三倍频器设计解读上课讲义

合集下载

倍频电路课程设计报告

倍频电路课程设计报告

倍频电路课程设计报告一、教学目标本课程旨在让学生了解和掌握倍频电路的基本原理和应用,通过学习,学生应能:1.理解倍频电路的定义、功能和工作原理。

2.掌握倍频电路的主要组成部分,以及各部分的作用和相互关系。

3.学会分析倍频电路的性能指标,如频率、幅度等。

4.能够运用倍频电路解决实际问题,提高学生的实践能力。

二、教学内容本课程的教学内容主要包括:1.倍频电路的基本概念:介绍倍频电路的定义、功能和工作原理。

2.倍频电路的组成:详细讲解倍频电路的各个组成部分,包括晶体管、电容、电阻等。

3.倍频电路的分析:教授如何分析倍频电路的性能指标,如频率、幅度等。

4.倍频电路的应用:介绍倍频电路在实际中的应用案例,让学生学会运用。

三、教学方法为了提高教学效果,本课程将采用多种教学方法,包括:1.讲授法:讲解倍频电路的基本概念、原理和应用。

2.讨论法:学生进行小组讨论,分享对倍频电路的理解和看法。

3.案例分析法:分析实际中的倍频电路应用案例,让学生更好地理解倍频电路。

4.实验法:安排实验室实践,让学生亲手操作,加深对倍频电路的理解。

四、教学资源为了支持教学,我们将准备以下教学资源:1.教材:选择合适的教材,为学生提供系统的学习资料。

2.参考书:提供相关的参考书籍,丰富学生的知识储备。

3.多媒体资料:制作课件、视频等多媒体资料,提高教学的趣味性和生动性。

4.实验设备:准备充足的实验设备,确保每个学生都有机会动手实践。

五、教学评估本课程的评估方式包括以下几个方面:1.平时表现:通过课堂参与、提问、小组讨论等,评估学生的学习态度和积极性。

2.作业:布置适量的作业,评估学生对倍频电路知识的理解和应用能力。

3.考试:安排期末考试,全面测试学生对倍频电路的掌握程度。

评估方式应客观、公正,能够全面反映学生的学习成果。

我们将根据学生的表现,给予及时的反馈,帮助学生提高。

六、教学安排本课程的教学安排如下:1.教学进度:按照教材的章节安排,有序地进行教学。

W频段宽带三倍频器的研究

W频段宽带三倍频器的研究

第三章倍频器设计图3_4倍频器模拟实物图3.3倍频器部件设计3.3.1微带到波导过渡微波、毫米波元器件以及子系统最终要应用于整机系统或要连接到测试系统中,这就要求输入、输出接口必须为标准矩形波导。

从标准波导至Ⅱ微带电路要求有良好的过渡,在过渡过程中,不但要完成不同结构的过渡,而且还要实现阻抗变换,使电磁能量损失尽可能的小。

除此之外,还要求装卸容易,重复性、一致性好且易于加工。

波导到微带过渡结构可由多种方式来实现,如微带探针形式I捌,鳍线过渡【矧,小孔耦合I矧,脊波导【25】【圳,本章探索了两种方式。

3.3.1.1脊波导【27】无论哪个标准波导的等效阻抗都比标准微带线特性阻抗50Q要高得多,为了保证两者连接得到较好的匹配,必须在标准波导和微带线之间加变阻器,把波导的等效阻抗逐步降低,这可以用连续过渡或阶梯过渡来实现,前者加工较为复杂(如指数线),且为了满足一定驻波比的要求,过渡段长度也不短,所以一般采用阶梯过渡(即1/4多节变阻器)。

单脊波导就其特点来说,工作频带宽。

另外,当金属脊较高时,电磁能量主要集中于脊下,相当于脊下等效电容增加,等效阻抗当然随之降低,若脊宽与脊高选择合理,机械尺寸上也便于与微带线匹配连接。

当脊高变低,相当于脊下等23电子科技大学硕士学位论文导波波长:铲7丽五‰=冬移啪娆212·66ram以。

^|,m觎29.088nun毛=挠鸵~(3·23)◇一24)其他段作相似计算。

最后得出整个初始脊波导尺寸:S=1.42mm磊=o。

127ram磊=2,5mm畦=o.57ram4--2。

28ram或一1.95mm乞=2。

467mm黧3-6脊渡霉程HFSS串静仿真模型”“”“船器“”8矗即日一茹f鬲●●●‘l_Il,.}li{{lll{~pi£j…t—L}]”J啊||;{,,t{l|}i..j一{-{{l,一,一{:M一\广!}N;再沁_.八l卜Z。

d●__一N?7i{‘;”㈠K’7…Hn{rrV斗÷一—:一3.{÷一曩一丫一{^一{;{{·|l…,{{i}{t|t”…、”…’’…、^‘t一+…””””R_MP””“掰34脊滚霉在HFSS审鹃待囊结采根据设计尺寸在HFSS中仿真并进行优化,得到仿真结聚如图3—7。

高频倍频器三倍频器电路设计

高频倍频器三倍频器电路设计

西安航空学院高频电子线路课程设计题目: 3倍频器电路设计专业班级:电信1431 学号: 46 学生姓名:**指导教师:教师职称:起止时间: 2012.12.29——2013.1.6 课程设计(论文)任务及评语目录第一章倍频器工作原理分析 01.1工作原理 01.2晶体管倍频原理电路、工作状态及其特点 (1)第二章丙类倍频器功效分析 (3)第三章三倍频器的主要质量指标 (6)3.1 变频增益 (6)3.2 失真和干扰 (6)3.3 选择性 (6)3.4噪声系数 (6)第四章电路设计与仿真 (7)第五章设计分析与总结 (9)参考文献 .................................................. 错误!未定义书签。

第一章 倍频器工作原理分析1.1工作原理倍频器(Frequency double )是一种输出频率等于输入频率整数倍的电路,用以提高频率,如下图所示的例子。

图1.1倍频器的应用采用倍频器以下优点:发射机的主振频率可以降低,这对稳频是有利的。

因为振荡器的频率越高,频率稳定度就越低。

一般主振频率不宜超过5MHz 。

因此,发射频率高于5MHz 的发射机,一般宜采用倍频器。

在采用石英晶体稳频时,振荡频率越高,石英晶体越薄,越易震碎。

一般来说,最薄的石英晶体的固有振荡频率限制在20MHz 以下。

超过这一频率,就宜在石英振荡器后面采用倍频器。

如果中间级既可以工作在放大状态,也可以工作于倍频状态,那么就可以在不扩展主振波段的的情况下,扩展发射机的波段。

这对稳频是有利的,因为振荡波段越窄,频率稳定度就越高。

倍频器的输入与输出不同,因而减弱了寄生耦合,使发射机的工作稳定性提高。

如果是高频或调相发射机,则可采用倍频器来加大频移或相移,亦即加深调制度。

在超高频段难以获得足够的功率,可采用参量倍频器将频率较低、功率较大的信号转变为频率较高、功率亦较大的输出信号。

倍频器按其工作原理可分为三类。

220GHz无源三倍频器设计

220GHz无源三倍频器设计

倍频器是无线电技术高频电路中重要的非线性电路,作为基本的电子器件,被广泛应用于发射机、频率合成器、接收机本振源等各种电子设备中。

亚毫米波倍频器可以降低设备的主振频率和扩展工作频段,同时,由于其输出频率可以在输入频率的 n 次谐波上选取,因而所需的输入信号源可以选择在技术上相对成熟的毫米波频段上制作,从而为保证所需的频率稳定度和相噪特性提供了条件,同时,固态倍频器体积小、易于集成而且使用寿命较长。

因此,目前小功率的亚毫米波固态源主要依靠倍频方法实现。

亚毫米波在长波段与毫米波相重合,而在短波段,与红外线相重合,可见亚毫米波波在电磁波频谱中占有很特殊的位置。

由于起所处的特殊位置,亚毫米波具有一系列特殊的性质,在频域上,亚毫米波处于宏观经典理论向微观量子理论的过渡区,处于电子学向光子学的过渡。

它的量子能量很低,信噪比很高,频率极宽。

它覆盖各种蛋白质在内的大分子的转动和振荡频率。

因此,在学术上有很重要的学术价值,在科学技术上及工业上有很多很诱人的应用:如信息科学方面的超高速成像信号处理,大容量数据传输;材料处理,分层成像技术,生物成像;等离子体聚变的诊断;天文学及环境科学等。

而且在国防上也有着及其重要的应用前景。

2 三倍频器的设计2.1 总体方案本方案采用标准波导输入,通过悬置微带探针过渡,接低通滤波器,在低通滤波器末端接输入匹配段,后接同向并联的二极管对,之后输出结构为悬置微带到标准波导的过渡。

方案框图如下:图1 总体方案图2.2 传输线和介质基片的选择由于本倍频器工作的频率达到220GHz,故传输线采用悬置微带线,其电磁场的大部分集中在空气中,因而其有效介电常数接近于1,使其电参数与空气线的电参数接近,接近于无色散特性;而且介质的损耗大大减小了,故具有比微带线更高的Q值(500~1500),而且此传输线可实现很宽范围的阻抗值,这样利于阻抗匹配。

[2]另外,为抑制由不连续带来的高次模,要仔细选择腔体的大小。

左手非线性传输线三倍频器设计

左手非线性传输线三倍频器设计

左 手 非 线 性 传 输 线 三 倍 频 器 设 计
夏 莹
江苏常州 2 1 3 1 6 4 ) ( 常州信息职业技术学 院电子与 电气工程 学院

要: 非线性传输线通 常用来 实现谐 波产生和脉冲形成 。利用左手非线性传输线 的谐 波产生特 性 , 设计 仿真 了 1 0 0 MHz 的
De s i g n o f Le f t - h a n d e d No n l i n e a r Tr a n s mi s s i o n Li n e s Tr i p l e r
X I A Ym
( S c h o o l o f E l e c t r o n i c a n d E l e c t r i c a l E n g i n e e r 吨, C h a n g z h o u C o l l e g e o f I n f o r ma t i o n T e c h n o l o g y , C h a n g z h o u 2 1 3 1 4, 6 C h i n a )
周 期长 、 调 试难 度大 。
高 的频率 , 通 常 比直 接 产 生 这 些 频 率 更 容 易 、 更 方 便, 而且 不需 要 多个 频 率 源 。晶体 振 荡 器 的振 荡 频
率最 高 只能 达到 2 0 0~3 0 0 MHz , 必 须 通 过倍 频 器 进
因此 , 本文 以左 手 非 线性 传 输 线 ( L H NL T L) 倍 频 技术 为理 论 基础 , 研究了 1 0 0 MHz 正 弦信 号 三倍 频 器 的实现 。该 方法 具有 尺 寸小 、 结构 简单 、 调 试 容
第1 3卷 第 1 期 2 0 1 4年 2月

multisim三倍倍频器设计

multisim三倍倍频器设计

一、 题目:倍频器(1) 采用晶体管设计一个倍频电路;(2) 额定电压9.0V ,电流10~15mA ;(3) 输入频率1.5MHz ,输出频率4.5MHz 左右;(4) 输出电压>1.5V ,输出失真小二、 原理图如图整体以丙类功率放大器为基架电路。

电路左侧C 1和L 1构成滤波电路,R e 和C e 构成射极偏置稳定电路。

C 和L 构成选频电路,右侧耦合变压器构成输出匹配网络,C 2、L 2和电源构成串馈馈电电路。

三、 multisim 仿真图 倍频器谐振点在c n l n ωω1=由于是三倍倍频器,所以n=3,即c l ωω313=,所以flc π2*31=。

而根据题目f=1.5MHz 。

所以选择C=35pF ,L=35.48μh 。

其余部分的电路器件选择常用参数,C 1=0.1μF , L 1=20mH ,R e =1k Ω,C e =0.1μF ,C 2=0.1μF ,L 2=20mH ,R 2=1k Ω,直流电压源根据题目选择9V。

模拟电路图如下四、调试过程及输出结果分析:在C、L经计算确定之后,对其它电容电阻电感进行了小幅调试。

(1)函数发生器产生频率为1.5Mhz,振幅1Vp的正弦波。

观测输出信号,频率计数器显示4.17MHz,基本在4.5MHz左右,符合题目要求。

随后是输出信号的波形,可以看出失真还是比较小的,输出电压U>1.5V, 符合题目要求。

(2)随后尝试了一下输入信号为三角波或者方波的情况。

两者输出信号都是 4.5Mhz左右的波形,只是输出为正弦波,输出电压都符合U>1.5V,失真比较小。

输入为三角波时:输出:波形:(3)输入为方波时:输出频率:输出波形:。

【精品】三倍频器设计解读

【精品】三倍频器设计解读

三倍频器设计解读辽宁工业大学高频电子线路课程设计(论文)题目: 3倍频器电路设计学院:电子与信息工程学院专业班级:通信091学号: 090405021学生姓名:指导教师:教师职称:讲师起止时间: 2012.6.29——2012.7.8课程设计(论文)任务及评语院(系):电子与信息工程学院教研室:通信教研室目录第一章倍频器工作原理分析 (1)1.1工作原理 (1)1.2晶体管倍频原理电路、工作状态及其特点 (3)第二章丙类倍频器功效分析 (5)第三章三倍频器的主要质量指标 (8)3.1 变频增益 (8)3.2 失真和干扰 (8)3.3 选择性 (8)3.4噪声系数 (8)第四章电路设计与仿真 (9)第五章设计分析与总结 (11)参考文献 (12)第一章 倍频器工作原理分析1.1工作原理倍频器(Frequency double )是一种输出频率等于输入频率整数倍的电路,用以提高频率,如下图所示的例子。

图1.1倍频器的应用采用倍频器以下优点:发射机的主振频率可以降低,这对稳频是有利的。

因为振荡器的频率越高,频率稳定度就越低。

一般主振频率不宜超过5MHz 。

因此,发射频率高于5MHz 的发射机,一般宜采用倍频器。

在采用石英晶体稳频时,振荡频率越高,石英晶体越薄,越易震碎。

一般来说,最薄的石英晶体的固有振荡频率限制在20MHz 以下。

超过这一频率,就宜在石英振荡器后面采用倍频器。

如果中间级既可以工作在放大状态,也可以工作于倍频状态,那么就可以在不扩展主振波段的的情况下,扩展发射机的波段。

这对稳频是有利的,因为振荡波段越窄,频率稳定度就越高。

倍频器的输入与输出不同,因而减弱了寄生耦合,使发射机的工作稳定性提高。

如果是高频或调相发射机,则可采用倍频器来加大频移或相移,亦即加深调制度。

在超高频段难以获得足够的功率,可采用参量倍频器将频率较低、功率较大的信号转变为频率较高、功率亦较大的输出信号。

倍频器按其工作原理可分为三类。

倍频器原理分析

倍频器原理分析

4、倍频器(1)功能。

倍频器实质上就是一种输出信号等于输入信号频率整数倍的电路,常用的是二倍频和三倍频器。

在手持移动电话中倍频器的主要作用是为了提升载波信号的频率,使之工作于对应的信道;同时经倍频处理后,调频信号的频偏也可成倍提高,即提高了调频调制的灵敏度,这样可降低对调制信号的放大要求。

采作倍频器的另一个好处是:可以使载波主振荡器与高频放大器隔离,减小高频寄生耦合,有得于减少高频自激现象的产生,提高整机工作稳定性。

(2)倍频原理。

由晶体三极管组成的倍频电路如下图所法,它的基本原理是:三极管VT1的基极不设置或设置很低的静态工作点,三极管工作于非线性状态,于是输入信号经管子放大,其集电极电流会产生截止切割失睦,输出信号信号丰富的谐波分量,利用选频网络选通所需的倍频信号,而滤除基波和其他谐波分量后,这就实现了对输入信号的倍频功能。

5、射频功率放大器手持移动电话发射端的高频信号功率越大,天线转换成电磁波的能量也越大,天线转换成电磁波的能量也越大,通信距离就越远;反之,输出高频信号功率越小,通信距离就越近。

为了保证一定距离的无线电通信正常,必须对射频信号进行功率放大。

对手机射频功率放大器的主要要求有以下四个方面。

(1)输出功率能达到要求,电路有一定的输出功率功率余量。

(2)电路效率高,以节约直流电源用电量。

(3)具有良好的谐波抑制能力,杂波辐射量要小。

(4)具有功率自动控制电路,以防止电源电压变化或振荡输出电压幅度不稳定引起的过激励,避免末级功放电路的烧毁。

目前手持移动电话的射频功率放大器广泛应用厚膜混合集成功放块,其特点是将射频功放器件组成整件,体积小,可*性高,组装及检修方便。

功率自动控制电路使输出功率保持在一定范围内,其工作原理框图如下图所示。

末级功放输出的信号经耦合器采样取出部分信号功率,经过检波变成直流送入放大器放大,放大后的电平再耦合至微处理器进行检测,并由微处理器送出一个控制指令到功率放大器,从而调整功率电平使之能满足要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

辽宁工业大学高频电子线路课程设计(论文)题目: 3倍频器电路设计学院:电子与信息工程学院专业班级:通信091学号: 090405021学生姓名:指导教师:教师职称:讲师起止时间: 2012.6.29——2012.7.8课程设计(论文)任务及评语目录第一章倍频器工作原理分析 (1)1.1工作原理 (1)1.2晶体管倍频原理电路、工作状态及其特点 (2)第二章丙类倍频器功效分析 (4)第三章三倍频器的主要质量指标 (7)3.1 变频增益 (7)3.2 失真和干扰 (7)3.3 选择性 (7)3.4噪声系数 (7)第四章电路设计与仿真 (8)第五章设计分析与总结 (10)参考文献 (11)第一章 倍频器工作原理分析1.1工作原理倍频器(Frequency double )是一种输出频率等于输入频率整数倍的电路,用以提高频率,如下图所示的例子。

图1.1倍频器的应用采用倍频器以下优点:发射机的主振频率可以降低,这对稳频是有利的。

因为振荡器的频率越高,频率稳定度就越低。

一般主振频率不宜超过5MHz 。

因此,发射频率高于5MHz 的发射机,一般宜采用倍频器。

在采用石英晶体稳频时,振荡频率越高,石英晶体越薄,越易震碎。

一般来说,最薄的石英晶体的固有振荡频率限制在20MHz 以下。

超过这一频率,就宜在石英振荡器后面采用倍频器。

如果中间级既可以工作在放大状态,也可以工作于倍频状态,那么就可以在不扩展主振波段的的情况下,扩展发射机的波段。

这对稳频是有利的,因为振荡波段越窄,频率稳定度就越高。

倍频器的输入与输出不同,因而减弱了寄生耦合,使发射机的工作稳定性提高。

如果是高频或调相发射机,则可采用倍频器来加大频移或相移,亦即加深调制度。

在超高频段难以获得足够的功率,可采用参量倍频器将频率较低、功率较大的信号转变为频率较高、功率亦较大的输出信号。

倍频器按其工作原理可分为三类。

一类是和丙类放大器电流脉冲中的谐波经选频回路获得倍频。

第二类是利用模拟乘法器实现倍频。

第三类是利用 PN结电容的非线性变化,得到输入信号频率的谐波,经选频回路获得倍频,称为参量倍频器。

当工作频率为几十MHz时,主要采用三极管丙类倍频器,而当工作频率高于1000MHZ时,主要采用变容二极管、阶跃二极管构成的参量倍频器。

乘法器构成的倍频器主要受乘法器的上限工作频率的限制。

本次设计的3倍频器电路是一种主要采用丙类功率放大器的晶体管倍频器,即丙类倍频器。

其原理图如图1.2所示。

图1.2丙类倍频器1.2晶体管倍频原理电路、工作状态及其特点(一)电路:与丙类谐振功放相似,不同点在于LrCr谐振在(二)工作状态:(1)应工作在欠压或临界状态(2)一般不工作在过压状态的原因:a)需很大的激励功率,使功率管增益明显下降b)晶体管进入饱和区输出阻抗明显降低,致使下降,严重影响滤波能力(三)特点:(1)谐振在nωs上,n不宜过大,否则电流太小(2)LC 选频网络选出nωs分量,滤除大于或小于nωs的分量,要求滤波条件苛刻。

(3)n一般采取2或3,不宜过大,否则会导致:若可能导致B-E结击穿;若,LC回路难以选择,所以n一般为2或3。

(四)电路:(1)高的倍频可以用n个二倍频或三倍频电路级联(2)采用推挽电路:a)若输出电流差分,可实现奇数倍频b)若输出电流之和,可实现偶数倍频第二章丙类倍频器功效分析图2.1丙类功率放大器工作原理图图2.1是一个丙类功率放大器原理图在丙类工作时 ,晶体管集电极电流脉冲中含有丰富的谐波分量。

如果把集电极谐振回路调谐在二次谐波或三次谐波频率上。

那么,放大器只有二次谐波电压或三次谐波电压输出。

这样的丙类放大器就成为二倍频器或三倍频器。

倍频器的输入、输出电压瞬时值可写为而晶体管极间瞬时电压可写成为式中 ,为回路两端的n次谐波电压振幅。

利用高频功率放大器的分析结果 ,n次倍频器输出的功率和效率为式中由余弦脉冲分解系数可知 ,无论导通角为何值,均小于,也就是在同样条件下,丙类倍频器的输出功率都低于丙类放大器的输出功率和效率。

为了提高输出功率和效率 ,丙类倍频器在导通角的选取上,必须满足=120/n因为 n=2时,=60°,=0.536为最大值;有n=3时,=40°·=0.276为最大值。

所以,三倍频器的应取40°。

这样,对应的输出功率和效率达最大。

这时与=120°时的放大器输出功率相比较有:=0.52=0.35由此可见,在采用最佳通角值的情况下,二次倍频器的输出功率只能约等于它作为放大器时的1/2,三次倍频器的输出功率只能约等于它作为放大器时的1/3。

同样由效率公式可以推出它的效率也随着倍频次数n的增加而下降。

由以上的讨论可见,随着倍频次数n的增大,它的输出功率与效率下降。

同时,n越高,最佳的越小。

为了减小,就必须倍频器的基极反向偏压-。

加大后基极激励电压也加大。

对于晶体管电路来说,增加激励电压与偏压,就可能是发射结的反向偏压超过击穿电压。

所以单级丙类倍频器一般只作为二倍频器或三倍频器使用。

若要提高倍频次数 ,可以采用多级丙类倍频器来实现。

第三章三倍频器的主要质量指标3.1 变频增益二倍频器输出电压振幅V im与高频输入信号电压振幅V sm之比,成为变频电压增益或变频放大倍数,表示如下:变频电压增益VV Asmim vc=另一种表示方法为:PP A pcsi 高频输入信号功率更高频输出信号功率=显然,边频增益高对提高接收机的灵敏度有利。

3.2 失真和干扰失真有频率失真和非线性失真。

由于非线性还会产生组合频率、交叉调制与互相调制、阻塞和易倒混频干扰。

这些是二倍频器产生的特有干扰。

3.3 选择性接收有用信号,排除干扰信号的能力决定于高频输出回路的选择性是否良好。

3.4噪声系数二倍频器的噪声系数对接收设备的总噪声系数影响很大,应尽量低。

这就要求很好的选择所用器件和工作点电流。

第四章电路设计与仿真输入信号为幅值为10V的正弦交流信号,频率为任务所要求的100KHZ。

经计算变频电路中的电感分别取值0.531uH,1mH,电容分别取值1uF,0.531uF。

直流电压为12V,为晶体管集电极提供偏压,滤波电路滤除杂波,使输出稳定。

整体电路如图4.1.图4.1 3倍频器涉及电路图将该电路在EWB环境下进行仿真模拟,滤波器显示如图4.2:图4.2电路仿真结果示波器显示示波器显示图中,位于上侧的是输出信号,下侧为输入的正弦信号。

由图形可分析知,输入信号为100KHz,输出信号频率为300KHz,达到了3倍频的设计参数要求,输出图形没有较明显的失真,基本满足了设计要求。

第五章设计分析与总结本次设计的要求是设计一个3倍频器电路,即输出信号频率是输出信号频率的3倍。

在晶体管倍频器和参数倍频器中选择栏晶体管倍频器。

晶体管倍频器以晶体管放大电路为基础组成频率放大电路。

其中包含了倍频电路与滤波电路,分别进行频率放大与频率选择。

电路中以12V直流电源为晶体管提供集电极偏压,电容与电感的参数值均为计算所得。

总体电路设计完成之后,在EWB环境中进行仿真模拟,调试校正,调得最佳状态。

从图中解析,输出信号达到了300KHZ,是输入信号的3倍,达到了设计要求,幅值增益与衰减也在允许范围内,基本符合了设计任务的要求。

但是,仿真结果中,输出信号出现了类似于振荡的失真与衰减,经调整参数后仍无法消除。

分析后认为,可能是由于晶体管的静态工作点不够理想所致,应设法予以减小。

参考文献[1]高频电子线路.张肃文.北京:高等教育出版社,2009[2]高频电子线路.林春芳.北京:高等教育出版社,2002[3]电子技术课程设计.彭介华.北京:高等教育出版社,1997[4]常用电子电器电路精选.曲学基.武汉:电子工业出版社,1991[5]电子技术实验与课程设计.蔡忠法.杭州:浙江大学出版社,2003[6]现代电子技术实践课程指导.谢云,易波.北京:机械工业出版社,2003读书的好处1、行万里路,读万卷书。

2、书山有路勤为径,学海无涯苦作舟。

3、读书破万卷,下笔如有神。

4、我所学到的任何有价值的知识都是由自学中得来的。

——达尔文5、少壮不努力,老大徒悲伤。

6、黑发不知勤学早,白首方悔读书迟。

——颜真卿7、宝剑锋从磨砺出,梅花香自苦寒来。

8、读书要三到:心到、眼到、口到9、玉不琢、不成器,人不学、不知义。

10、一日无书,百事荒废。

——陈寿11、书是人类进步的阶梯。

12、一日不读口生,一日不写手生。

13、我扑在书上,就像饥饿的人扑在面包上。

——高尔基14、书到用时方恨少、事非经过不知难。

——陆游15、读一本好书,就如同和一个高尚的人在交谈——歌德16、读一切好书,就是和许多高尚的人谈话。

——笛卡儿17、学习永远不晚。

——高尔基18、少而好学,如日出之阳;壮而好学,如日中之光;志而好学,如炳烛之光。

——刘向19、学而不思则惘,思而不学则殆。

——孔子20、读书给人以快乐、给人以光彩、给人以才干。

——培根。

相关文档
最新文档