一次函数的图象和性质(1)

合集下载

一次函数图像与性质

一次函数图像与性质
(对比正比例函数的性质和图象的性质)
示 意 图
(1)k决定直线y=kx+b从左向右是什么趋势
(倾斜程度ቤተ መጻሕፍቲ ባይዱ,b决定它与y轴交点在哪个半轴,
k、b合起来决定直线y=kx+b经过哪几个象限;
注意看图识性,见数想形.
三、待定系数法求一次函数解析式
一次函数y=kx+b(k,b是常数,k≠0)中有两个待
定系数k,b,需要两个独立条件确定两个关于k,b的
5.直线l1:y=kx+b与直线l2:y=bx+k在同一坐标系中的 大致位置是( ).
7.已知一次函数y=kx+b的图象过点P(1,1),
与x轴交于点A,与y轴交于点B,且OA=3OB,
求一次函数的解析式.
8.如果一次函数当自变量的取值范围是-1<x<3时,
函数值的取值范围是-2<y<6,
求此函数的解析式.
一次函数的图像和性质
一、一次函数的定义
一般地,形如y=kx(k是常数,k≠0)的函数,
叫做正比例函数,其中k叫做比例系数. 说明:当b=0时,y=kx+b即y=kx,所以说正比例函数是
形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数 一种特殊的一次函数.
一次函数的定义是根据它的解析式的形式特征给出的,
四、分段函数
对于某些量不能用一个解析式表示,而需要分情况
(自变量的不同取值范围)用不同的解析式表示,
因此得到的函数是形式比较复杂的分段函数.解题中要
注意解析式对应的自变量的取值范围,分段考虑问题.
说明:对于分段函数的问题,特别要注意相应的自变
量变化范围.
在解析式和图象上都要反映出自变量的相应取值范围.

一次函数的图像和性质

一次函数的图像和性质

课题 一次函数的图像与性质1、一次函数的图像的画法(1)画函数图像的三步:列表-描点-连线. (2)一次函数的图象是一条直线。

一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象是一条直线。

一次函数y=kx+b 也称为直线y=kx+b ,这时,我们把一次函数的解析式y=kx+b 称为这一直线的表达式。

(3)因为一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象是一条直线,根据“两点确定一条直线”的基本性质,画一次函数的图象时只需描出图象上的两个点,再作过这两点的直线即可。

2、一次函数的图像的性质(1)一次函数与x 轴交点的纵坐标为0,与y 轴交点的横坐标为0.(2)一次函数111(y k x b k =+、110b k ≠为常数,)与222(y k x b k =+、220b k ≠为常数,)的图像平行时,则12k k =。

反之,当12k k =时,两直线平行,且当12k k =,12b b =时,两直线重合。

(3)当一次函数111(y k x b k =+、110b k ≠为常数,)与222(y k x b k =+、220b k ≠为常数,)的图像的截距相同且不平行时,则12b b =,12k k ≠。

(4)一次函数y=kx+b (k 、b 是常数,且k ≠0)当k>0时函数值随着x 的增大而增大、减小而减小,即该函数为增函数;当k<0时函数值随着x 的增大而减小、减小而增大。

即该函数为减函数。

3、一次函数图像的平移一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象向上平移h 个单位后的函数解析式为y=kx+b+h;向下平移h 个单位后的函数解析式为y=kx+b-h 。

4、一次函数图像经过的象限示意图k 、b 的符号直线y=kx+b 经过的象限增减性一.基础练习:1.一次函数y=3x-6的图像是,它与x轴的交点坐标是,它与y轴的交点坐标是2.将直线y=x向下平移4个单位,得到直线3.将直线y=-3x-5向上平移4个单位,得到直线4.若直线y=3x-5与直线y=kx-4相互平行,则k=5.若直线y=-2x-5与直线y=6x+b相交于y轴上同一点,则b=6. 请你在不同的平面直角坐标系中画出下列函数的图像(1)y=2x+6 (2)1722 y x=+(3)4833y x=--(4)1344y x=--7,做一做:画出函数y=-2x+2 的图像,结合图象回答下列问题:( 1 )这个函数中,随着x 的增大,y 将增大还是减小?( 2 )当x 取何值时,y=0 ?当y 取何值时,x=0 ?( 3 )当x 取何值时,y>0 ?( 4 )函数的图像不经过哪个象限?8、完成下列各题:(1)下列函数中,y的值随着x的增大而减小的是()A.y=2x-7B.y=0.5x+2C.y=(2-1)x+3D.y=-0.3x+1(2)函数y=4x-3中,y的值随着x值的增大而____(3)函数y=(2m-1)x+2的函数值随x的增大而减小,则m的值为______ (4)一次函数y=2x+4的图像上有两点A(3,a),B(4,b),请判断a与b的大小(5)y=x+5与y=2x-5的增减性(y 随着x 的增加而增加,还是随着x 的增加而减小)是否一样?(6)y=-2x+5与y=-2x-5的增减性是否一样?(7)A(a,6)和B(b,-2)在函数y=2x-5的图像上,请你判断a ,b 的大小关系 9、已知一次函数2(2)28y k x k =--+,分别根据下列条件求k 的值或k 的取值范围: (1)它的图像经过原点(2)它的图像经过点(0,-2)(3)它的图像与y 轴的交点在x 轴上方 (4)y 随着x 的增大而减小(5)这条直线经过一、二、三象限10、要使一次函数y=-3x+4的函数值大于4,求自变量x 的取值范围。

4.3一次函数的图像和性质(1)

4.3一次函数的图像和性质(1)

经过的象限
k>0
第一、三象限
k<0
两点 作图法
第二、四象限 由于两怎点样确画定正一比条例直函线数,的画图正象比例函数 的 此图点象和最时原简,点单只画?需直为描线什出即么点可?.(1,k),然后过
画一画
用你认为最简单的方法画出下列函数的图象:
(1)y = -3x;(2)y 3 x.
y = -3x
4. 已知正比例函数 y = (2m + 4)x. (1)当 m >-2 时,函数图象经过第一、三象限; (2)当 m <-2 时,y 随 x 的增大而减小; (3)当 m = 0.5 时,函数图象经过点(2,10).
课堂小结
正比例函 数的图象
和性质
画正比例函数图象的一般 步骤:列表、描点、连线
图象:经过原点的直线. 当 k>0 时,经过第一、三象限; 当 k<0 时,经过第二、四象限
讲授新课
一 正比例函数的图象的画法 典例精析 例1 画出正比例函数 y = 2x 的图象.
解:①列表
关系式法
x … -2 -1 0 1 2 …
y … -4 -2 0 2 4 …
列表法
②描点 以表中各组对应值 作为点的坐标,在 直角坐标系内描出 相应的点
③连线
y = 2x
要点归纳 画函数图象的一般步骤:
①列表
②描点
根据这个步骤画出 函数 y = -3x 的图象
③连线
y y = -3x 4
3
2 1
-5 -4
-3
-2
-1 O -1
-2
-3
-4
y = 2x
这两个函数图 象有什么共同
Байду номын сангаас特征?

第8课 一次函数的图象与性质(1)

第8课 一次函数的图象与性质(1)

19. 一等腰三角形的周长为20 cm,底边长为y cm,腰长 为x cm. (1)求出底边长y(cm)与腰长x(cm)的函数关系式. (2)求出自变量x的取值范围.
解:(1)y=20-2x (2)∵x-x<y<2x ∴x-x<20-2x<2x ∴5<x<10 ∴自变量x的取值范围为5<x<10
谢谢!
2. (例1)在同一直角坐标系中画出y=2x,y=2x+1和
y=2x-1的图象
解: x
-2 -1 0 1 2
y=2x -4 -2 0 2 4
y=2x+1 -3 -1 1 3 5
y=2x-1 -5 -3 -1 1 3
发现: y=2x 的图象向___上____平移___1___个单位得到 y=2x+1 的 图象,向___下____平移_______个单位得到 y=2x-1 的图象.
(1)y=12x+3 和 y=12x-5:__平__行____ (2)y=-5x+2 和 y=4x+1:__相__交____
11. (1)直线y=8x-4和y=8x+3的位置关系是__平__行____.
(2)若直线y=-4x+5和y=kx+7平行,则k=___-__4___.
三、过关检测
第1关 12.(1)一次函数y=- 1 x+5中,y随x的增大而___减__小___;
PPT课程 第8课 一次函数的图象与性质(1) 主讲老师:
一、知识储备
1. (1)正比例函数y=2x的图象从左到右__上__升____,即 y随x的增大而__增__大____. (2)正比例y=-2x的图象从左到右__下__降____,即y 随x的增大而___减__小___.
二、新课学习
提出问题:正比例函数y=kx的图象是一条经过____原____ 点的直线,且k决定直线的升降,那一般的一次函数y=kx +b中的b有什么作用呢?一次函数y=kx+b的图象与正比 例函数y=kx的图象有什么关系呢?

(完整版)一次函数的图像与性质

(完整版)一次函数的图像与性质

一次函数的性质和图像目录一、函数的定义(一)、一次函数的定义函数。

(二)、正比例函数的定义二、函数的性质(一)、一次函数的性质(二)、正比例函数的性质三、函数的图像(一)、一次函数和正比例函数图像在坐标上的位置(二)、一次函数的图像1、一次函数图像的形状2、一次函数图像的画法(三)、正比例函数的图像1、正比例函数图像的形状2、正比例函数图像的画法3、举例说明正比例函数图像的画法四、k、b两个字母对图像位置的影响K、b两个字母的具体分工是:(一次项系数)k决定图象的倾斜度。

(常数项)b决定图象与y轴交点位置。

五、解析式的确定(一)一个点坐标决定正比,两个点坐标决定一次(二)用待定系数法确定解析式六、两条函数直线的四种位置关系两直线平行,k1= k2,b1≠b2两直线重合,k1= k2,b1=b2两直线相交,k1≠k2两直线垂直,k1×k2=-1(一)两条函数直线的平行(二)两条函数直线的相交(三)两条函数直线的垂直一次函数、反比例函数中自变量x前面的字母k称为比例系数这一节我们要学习正比例函数和一次函数。

一次函数的解析式是y=kx+b,如果当这个式子中的b=0时,式子就变成了正比例函数y=kx。

因此,正比例函数是一次函数当b=0时的特殊情况。

正是因为正比例函数实际上就是一次函数,所以把正比例函数和一次函数结合在一起来学习。

在正比例函数y=kx和反比例函数y=k/x中,由于函数y与自变量x之间有比例关系,就要在自变量x前面用字母系数k表示它们之间的比例关系,因而字母k就取名为比例系数。

确定了比例系数k就可以直接确定正比例函数或反比例函数的解析式。

但是,在一次函数y=kx+b和二次函数y=ax2+bx+c中,我们从观察解析式就可以看出,函数y与自变量x之间没有相直接对应的比例关系,因此这两种函数自变量x前面的k,就不能叫比例系数,只能叫常数。

若欲确定一次函数或二次函数的解析式时,题意仅已知常数k还不行,还需要其他常数如b、c等常数的协助。

一次函数的图象和性质(第1课时)PPT课件

一次函数的图象和性质(第1课时)PPT课件

7.若一次函数y=kx+4的图像经过点(1,2).
(1)求k的值;
(2)在所给直角坐标系中画出此函数的图像;
(3)根据图像回答:当x
时,y>0.
解析:(1)把点(1,2)代入函数解析式,利用方程来求得k的值;(2)由 两点确定一条直线进行作图;(3)根据图像解答即可.
解:(1)依题意,得2=k+4,解得k=-2,即k的值是-2.
A.x<-2
B.x>-2
C.x<2
D.x>2
解析:由图像可得一次函数的图像与x轴的 交点为(-2,0),当y<0时,x<-2.故选A.
6.连降6天大雨,某水库的蓄水量随时间的增加而直线上升.若
该水库的蓄水量v(万米3)与降雨的时间t(天)的关系如图所示,
则下列说法正确的是
( B)
A.降雨后,蓄水量每天减少5万米3
达成共识. 1.图像为一条直线. 2.由画图过程,知一次函数y=2x-1的图像是由所有满足关系式y=2x-1 的点(x,y)连线而得到的.因此,凡满足关系式y=2x-1的x,y的值所对应 的点都在一次函数y=2x-1的图像上.

因为一次函数的图像是一条直线,所以也把一次函数y=kx+b 的图像称为直线y=kx+b.
为(0,2),与x轴的交点为
2 3
,0
.故选C.
4.函数
yk x
的图像经过点(1,-1),则函数y=kx-2的图像是
图中的
(A)
解析:∵
y
k x
的图像经过点(1,-1),∴k=xy=-1,∴函数解析式
为y=-x-2,所以函数图像经过(-2,0)和(0,-2).故选A.

一次函数的图像(解析版)

一次函数的图像(解析版)

5.4一次函数的图像一、一次函数的定义一般地,形如y kx b =+(k ,b 是常数,k ≠0)的函数,叫做一次函数.y kx = (k 为常数,且k ≠0)的函数,叫做正比例函数.其中k 叫做比例系数.要点:当b =0时,y kx b =+即y kx =,所以说正比例函数是一种特殊的一次函数.一次函数的定义是根据它的解析式的形式特征给出的,要注意其中对常数k ,b 的要求,一次函数也被称为线性函数.二、一次函数的图象与性质1.函数y kx b =+(k 、b 为常数,且k ≠0)的图象是一条直线:当b >0时,直线y kx b =+是由直线y kx =向上平移b 个单位长度得到的; 当b <0时,直线y kx b =+是由直线y kx =向下平移|b |个单位长度得到的. 2.一次函数y kx b =+(k 、b 为常数,且k ≠0)的图象与性质: 正比例函数的图象是经过原点(0,0)和点(1,k )的一条直线; 一次函数(0)y kx b k =+≠图象和性质如下:3. k 、b 对一次函数y kx b =+的图象和性质的影响:k 决定直线y kx b =+从左向右的趋势,b 决定它与y 轴交点的位置,k 、b 一起决定直线y kx b =+经过的象限.4. 两条直线1l :11y k x b =+和2l :22y k x b =+的位置关系可由其系数确定: (1)12k k ≠⇔1l 与2l 相交; (2)12k k =,且12b b ≠⇔1l 与2l 平行; 三、待定系数法求一次函数解析式一次函数y kx b =+(k ,b 是常数,k ≠0)中有两个待定系数k ,b ,需要两个独立条件确定两个关于k ,b 的方程,这两个条件通常为两个点或两对x ,y 的值.要点:先设出函数解析式,再根据条件确定解析式中未知数的系数,从而具体写出这个式子的方法,叫做待定系数法.由于一次函数y kx b =+中有k 和b 两个待定系数,所以用待定系数法时需要根据两个条件列二元一次方程组(以k 和b 为未知数),解方程组后就能具体写出一次函数的解析式. 四、分段函数对于某些量不能用一个解析式表示,而需要分情况(自变量的不同取值范围)用不同的解析式表示,因此得到的函数是形式比较复杂的分段函数.解题中要注意解析式对应的自变量的取值范围,分段考虑问题.要点:对于分段函数的问题,特别要注意相应的自变量变化范围.在解析式和图象上都要反映出自变量的相应取值范围.一、单选题1.已知正比例函数34y x =-,则下列各点在该函数图象上的是( )A .()4,3-B .()4,3--C .()2,1-D .()3,4-【答案】A【提示】将选项各点坐标代入,即可判断.【解答】A .当4x =时,=3y -,故点()4,3-在函数图象上,A 项符合题意; B .当4x =-时,33y =≠-,故点()4,3--不在函数图象上,B 项不符合题意; C .当2x =-时, 1.51y =≠,故点()2,1-不在函数图象上,C 项不符合题意; D .当3x =-时, 2.254y =≠,故点()3,4-不在函数图象上,D 项不符合题意; 故选:A .【点睛】本题主要考查了正比例函数图象上的点的坐标特征,掌握正比例函数的定义是解题的关键. 2.已知一次函数y kx b =+的图象经过点()2,1-,且平行于直线2y x =-,则b 的值为( ) A .2- B .1C .3-D .4【答案】C【提示】根据两直线平行,一次项系数相等求出k 的值,再利用待定系数法求解即可. 【解答】解:∵一次函数y kx b =+与直线2y x =-平行, ∴一次函数解析式为2y x b =-+,∵一次函数2y x b =-+经过点()21-,, ∴()122b =-⨯-+, ∴3b =-, 故选:C .【点睛】本题主要考查了一次函数图象的平移,求一次函数解析式,正确求出2k =-是解题的关键. 3.关于函数21y x =--,下列结论正确的是( ) A .图象必经过点()2,1- B .y 随x 的增大而增大C .当12x >时,0y < D .图象经过第一、二、三象限 【答案】C【提示】根据一次函数的性质可进行排除选项.【解答】解:由函数21y x =--可知:20k =-<,10b =-<,则y 随x 的增大而减小,且该函数图象经过第二、三、四象限,故B 、D 选项错误;当2x =-时,则()2213y =-⨯--=,所以函数图象经过点()2,3-,故A 选项错误; 当12x >-时,0y <,所以当12x >时,0y <说法正确;故选:C .【点睛】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.4.已知一次函数31(3)y mx x m =-+<的图像经过1)A y ,2)B y ,3(5,)C y ,则123,,y y y 的大小关系是( ) A .123y y y << B .132y y y <<C .321y y y <<D .231y y y <<【答案】D【提示】根据一次函数的增减性判断即可. 【解答】解:∵3m <, ∴(3)0k m =-<, ∴y 随x 的增大而减小,又∵点1)A y ,2)B y ,3(5,)C y 均在一次函数31(3)y mx x m =-+<的图像上,∵()()22277,525,2728===,∴7527<<, ∴231y y y <<, 故选:D .【点睛】本题考查了一次函数的性质,无理数的估算,熟练掌握一次函数的性质是解本题的关键. 5.三个正比例函数的表达式分别为①y ax =;②y bx =③y cx =,其在平面直角坐标系中的图像如图所示,则a ,b ,c 的大小关系为( )A .a b c >>B .c b >>aC .b a c >>D .b c >>a 【答案】C【提示】先根据函数图象经过的象限得出0a >,0b >,0c <,再根据直线越陡,k 越大得出答案. 【解答】解:∵y ax =和y bx =的图象经过一、三象限,y cx =的图象经过二、四象限, ∴0a >,0b >,0c <, ∵直线y bx =比直线y ax =陡, ∴b a >, ∴b a c >>, 故选:C .【点睛】本题考查了正比例函数的图象,当0k >时,函数图象经过一、三象限;当0k <时,函数图象经过二、四象限;直线越陡,k 越大.6.将直线21y x =+向下平移2个单位长度后,得到直线y kx b =+,则下列关于直线y kx b =+的说法正确的是( ) A .与x 轴交于点20(,) B .与y 轴交于点()0,1-C .y 随x 的增大而减小D .与两坐标轴围成的三角形的面积为12【答案】B【提示】首先根据函数图像平移法则,向下平移2个单位,则给函数解析式右端减2,即可得到平移后的直线方程;接下来根据一次函数图像的性质分析与坐标轴围成面积,交点坐标以及y 随x 的变化关系,即可得解.【解答】解:将直线21y x =+向下平移2个单位长度后得到直线21221y x x =+-=-,A 、直线21y x =-与x 轴交于1,02⎛⎫⎪⎝⎭,故本选项不合题意;B 、直线21y x =-与y 轴交于()0,1-,故本选项,符合题意;C 、直线21y x =-,y 随x 的增大而增大,故本选项不合题意;D 、直线21y x =-与两坐标轴围成的三角形的面积为1111224⨯⨯=,故本选项不合题意;故选:B .【点睛】本题主要考查一次函数的平移及性质,熟练掌握一次函数的图象和性质是解题的关键. 7.如图中表示一次函数y mx n =+与正比例函数y mnx =(m 、n 是常数,mn≠0)图象的是( )A .B .C .D .【答案】C【提示】根据“两数相乘,同号得正,异号得负”分两种情况讨论m 、n 的符号,然后根据m 、n 同正时,同负时,一正一负或一负一正时,利用一次函数的性质进行判断.【解答】解:①当0mn >,y mnx =过一,三象限,m ,n 同号,同正时y mx n =+过一,二,三象限,同负时过二,三,四象限;②当0mn <时,y mnx =过二,四象限,m ,n 异号,则y mx n =+过一,三,四象限或一,二,四象限.观察图象,只有选项C 符合题意, 故选:C .【点睛】此题主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题. 一次函数y kx b =+的图象有四种情况:①当00k b >>,,函数y kx b =+的图象经过第一、二、三象限; ②当00k b ><,,函数y kx b =+的图象经过第一、三、四象限; ③当00k b <>,时,函数y kx b =+的图象经过第一、二、四象限; ④当00k b <<,时,函数y kx b =+的图象经过第二、三、四象限.8.已知一次函数y kx b =+(0k ≠),如表是x 与y 的一些对应数值,则下列结论中正确的是( )A .y 随x 的增大而增大B .函数的图象向上平移4个单位长度得到2y x =-的图象C .函数的图象不经过第三象限D .若()11,A x y ,()22,B x y 两点在该函数图象上,且12x x <,则12y y < 【答案】C【提示】首先把04x y =⎧⎨=⎩、12x y =⎧⎨=⎩分别代入解析式,解方程组,即可求得一次函数的解析式,再根据一次函数的性质即可解答.【解答】解:把04x y =⎧⎨=⎩、12x y =⎧⎨=⎩分别代入解析式,得42b k b =⎧⎨+=⎩ 解得24k b =-⎧⎨=⎩故该一次函数的解析式为24y x =-+,故该函数图象经过一、二、四象限,不经过第三象限,故C 正确;20k <,∴y 随x 的增大而减小,故A 错误;若()11,A x y ,()22,B x y 两点在该函数图象上,且12x x <,则12y y >,故D 错误; 将该函数的图象向上平移4个单位长度得到28y x =-+的图象,故B 错误;故选:C .【点睛】本题考查了求一次函数的解析式及一次函数的性质,熟练掌握和运用一次函数的性质是解决本题的关键. 9.如图,直线l :12y x m =+交x 轴于点A ,交y 轴于点()01B ,,点()2P n ,在直线l 上,已知M 是x 轴上的动点.当以A ,P ,M 为顶点的三角形是直角三角形时,点M 的坐标为( )A .()2,0-或()3.0B .()2,0或()3.0C .()1,0或()4.0D .()2,0或()4.0 【答案】B【提示】根据题意,可以求得点A 点B 和点P 的坐标,设出点M 的坐标再根据分类讨论的方法结合勾股定理即可求得点M 的坐标. 【解答】解:∵直线l :12y x m =+交x 轴于点A ,交y 轴于点()01B ,∴当0y =,102x m +=,1012m ⨯+=, 解得1m =,2x =-,∴点A 坐标为(20)-,, ∵点()2P n ,在直线l 上 ∴当2y =,1212n =+, 解得2n =,即()22P ,设M 点坐标为()0a ,当AM PM ⊥ 时,此时点P 与点M 横坐标相同,即2a n == , ∴(20)M ,; ②当AP PM ⊥时,此时()222AM a =+ ,()2224PM a =-+ ,222[(2(2)]220AP =--+= ,根据勾股定理得()()2224202a a -++=+,解得,3a =,∴(30)M ,;综上所述∴(20)M ,或(30)M ,; 故选B .【点睛】本题考查一次函数图像上点的坐标特征,动点中的直角三角形,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.10.已知直线483y x =-+与x 轴、y 轴分别交于点A 和点B ,M 是OB 上的一点,若将ABM 沿AM折叠,点B 恰好落在x 轴上的点B '处,则直线AM 的函数解析式是( )A .142y x =-+ B .243y x =-+ C .132y x =-+ D .133y x =-+【答案】C【提示】先求出点,A B 的坐标,从而得出,OA OB 的长度,运用勾股定理求出AB 的长度,然后根据折叠的性质可知,AB AB MB MB ''==,OM x =,则8B M BM BO MO x '==-=-,1064B O AB AO ''=-=-=,运用勾股定理列方程得出OM 的长度,即点M 的坐标已知,运用待定系数法求一次函数解析式即可.【解答】解:当0x =时,4883y x =-+=,即(0,8)B ,当0y =时,6x =,即(6,0)A ,所以226810AB AB '=+=,即(4,0)B '-,设OM x =,则8B M BM BO MO x '==-=-,1064B O AB AO ''=-=-=, ∴在Rt B OM '中,B O OM B M ''+=, 即2224(8)x x +=-, 解得:3x =, ∴(0,3)M , 又(6,0)A ,设直线AM 的解析式为y kx b =+,则063k b b =+⎧⎨=⎩,解得123k b ⎧=-⎪⎨⎪=⎩, ∴直线AM 的解析式为132y x =-+.故选:C .【点睛】本题考查了一次函数与坐标轴的交点问题,折叠的性质,勾股定理,待定系数法求一次函数解析式,根据题意得出(0,3)M 的坐标是解本题的关键.二、填空题11.正比例函数()32y a x =-的图象过第一、三象限,则a 的取值范围是______. 【答案】23a >##23a <【提示】根据正比例函数的图象经过第一、三象限,得k>0,即320a ->,计算即可得解. 【解答】解:由正比例函数()32y a x =-的图象经过第一、三象限, 可得:320a ->,则23a >.故答案为:23a >.【点睛】本题考查了正比例函数的性质,对于正比例函数y=kx (k≠0),当k>0时,图象经过一、三象限,y 随x 的增大而增大;当k<0时,图象经过二、四象限,y 随x 的增大而减小. 12.已知直线1L :26y x =-,则直线1L 关于x 轴对称的直线2L 的函数解析式是______. 【答案】26y x =-+##62y x =-【提示】直接根据关于x 轴对称的点横坐标不变纵坐标互为相反数进行解答即可. 【解答】解:∵关于x 轴对称的点横坐标不变纵坐标互为相反数, ∴直线1L :y=2x-6与直线2L 关于x 轴对称, 则直线2L 的解析式为-y=2x-6,即y=-2x+6. 故答案为:y=-2x+6.【点睛】本题考查的是一次函数的图象与几何变换,熟知关于x 轴对称的点的坐标特点是解答此题的关键.13.如图,正比例函数11y k x =和一次函数22y k x b =+的图象相交于点2,1A (),当2x <时,1y ___________2y (填“>”或“<”)【答案】<【提示】根据两函数图象及交点坐标,即可解答.【解答】解:正比例函数11y k x =和一次函数22y k x b =+的图象相交于点2,1A (),∴由图象可知:当2x <时,12y y <, 故答案为:<.【点睛】本题考查了利用函数图象比较函数值的大小,采用数形结合的思想是解决此类题的关键. 14.已知(,1)A n n +、(1,4)B n n -+、(,)C m t 是正比例函数y kx =图象上的三个点,当3m >时,t 的取值范围是______. 【答案】9t <-【提示】根据,A B 两点在y kx = 上求出k 得出该正比例函数解析式后,由单调性判断即可.【解答】将点A 与点B 代入y kx = ,得:141n knn k n +=⎧⎨+=-⎩() , 两式相减,得:3k =- , 3y x ∴=-,∴ y 随x 的增大而减小,当3m = 时,339t =-⨯=-, ∴ 当m >3时,t <-9,故答案为:t <-9.【点睛】本题考查函数解析式的求解与正比例函数的性质,将未知点代入求出解析式为关键,属于中等题.15.在平面直角坐标中,点()3,2A --、()1,2B --,直线()0y kx k =≠与线段AB 有交点,则k 的取值范围为______. 【答案】232k ≤≤##223x ≥≥ 【提示】因为直线y =kx (k≠0)与线段AB 有交点,所以当直线y =kx (k≠0)过()1,2B --时,k 值最大;当直线y =kx (k≠0)过A (﹣3,﹣2)时,k 值最小,然后把B 点和A 点坐标代入y =kx (k≠0)可计算出对应的k 的值,从而得到k 的取值范围. 【解答】解:∵直线y =kx (k≠0)与线段AB 有交点,∴当直线y =kx (k≠0)过B (﹣1,﹣2)时,k 值最大,则有﹣k =﹣2,解得k =2; 当直线y =kx (k≠0)过A (﹣3,﹣2)时,k 值最小,则﹣3k =﹣2,解得k =23, ∴k 的取值范围为232k ≤≤.故答案为:232k ≤≤. 【点睛】本题考查了一次函数图象与系数的关系,一次函数图象上点的坐标特征,解题的关键是熟悉一次函数图象的性质.16.直线8y mx =-与直线12y nx =-分别交y 轴于B ,C 两点,两直线相交于x 轴上同一点A . (1):m n =________(2)若8ABC S =△,点A 的坐标是______________ 【答案】 2:3 ()4,0或()4,0-【提示】根据两直线相交同一点,则横坐标相同,即可;设A 的坐标为:()0a ,,根据8ABC S =△,则12ABCSBC a =⨯⨯,解出a ,即可. 【解答】∵直线8y mx =-和直线12y nx =-相交x 轴上同一点A ∴08mx =-,012nx =-∴直线8y mx =-与x 轴的交点为8,0m ⎛⎫⎪⎝⎭,直线12y nx =-与x 轴的交点为12,0n ⎛⎫ ⎪⎝⎭∴812m n= ∴:2:3m n =;设A 的坐标为:()0a , ∵8ABC S =△ ∴12ABCSBC a =⨯⨯ ∵直线8y mx =-与直线12y nx =-分别交y 轴于B ,C 两点 ∴点()0,8B -,()0,12C - ∴1482ABCSa =⨯⨯= ∴4a =∴4a =±∴点A 的坐标为()4,0或()4,0-. 故答案为:2:3;()4,0或()4,0-.【点睛】本题考查一次函数的知识,解题的关键是掌握一次函数图象与性质.17.已知一次函数(0)y kx b k =+≠的图象经过点A(3,0),与y 轴交于点B ,O 为坐标原点. 若△AOB 的面积为6,则该一次函数的解析式为_____________ .【答案】443y x =--或443y x =+【提示】分两种情况:当点B 在y 轴正半轴时,当点B 在y 轴负半轴时,然后利用待定系数法进行计算即可解答.【解答】解:点(3,0)A ,3OA ∴=,AOB ∆的面积为6,∴162OA OB ⋅=, ∴1362OB ⨯⋅=,4OB ∴=,(0,4)B ∴或(0,4)-,将(3,0)A ,(0,4)B 代入(0)y kx b k =+≠得: 304k b b +=⎧⎨=⎩,解得:434k b ⎧=-⎪⎨⎪=⎩, ∴一次函数的解析式为:443y x =-+,将(3,0)A ,(0,4)B -代入(0)y kx b k =+≠得:304k b b +=⎧⎨=-⎩,解得:434k b ⎧=⎪⎨⎪=-⎩, ∴一次函数的解析式为:443y x =-,综上所述:一次函数的解析式为:443y x =-+或443y x =-,故答案为:443y x =-+或443y x =-.【点睛】本题考查了待定系数法求一次函数解析式,一次函数的性质,一次函数图象上点的坐标特征,分两种情况讨论是解题的关键.18.如图,在平面直角坐标系xOy 中,直线4y x =-+与坐标轴交于A ,B 两点,OC AB ⊥于点C ,P 是线段OC 上的一个动点,连接AP ,将线段AP 绕点A 逆时针旋转45︒,得到线段'AP ,连接'CP ,则线段'CP 的最小值为______.【答案】222-【提示】由点P 的运动确定P '的运动轨迹是在与x 轴垂直的一段线段MN ,当线段'CP 与MN 垂直时,线段'CP 的值最小.【解答】解:由已知可得()()0,44,0A B , ∴三角形OAB 是等腰直角三角形,OC AB ⊥,()2,2C ∴,又P 是线段OC 上动点,将线段AP 绕点A 逆时针旋转45︒, P 在线段OC 上运动,所以P'的运动轨迹也是线段,当P 在O 点时和P 在C 点时分别确定P'的起点与终点,'P ∴的运动轨迹是在与x 轴垂直的一段线段MN ,∴当线段'CP 与MN 垂直时,线段'CP 的值最小,在AOB 中,4AO AN ==,42AB =424NB ∴=,又Rt HBN 是等腰直角三角形,422HB ∴=-('24422CP OB BH ∴=--=---=.故答案为2.【点睛】此题考查了直角三角形的性质,一次函数图象上点的坐标特点,动点运动轨迹的判断,垂线段最短,熟练掌握一次函数图象的性质是解题的关键.三、解答题19.已知一次函数()2312y k x k =--+.(1)当k 为何值时,图像与直线29y x =+的交点在y 轴上? (2)当k 为何值时,图像平行于直线2y x =-? (3)当k 为何值时,y 随x 的增大而减小? 【答案】(1)1k = (2)0k = (3)2k <【提示】(1)先求出直线29y x =+与y 轴的交点坐标,把此点坐标代入所求一次函数的解析式即可求出k 的值;(2)根据两直线平行时其自变量的系数相等,列出方程,求出k 的值即可; (3)根据比例系数0<时,数列出不等式,求出k 的取值范围即可. 【解答】(1)解:当0x =时,9y =,∴直线29y x =+与y 轴的交点坐标为()09,, ∵一次函数()2312y k x k =--+的图像与直线29y x =+的交点在y 轴上, ∴()203129k k -⨯-+=, 解得:1k =;(2)解:∵一次函数()2312y k x k =--+的图像平行于直线2y x =-,即直线2y x =-向上或向下平移312k -+个单位后的图像与一次函数()2312y k x k =--+的图像重合,∴22k -=-且3120k -+≠,20k -≠, 解得:0k =.(3)解:∵y 随x 的增大而减小,解得:2k <.【点睛】本题考查一次函数图像上点的坐标特征及函数性质,图形平移等知识点.熟练掌握一次函数的性质是题的关键.20.如图,直线OA 经过点()4,2A --.(1)求直线OA 的函数的表达式;(2)若点()12,P n 和点()25,Q n 在直线OA 上,直接写出12n n 、的大小关系; (3)将直线OA 向上平移m 个单位后经过点()2,4M ,求m 的值. 【答案】(1)12y x = (2)12n n < (3)m=3【提示】(1)设函数解析式为y kx =,将()4,2A --代入函数解析式中,可求出k 的值; (2)根据函数的增减性分析即可;(3)先求出平移后的函数解解析式,由此可求出m 的值. (1)解:设函数解析式为y kx =,将()4,2A --代入函数解析式中得:24k -=-,12k =, 故函数解析式为:12y x =; (2)解:∵0k >,∴y 随x 的增大而增大, ∵()12,P n ,()25,Q n 中,2<5,(3)解:设平移后函数解析式为:12y x b =+, 将()2,4M 代入函数解析式中得:1422b =⨯+,解得:3b =, 故函数的解析式为:132y x =+, 故m=3.【点睛】本题考查根据函数图象求正比例函数的解析式,求函数的增减性,函数图象的平移. 21.如图,在平面直角坐标系xOy 中,直线1l 经过点O 和点A ,将直线1l 绕点O 逆时针旋转90︒,再向上平移2个单位长度得到直线2l .求直线1l 与2l 的解析式.【答案】直线1l 的解析式是2y x =;直线2l 的解析式是122y x =-+ 【提示】根据A 点坐标,利用待定系数法求直线1l 的解析式;同理求出旋转90︒后的直线解析式,再根据“上加下减”求出向上平移2个单位后的解析式.【解答】解:由图象可知:点A 的坐标是(2,4),点A 逆时针旋转90︒后得到点A '的坐标是(4,2)-, 设直线1l 的解析式是1y k x =, 则可得:124k =, 解得:12k =,故直线1l 的解析式是2y x =.设直线1l 绕点O 逆时针旋转90︒后的直线解析式是2y k x =, 把点(4,2)A '-代入2y k x =,得242k -=,解得212k =-,即12y x =-.故可得直线2l 的解析式是122y x =-+. 【点睛】本题考查一次函数的旋转与平移,解题的关键是能够利用待定系数法求函数解析式,并掌握函数图象平移的规律. 22.如图,直线13342y x =+与x 轴、y 轴分别交于点A 、B .直线2y kx b =+经过()30D ,,与直线13342y x =+交于点()3C m ,.(1)求直线CD 的解析式;(2)判断ACD 的形状,并说明理由. 【答案】(1)39y x =-+(2)ACD 是等腰三角形,理由见解析【提示】(1)先求出点C 的坐标,然后利用待定系数法求出直线CD 的解析式即可; (2)先求出点A 的坐标,进而求出AC CD AD 、、的长即可得到答案.【解答】(1)解:∵直线2y kx b =+经过()30D ,,与直线13342y x =+交于点()3C m ,, ∴33342m =+,∴2m =,∴点C 的坐标为()23,, ∴2330k b k b +=⎧⎨+=⎩,∴39k b =-⎧⎨=⎩,∴直线CD 的解析式为39y x =-+; (2)解:ACD 是等腰三角形,理由如下: 对于13342y x =+,当0y =时,2x =-,∴点A 的坐标为()20-,, ∴()()22522035AD AC ==--+-=,,()()22233010CD =-+-=,∴AD AC =,∴ACD 是等腰三角形.【点睛】本题主要考查了求一次函数解析式,勾股定理,等腰三角形的判定,熟知待定系数法求一次函数解析式是解题的关键.23.如图,在平面直角坐标系中,一次函数3124y x =-+与两坐标轴分别交于A ,B 两点,OM AB ⊥,垂足为点M .(1)求点A ,B 的坐标; (2)求OM 的长;(3)存在直线AB 上的点N ,使得12OAN OAB S S ∆∆=,请求出所有符合条件的点N 的坐标. 【答案】(1)A (160),,B (0)12,; (2)9.6OM =; (3)N (86),或(246)-,.【提示】(1)利用坐标轴上点的特点直接得出点A ,B 坐标; (2)利用三角形的面积的计算即可求出OM ;(3)设出点N 的坐标,利用三角形的面积列方程求解即可. 【解答】(1)解:令0x =, ∴12y =, ∴B (0)12,, 令0y =, ∴31204x -+=,∴16x =, ∴A (160),;(2)解:由(1)知,A (160),,B (0)12,, ∴1612OA OB ==,,∴196202OAB S OA OB AB =⨯===,△,∵OM AB ⊥, ∴11209622OAB S AB OM OM =⨯=⨯⨯=△, ∴9.6OM =;(3)解:由(2)知,96OAB S =△,16OA =, ∵直线AB 上的点N , ∴设N 3(12)4m m -+,, ∵12OAN OAB S S =△△, ∴111||16||8||9648222OAN N N N S OA y y y =⨯=⨯⨯=⨯=⨯=△,∴38|12|484m ⨯-+=,∴8m =或24m =, ∴N (86),或(246)-,. 【点睛】此题是一次函数综合题,主要考查了坐标轴上点的特点,三角形的面积公式,绝对值方程的求解,列出方程是解本题的关键,是一道比较简单的基础题目.24.当m ,n 为实数,且满足1m n +=时,就称点(),m n 为“和谐点”,已知点()0,7A 在直线l :y x b =+,点B ,C 是“和谐点”,且B 在直线l 上. (1)求b 的值及判断点()2,1F -是否为“和谐点”; (2)求点B 的坐标;(3)若AC =C 的横坐标. 【答案】(1)7b =,点()2,1F -是“和谐点”(2)()34B -,(3)点C 的横坐标为1或7-【提示】(1)将点()0,7A 代入直线l :y x b =+,可得b 的值,根据“和谐点”的定义即可判断; (2)点B 是“和谐点”,所以设出点B 的横坐标,表示出纵坐标,因为点B 在直线l :7y x =+上,把点B 代入解析式中求得横坐标,进而求得点B 的坐标;(3)点C 是“和谐点”,所以设出点C 的横坐标为c ,表示出纵坐标1c -,根据勾股定理即可得出当52AC =时对应的点C 的横坐标.【解答】(1)解:∵点A 在直线y x b =+上, ∴把()0,7A 代入y x b =+, ∴7b =,∵点()2,1F -,()211+-=, ∴点()2,1F -是“和谐点”; (2)解:∵点B 是“和谐点”,∴设点B 的横坐标为p ,则纵坐标为1p -,点B 的坐标为(),1p p -, ∵点B 在直线l :7y x =+上,∴把点(),1B p p -代入y=x+7得,3p =-, ∴14p -=,∴()34B -,; (3)解:设点C 的横坐标为c , ∵点C 是“和谐点”, ∴纵坐标1c -,当52AC =时,()221752AC c c =+--=, 解得7c =-或1,∴点C 的横坐标为1或7-.【点睛】本题考查待定系数法求解析式,一次函数图象上点的坐标特征,根据定义判断一个点是不是“和谐点”,勾股定理等知识,理解新定义是解题的关键.25.对于函数y x b =+,小明探究了它的图象及部分性质.下面是他的探究过程,请补充完整:(1)自变量x 的取值范围是 ;(2)令b 分别取0,1和2-,所得三个函数中的自变量与其对应的函数值如下表,则表中m 的值是 ,n 的值是 .(3)根据表中数据,补全函数y x =,1y x =+,2y x =-的图象;(4)结合函数y x =,1y x =+,2y x =-的图象,写出函数y x b =+中y 随x 的变化的增减情况;(5)点11(,)x y 和点22(,)x y 都在函数y x b =+的图象上,当12>0x x 时,若总有12<y y ,结合函数图象,直接写出1x 和2x 大小关系.【答案】(1)任意实数(2)3,1-(3)见解析(4)当0x>时,函数y 随x 的增大而增大,当<0x 时,函数y 随x 的增大而减小(5)210x x <<或120x x <<【提示】(1)根据解析式即可确定自变量取值范围;(2)把2x =-代入1y x =+,求得3m =,把=1x -代入2y x =-,求得1n =-;(3)根据表格数据补全函数y x =,1y x =+,2y x =-的图像即可;(4)观察图像即可求得;(5)根据图像即可得到结论.【解答】(1)解:函数y x b =+中,自变量x 可以是全体实数,故答案为:全体实数;(2)解:把2x =-代入1y x =+,得3y =,把=1x -代入2y x =-,得1y =-,∴3,1m n ==-,故答案为:3,1-;(3)解:补全函数y x =,1y x =+,2y x =-的图像如下:(4)解:由图知,当0x >时,函数y 随x 的增大而增大,当0x <时,函数y 随x 的增大而减小; 故答案为:当0x >时,函数y 随x 的增大而增大,当0x <时,函数y 随x 的增大而减小; (5)解:∵点11(,)x y 和点22(,)x y 都在函数y x b =+的图像上,当120x x >时,∴点11(,)x y 和点22(,)x y 在y 轴的同一侧,观察图像,当120x x >时,若总有12y y <,即210x x <<或120x x <<.【点睛】本题考查了通过列表法和解析式法对函数的性质进行分析,画出函数图像,并研究和总结函数的性质;数形结合是解题的关键.。

一次函数的图象和性质教案(1)

一次函数的图象和性质教案(1)

一次函数的图象和性质(教案)安岳县协和乡初级中学杨金强[教学目标]1.知识与技能(1)、理解直线y=kx+b与y=kx之间的位置关系;(2)、会利用两个合适的点画出一次函数的图象;(3)、掌握一次函数的性质及k、b对图像的影响2.过程与方法(1)主要是培养学生的看图、识图.动手实践能力。

(2)通过对一次函数的图象和性质的探究,培养学生数形结合思想方法。

3.情感态度价值观通过对一次函数的图象和性质的自主探究,让学生获得亲自参与研究探索的情感体验,从而增强学习数学的热情。

[教学重点]会用两点法画出一次函数、正比例函数的图象,并由图象得出函数的性质。

[教学难点]由函数图象得出函数的性质,及对函数性质的理解与应用。

[教学用具]教具:粉笔,直尺,多媒体学具:练习本,笔[教学方法]1、复习引入一次函数、正比例函数的概念2、结合图象探索性质:包括正比例函数、一次函数的图象和性质3、解决问题、巩固提高:包括新课环节后的练习、新课后的巩固练习[学法]以学生自主探索为主,动手实践画出函数图象。

在归纳一次函数图象的性质时建议合作交流。

[教学过程]环节一:复习一次函数、正比例函数的概念;环节二:会用两点法画函数图象,并对“k”决定函数的增减性进行归纳;环节三:利用图象的平移,对“b”所决定的函数性质进行归纳;环节四:对“k、b”所决定的函数性质进行总结环节五:巩固练习,加以提高。

环节六:总结这节课的性质。

环节七:安排作业。

一次函数的图象和性质(学案)(一)学习目标1、会用两点法画出正比例函数、一次函数的图象,并由图象得出函数的性质2、会用正比例函数、一次函数的性质解决问题(二)学习过程:环节一:新课引入1、复习正比例函数、一次函数的概念:3、将直线 y=-4x向下平移2个单位可得直线环节六:总结正比例函数的性质1.正比例函数y=kx的图象是经过_________的一条直线;2. 1)当 k >0,y=kx经过______象限2)当 k <0,y=kx经过______象限.一次函数的性质1.在y=kx+b中:当k>0,y随x的增大而_ ,当k<0,y随x的增大而______.2.在直线y=k x+b与直线y=k x+b中,如果______________,那么这两条直线平行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

注: 两条直线的位置关系:y =
k1 k 2 k1 = k 2 b1 b2
k 2 b1=
b2
k1 x+ b1
y= k 2 x+ b2
1)
相交 平行 重合
2)
3)k1 =
例如:直线y=2x+3 、y=2x、 y=2x-3
互相平行
y
y=kx(k≠0) o
b
y kx b(k 0)
x
b叫做直线y=kx+b(k≠0)在y轴上的截距。
若图象与x轴、y轴分别交于点A和点B, 试求△AOB的面积S.
Y
y=
-6
A 2B
O
1 3 x+2
X
解:在函数解析式中令y=0,则x=-6; 令x=0,则y=2 故与x轴的交点为A (-6,0),B(0,2) . 于是S= 1 OA·OB= 6
2
例2、拖拉机油箱中有油48kg,如果工作 时,每小时耗油6kg, 求出油箱中的余油量Q(kg)与它工作 的时间t(时)之间的关系式,写出自变量 的取值范围,并且画出它的图象(假定 拖拉机能工作至余油量为零)。
1、一次函数y=kx+b(k≠0)的图象是经过点 (0,b)且平行于直线y=kx (k≠0)的一条直线。
k 0时, y 随x的增大而增大 2、 k 0时, y 随x的增大而减小
b 0, 直线交 y轴正半轴与点 (0, b) 3、 b 0, 直线交 y轴负半轴与点 (0, b)
直线y=2x+3可由直线y=2x向上平移 3 个单 位得到。 3 下 直线y=2x-3可由直线y=2x向 平移 个单位得到。
练习 作出一次函数y= -2x+4的图象 Y
O
X
y=-2x+4
y=-2x
y=-2x+4的图象与x轴的交点为 , (2,0) 与y轴的交点是 。 (0,4)
y
你能够描述两个一次函数 (K<0时)的图象特征吗?
(4,b),则a与b的大小关系为_________ a<b
增大 4、一次函数y=(m2+3)x-2,y随x的增大而_______
做一做
已知一次函数y=kx + (k+1)
(1) k为何值时,它的图象经过点(0, – 2);
(2)k为何值时,它的图象经过原点;并 求出函数解析式。
(3) k为何值时,它的图象与y轴的交点在x轴 上方.
1 (2)直线 y 3 x 2 过点(___,0)、(0,__)
6
2
2、判断下列哪些点在一次函数 y=2x-3的图象上? A(2,3), B (2,1), C (0, 3) , D(3,3) , E(0, -3) , F (1,1) 解:∵ 在y=2x-3中,当x=2时,y=2×2-3=1, ∴ A(2,3)不在其图象上。 同理可以判断:只有点B (2,1), D(3,3) , E(0, -3) 在其图象上。
作业
•P188:2题 •练习册 :P63全部
三、一次函数的性质
y
• 观察与归纳
y
y=-2x+3
y=2x+3
y=2x (0, 3)
o
x o
y=-2x-3
x
(0, -3)
y=2x-3
y=-2x
你能够从中归纳一般的结论吗? 直线y=Kx+b在坐标系中的位置特征怎样确定?
y
y kx b (k>0)
1、K的符号决
定了什么??
o x
y=kx+b(k<0) 当k>0时,直线y=kx+b要经过一、三象限 y随着x的增大而增大 当 k< 0时,直线y=kx+b要经过二、四象限 y随着x的增大而减小
2、b的符号决
定了什么??
y
y kx b b0
(0,b)
o
x
(0,b) y kx b
b0
分析: 解略。
注意:这里是实际问题,t 的范围是
0≤t≤8,故图象不是直线,而是线段. Q
48 Q=48-6t 8
o
t
数形结合训练:
1、已知一次函数y=kx+b(k≠0)的 图象平 行于直线y=3x,且过点(1,4),求函数解 析式。 函数解析式为:y=3x+1
2、已知一次函数y=kx+b(k≠0)的图象经过 点(0,-2),且过点(1,3),求函数解析式。 函数解析式为:y=5x-2
用线段】 连接起来)
作y=2x和 y=2x+3的图象
解:列出一次函数 y=2x+3与正比例函数y=2x 的x与y的对应值表:
x
……
-2
-1
0
1
2
……
y=2x
……
-4
-2
0
2
4
……
……
y=2x+3 ……
-4+3-2+3 0+3 2+3 4+3
y=2x+3
y=2x
y=2x-3
Y
(0,3) 1 2 3 O (0,-3)
例1 ① 作出一次函数y=2x+1的图象(小黑板) ② 作出y=2x和y=2x+3的图象。 (K=2 >0) 【说明】作函数图象的一般步骤为:
1、列表 (在表格中填写x、y的对应值,注意
x的范围和代表性)
2、描点 (以表格中各组值作为点的坐标,在
直角坐标系中描出相应的点)
3、连线 (把这些点依次用平滑的曲线【包括
b 0, 直线交y轴正半轴与点 b) (0, 直线交y轴负半轴与点 b) (0, b 0,
关于平行
y
y kx b(k 0)
y kx(k 0)
o x
(0,b)
一次函数y=kx+b(k≠0)的图象是经过点 (0,b)且平行于直线y=kx (k≠0)的一条直 线。
4、选取适当两点作图:
(0, b)
b ( ,0) k

(1,k+b)
o
x
1、图象名称:直线
2、图象位置:两直线(K<0时)都经过坐 标系的第二和 第四象限, 从左至右看,这 些直线都走“下坡路”
3、两直线之间的位置关系:互相平行
思考 在 y=
-2x+4的图象上取几个点,验证它 们的横、纵坐标是否都满足解析式y=-2x+4
Y
2
O
A 2 4
X
B y=-2x+4
一般地,①满足解析式y=-2x+4的x,y所对应的 点(x,y)都在它的图象上; ②函数y=-2x+4 图象上的点的坐标x,y都满足解析式y=-2x+4 。
3、求直线与坐标轴的交点
直线
与X轴交点
与Y轴交点
y=x+1 y= -x-2
(-1, 0)
(0, 1) (0, - 2 )
(0 ,-1)
(-2, 0) (½, 0)
y= 2x-1
请利用这些交点在坐标系中作出这 三条直线。(两点法)问这些直线 经过坐标系的哪些象限??
小结:
• 1、理解函数图象的概念,函数解析式与 图象之间的对应关系 ; • 2、掌握作函数图象的一般方法和步骤; • 3、掌握一次函数的图象特征,会用两点 法熟练地作一次函数的图象。
3、看图象,确定一次函数y=kx+b(k≠0) 中k,b的符号。
y y y
o
x
o
x
o
x
k<0 b<0
k>0 b>0
k<0 b=0
考考大家:
1、有下列函数:① y= 6x-5 , ③ y=x+4 , ④ y=-4x+3 ② y=2x ,
。其中过原点的直
② ①、②、③ 线是___ ,函数y随x的增大而增大的是___________; 函数y随x的增大而减小的是______;图象在第一、二、 ③ ④ 三象限的是_____。 2、函数y=(m – 1)x+1是一次函数,且y随自变 量x增大而减小,那么m的取值为__________ m<1 3、已知一次函数y=2x+4的图象上有两点A(3,a),B
它可以为任何实数。
直线y=kx+b可能在坐标系中的 哪些位置?
一次函数的性质
y
• 观察与归纳
y
y=kx+b
b
o
x
o
x
b
K>0 ,b>0 直线过一、二、三 象限
K>0 ,b<0 直线过一、三、四 象限
一次函数的性质
y
• 观察与归纳
y
y=kx+b
b
o
x
o
x
b
K<0 ,b>0 直线过一、二、四 象限
二、一次函数的图象 • 一次函数y=kx+b的图象是过点(0, b)的一条直线,我们称为直线y=kx+b;
• 作一次函数的图象时,只需确定直线上 的两个点,再过这两点作直线即可
---两点法
例如取(0,b),(1, k+b);或
b (0,b),(- k , 0)
1、填空: -3 1 (1)直线y=3x-3过点(___,0)、(0,___)
§6.3一次函数的 图象和性质(1)
回顾1:什么叫一次函数?
若两个变量 x、y之间的关系可以表示成
y=kx+b (k、b为常数,k≠0)的形式,则称 y是x 的一次函数。
当b=0时,则y=kx 是正比例函数, 正比例函数是特殊的一次函数(常数 项为0的一次函数)
练: 在函数解析式y=2x-5中,若自变 量x的值为4,则函数值为 3 。当 X=0时y= -5 ; 当x= 2.5 时, y=0。
相关文档
最新文档