位置相似、经营规模相仿的五家超级市场上收集了前一期该种饮料的销售量情况,见表7—1。

新型饮料在五家超市的销售情况表解:从表7—1中看到20个数据各不相同,什么原因使其不同呢?2产生的原因①是销售地点的影响;②是饮料颜色的影响。

A 有可能是抽样的随机性造成的;B 有可能是由于人们对不同颜色有所偏爱。

可以将上述问题就归结为一个检验问题——检验饮料颜色对销售量是否有影响,即要检验各个水平的均值k μμμ,,21 是否相等。

二、方差分析的原理1基本概念因素:一个独立的变量就称为一个因素。

如,颜色水平:将因素中不同的现象称为水平。

(每一水平也称为一组) 单因素方差分析:方差分析只针对一个因素进行。

多因素方差分析:同时针对多个因素进行分析。

观察值之间的差异产生来自于两个方面:①是由因素中的不同水平造成系统性差异的; ②是由于抽选样本的随机性产生的差异。

方差分析数据结构表7-2在一元情形下假设:ik i2i1X ,,X ,X ,i=1,2…n j ,j=1,2,…k,为来自总体)N(2σ,μ的随机样本。

如果假设k H μμμ=== 210:也可表达为 j j αμμ+=其中j α是第j 个水平的偏差。

如果各水平下均值相等,则可以表述为: 0:210====k H ααα对于第j 个因素有ij j ij X εαμ++=其中()2,0~σεN ij 为独立同分布随机变量。

对于观察值则有)()(j ij j ij x x x x xx -+-+=将式两端减去x 然后平方,得))((2)()()(222j ij j j ij j ij x x x x x x x x x x --+-+-=-等式两边求和,有也即如上例可以建立如下的假设:43210:μμμμ===H ;43211,,,:μμμμH 不全相等。

第七章方差分析ppt课件


精选课件ppt
13
4、各种方差、F值的计算:
各种方差的计算: (1)组间方差:
s
2 A
SS A df A
(2)组内方差:
s
2 e
SS e df e
F检验及其实质: F
s
2 A
s
2 e
本质差异
= —————
试验误差
精选课件ppt
14
第二节 单方面分类的方差分析
例:整地深度(A,cm)对比试验,试分析不同的 整地深度对苗木的高生长有否显著的影响?
5*5拉丁方设计
D BC A E E DACB A CBED B AEDC C EDBA
精选课件ppt
20
第二节 三方面分类的方差分析
分析造成差异的原因? 1、横行间 2、直行间 3、处理间(类间) 4、机误
精选课件ppt
21
第二节 三方面分类的方差分析
三方面分类的方差分析:
SS总=SS横行间+SS直行间+ SS类间+SS误差 即
小:0.05
结论的可靠性
低:统计量的自由 高:统计量的自由度大 度小(df =18) (df =45)
精选课件ppt
3
第一节 方差分析的基本原理
二、方差分析的种类:
1、单因子试验的方差分析 (1)单方面分类的方差分析----完全随机排列、成组法等 (2)双方面分类的方差分析----随机区组设计、配对法等 (3)三方面分类的方差分析----拉丁方设计 2、复因子试验的方差分析 (1)无交互作用的方差分析 (2)有交互作用的方差分析
d
m
LS 0.0D 5t0.05 sd
LS 0.0D 1 t0.01 sd
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章方差分析方差分析的主要目的是(B )。

A.分解平方和 B.进行多个平均数的假设测验 C.分解自由度 D.进行F测验进行方差分析,第一步需要进行(C )。

A.平方和分解 B.自由度分解 C.A+B D.方差分解设有k组数据,每组皆有n个观察值,该资料共有nk个观察值,其总平方和可分解为(B )。

A.组内平方和与误差平方和 B.组间平方和与误差平方和C.组间平方和与处理平方和 D.误差平方和F测验显著,说明处理间(C )。

A.均显著 B.方差同质 C.存在显著差异 D.不显著在分解平方和的过程中,误差平方和一般(D )。

A.通过合并组内平方和得到 B.通过合并组间平方和得到C.通过合并处理平方和得到 D.通过减法得到F测验的先决条件是( D)。

A.变数y服从正态分布 B.样本方差来自不同总体C.两个样本方差彼此独立 D.A+C多重比较是指( B)。

A.多个方差之间互相比较 B.多个平均数之间互相比较C.多个处理之间互相比较 D.多个F值之间互相比较LSD实质上是(),用它进行多重比较,通常会增大犯(D)的概率。

A.t测验,II类错误 B.F测验,I类错误 C.u测验,I类错误D.t测验,I类错误自由度等于(A )。

A.观察值个数减约束条件个数 B. n-1 C. n-2 D. n-k系统分组资料的方差分析可分解出(B )。

A.系统误差 B.两个误差项 C.两个处理效应 D.互作项方差分析是一种 (C ) 的方法。

A.分解平方和 B. F 测验 C.多样本平均数测验 D.假设测验平方和与自由度的分解基于样本观察值的(A )。

A.线性模型 B.大小 C.变异情况 D.数量在 A 、 B 两因素方差分析中如果处理的 F 测验不显著,有无必要筛选最佳组合( A)。

A.无必要 B.有必要 C.视情况而定 D.不好确定如果样本平均数与其方差有比例关系,这种资料宜用(B )。

A.对数转换 B.平方根转换 C.反正弦转换 D.用平均数代替观察值下表是 6 种溶液及对照的雌激素活度鉴定,指标是小鼠子宫重量。

溶液鼠号不同条件下小鼠子宫重量 /g对照ⅠⅡⅢⅣⅤⅥ123489.993.888.4112.684.4116.084.068.664.479.888.069.475.262.462.473.888.490.273.287.856.483.290.485.665.679.465.670.2问处理间有无差异()。

A.差异显著 B.无差异 C.有点差异 D.无法下结论答案是:无差异解:假设( i=1,2…7 )( 至少对一个) 这里 n =4 a=7溶液对照ⅠⅡⅢⅣⅤⅥ96.175 88.25 75.4 68.45 84.9 78.970.2 100.77125.08 396.36 111.71 49.13 61.88 233.96 42.32 1020.71查 F 分布表,得;所以差异显著,但未达到极显著。

拒绝假设。

抽测5个不同品种的若干头母猪的窝产仔数,结果见表,试检验不同品种母猪平均窝产仔数的差异是否显著。

()品种号观察值x ij (头/窝) x i .1 8 13 12 9 9 51 10.22 7 8 10 9 7 41 8.23 13 14 10 11 12 60 124 13 9 8 8 10 48 9.65 12 11 15 14 13 65 13合计x .. =265A.品种间产仔数的差异不显著 B.品种间产仔数的差异显著C.品种间产仔数的差异极显著 D.不知道答案是:品种间产仔数的差异极显著计算各项平方和与自由度列出方差分析表,进行F 检验不同品种母猪的窝产仔数的方差分析表变异来源平方和自由度均方 F 值品种间73.20 4 18.30 5.83 **误差62.80 20 3.14总变异136.00 24根据df 1 = df t =4, df 2 = df e =20 查临界F 值得:F 0.05(4,20) =2.87, F 0.05(4,20) =4.43 ,因为F >F 0.01(4,20) ,即P < 0.01 ,表明品种间产仔数的差异达到 1% 显著水平。

17.16题数据中不同品种窝产仔数的差异状况为()。

A.5号>4号>2号 B.5号>3号>2号 C.5号>1号>2号 D.5号>2号>4号答案是:B.5号>3号>2号根据df e =20 ,秩次距k =2,3,4,5由附表查出α=0.05和α=0.01的各临界SSR 值,乘以=0.7925,即得各最小显著极差,所得结果列于下表SSR 值及LSR 值df e 秩次距k SSR 0.05 SSR 0.01 LSR 0.05 LSR 0.01 202 2.95 4.02 2.339 3.1883 3.10 4.22 2.458 3.3464 3.18 4.33 2.522 3.4345 3.25 4.40 2.577 3.489不同品种母猪的平均窝产仔数多重比较表 ( SSR 法 )品种平均数-8.2 -9.6 -10.2 -12.05 13.0 4.8 ** 3.4 * 2.8 * 1.03 12.0 3.8 ** 2.4 1.81 10.2 2.0 0.64 9.6 1.42 8.2为研究雌激素对子宫发育的影响,现有 4 窝不同品系未成年的大白鼠,每窝 3 只,随机分别注射不同剂量的雌激素,然后在相同条件下试验,并称得它们的子宫重量,见下表。

品系与不同剂量的雌激素之间有无差异()。

品系 ( A )雌激素注射剂量 (mg/100g)( B )合计x i. 平均B 1(0.2)B 2 (0.4) B 3 (0.8)A 1 106 116 145 367 122.3A 2 42 68 115 225 75.0A 3 70 111 133 314 104.7A 4 42 63 87 192 64.0合计x .j 260 358 480 1098平均65.0 89.5 120.0A.品系与剂量均为极显著 B.品系不显著剂量显著B.C.品系显著剂量不显著 D.品系与剂量均不显著答案是:品系与剂量均为极显著计算各项平方和与自由度列出方差分析表,进行F 检验变异来源平方和自由度均方 F 值A 因素 (品系) 6457.6667 3 2152.5556 23.77 **B 因素 (剂量) 6074.0000 2 3037.0000 33.54 **误差543.3333 6 90.5556总变异13075.0000 11根据df 1 = df A =3, df 2 = df e =6 查临界F 值,F 0.01(3,6) =9.78 ;根据df 1 = df B =2 ,df 2 = df e =6 查临界F 值,F 0.01(2,6) =10.92 。

因为A 因素的F 值 23.77 >F 0.01(3,6) ,P < 0.01 ,差异极显著;B 因素的F 值33.54 >F 0.01(2,6) ,P < 0.01 ,差异极显著。

说明不同品系和不同雌激素剂量对大白鼠子宫的发育均有极显著影响,有必要进一步对A 、B 两因素不同水平的平均测定结果进行多重比较。

两因素有重复观测值试验结果方差分析平方和与自由度的剖分式为( D)。

A.B.C.D.两因素有重复观测值试验的数学模型为(A )。

A.B.C.D.21. 一般的饲养试验及品种比较试验等均属 (C )。

A.随机模型 B.混合模型 C.固定模型 D.混料模型22.为研究中国猪种的繁殖性能的变异情况,从大量地方品种中随机抽取部分品种为代表进行试验、观察其结果推断中国猪种的繁殖性能的变异情况,这属于( A)。

A.随机模型 B.固定模型 C.混合模型 D.线性模型23.采用完全随机区组设计安排品种比较试验,品种效应是固定的,土壤差异是随机的,其资料属于( A)。

A.混合模型 B.固定模型 C.随机模型 D.线性模型24.用标记字母法来表示多重比较的结果,大写字母通常代表( B)。

A. 5%的显著水平 B. 1%的显著水平 C. 10%的显著水平 D. 0.1%的显著水平25.用标记字母法来表示多重比较的结果,不同字母项通常代表( B)。

A.差异不显著 B.差异显著 C.有点差异 D.无法下结论26.在分解平方和的过程中,各个因素平方和的分解,通常是用(C )进行的。

A.水平平均数 B.水平观察值 C.水平总和数 D.观察值27.多重比较方法的选择主要依据(B )。

A.实验中有无CK B.A+C C.对结论要求的严格程序 D.犯I类错误的概率28.两向分组资料组合内没有重复观察值的方差分析,(A )A.误差效应与互作效应混在一起 B.因素间没有互作C.无法得到误差平方和 D.上述说法均不正确29.为了使得到的结论比较准确,两向分组资料组合内没有重复观察值的方差分析,通常要求误差自由度必须达到( D)。

A.20 B.15 C.10 D.1230.在两因素实验中,要能够分解出互作项,处理必须(D )。

A.设置多个 B.含有互作 C.不设重复 D.设置重复31. 在两因素实验中,为了确保因素间不存在互作,通常选用 (C )进行方差分析。

A.随机模型 B.固定模型 C.混合模型 D.混料模型。

相关文档
最新文档