计量经济学6 经典计量经济学应用模型

合集下载

七章经典计量经济学应用模型

七章经典计量经济学应用模型
• 要素产出弹性的数值区间?为什么?
⑵ 规模报酬 • 所有要素的产出弹性之和 • 规模报酬不变 • 规模报酬递增 • 规模报酬递减 • 为什么经常将规模报酬不变作为生产函数必
须满足的条件?
⒊ 要素替代弹性(Elasticity of Substitution)
⑴ 要素的边际产量(Marginal Product)
• 求得“等价数量”,作为生产函数模型的样本观 测值,以这样的方法来引入技术进步因素。
• 所谓广义技术进步,除了要素质量的提高外,还 包括管理水平的提高等对产出量具有重要影响的 因素,这些因素是独立于要素之外的。
• 在生产函数模型中需要特别处理广义技术进步。
⑵ 中性技术进步
• 假设在生产活动中除了技术以外,只有资本 与劳动两种要素,定义两要素的产出弹性之 比为相对资本密集度,用ω表示。即:
EL / EK
• 如果技术进步使得ω越来越大,即劳动的产出弹 性比资本的产出弹性增长得快,则称动的产出弹性比资本的产出弹性增长得慢, 则称之为节约资本型技术进步;如果技术进步 前后ω不变,即劳动的产出弹性与资本的产出弹 性同步增长,则称之为中性技术进步。
济学理论体系的一部分,与特定的生产理论与环 境相联系。
• 西方国家发展的生产函数模型可以被我们所应用:
生产函数反应的是生产中投入要素与产出量 之间的技术关系;
生产函数模型的形式是经验的产物;不能照搬。
⒉ 要素产出弹性(Elasticity of Output) ⑴ 要素的产出弹性
• 某投入要素的产出弹性被定义为,当其他投入 要素不变时,该要素增加1%所引起的产出量的 变化率。 Y K f K EK Y K K Y Y L f L EL Y L L Y
• 退化为C-D生产函数。为什么?

古扎拉蒂《计量经济学基础》第6章

古扎拉蒂《计量经济学基础》第6章

倒数模型
Yi
1
2(
1 Xi
)
ui
这一模型的特点:关于参数是线性的,但关
于变量是非线性的,所以从回归的角度看,这是
一个线性回归模型;当X趋于无穷大时,1/X趋于0,
而 Y则趋于β2。
一个例子:菲利普斯曲线
其中Y为通胀变化率,X为失业率,上半部 (较陡)表明,当失业率低于自然失业率时, 失业的单位变化(下降)引起的工资的变化率 (通胀)上升,其速度快于对应的在失业率高 于自然失业率时,失业的同样变化所引起的工 资下降(下半部较上半部平缓)。
yt 1 2 xt ut (绝对变化) R 2 0.67 ln yt 1 2 xt u(t 相对变化) R2 0.8
对数-线性模型
Yi 1 2 ln X i ui
X 变化一个百分比,Y的绝对变化量
2
Y X / X
Y
2 X
/
X
含义:Y的绝对变化(Y)等于2乘以X的相对变化。
(参数线性)
Yi
X e 2 ui 1i
ln Yi
ln 1
2
ln
Xi
ui
(参数线性)
Yi
X 2 1i
ui
ln Yi
ln(
1
X
i
2
ui )
(参数非线性)
运用OLS估计,假定:ln ui ~ i.i.d.N (0, 2 )
因此,在检验残差是否为正态时时,是对估计的残差 lnˆ ui
进行诊断,而不是对原始的残差。
要点与结论 1.有时一个回归模型并不明显包含截距项。 这样的模型被称为过原点回归。虽然估计这种模型 的代数方法很简单,但应小心使用这些模型。对于 这种模型,残差和是非零的;此外,通常计算的r2 不一定有意义。除非有很强的理论原因,否则还是 在模型中明显地引入一个截距为好。 2.因为单位和尺度是回归系数赖以解释的关 键,所以用什么单位和尺度来表达回归子和回归元 是很重要的。在经验研究中,研究者不仅要注明数 据的来源,还要声明变量是怎样度量的。

1.3计量经济学模型的应用

1.3计量经济学模型的应用

§1.3 计量经济学模型的应用经济系统中各部分之间、经济过程中各环节之间、经济活动中各因素之间,除了存在经济行为理论上的相互联系之外,还存在数量上的相互依存关系。

研究客观存在的这些数量关系,是经济研究的一项重要任务,是经济决策的一项基础性工作,是发展经济理论的一种重要手段。

计量经济学则是经济数量分析的最重要的分支学科。

计量经济学模型的应用大体可以被概括为四个方面:结构分析、经济预测、政策评价、检验与发展经济理论。

在本书后续章节中将结合具体计量经济学模型来解释每个方面的应用,这里,仅作一些概念性介绍,以期对后续课程的学习起到某些指导作用。

一、结构分析经济学中的结构分析是对经济现象中变量之间相互关系的研究。

它不同于人们通常所说的,诸如产业结构、产品结构、消费结构、投资结构中的结构分析。

它研究的是当一个变量或几个变量发生变化时会对其它变量以至经济系统产生什么样的影响,从这个意义上讲,我们所进行的经济系统定量研究工作,说到底,就是结构分析。

结构分析所采用的主要方法是弹性分析、乘数分析与比较静力分析。

弹性,是经济学中一个重要概念,是某一变量的相对变化引起另一变量的相对变化的度量,即是变量的变化率之比。

在经济研究中,除了需要研究经济系统中变量绝对量之间的关系,还要掌握变量的相对变化所带来的相互影响,以掌握经济活动的数量规律和有效地控制经济系统。

计量经济学模型结构式揭示了变量之间的直接因果关系,从模型出发进一步揭示变量相对变化量之间的关系是十分方便的。

乘数,也是经济学中一个重要概念,是某一变量的绝对变化引起另一变量的绝对变化的度量,即是变量的变化量之比,也称倍数。

它直接度量经济系统中变量之间的相互影响,经常被用来研究外生变量的变化对内生变量的影响,对于实现经济系统的调控有重要作用。

乘数可以从计量经济学模型的简化式很方便的求得。

关于计量经济学模型的结构式和简化式的概念,将在第四章专门介绍,简单地说,结构式的解释变量中可以出现内生变量,而简化式的解释变量中全部为外生或滞后内生变量。

华中科技大学《计量经济学》计量经济建模模型(精)PPT课件

华中科技大学《计量经济学》计量经济建模模型(精)PPT课件
计的精度降低
未加证明的经验: 包含一个不相关变量比去掉了一个相关变量要好!但 是包含一个不相关变量导致估计量的精度降低,还可 能引起多重共线性等。因此最好的方法是,基于经济 学理论或变量间的逻辑关系或已有的文献,模型仅包 含那些直接影响应变量的解释变量,且这些解释变量 还不应被模型所包含的其它解释变量所解释
在上述5类设定问题中,1-4类设定误差是基本和 常见的,称为模型设定误差(Model specification error),其基本特征是与正确设定的模型相比较, 而第5种设定误差称为模型误设所引起的误差 (Model mis-specification error,),简称为误设误 差,其特征是不知道正确设定的模型,而是从相 互竞争的模型开始, 如凯恩斯理论强调政府支 出对GDP的作用,而货币学派则强调货币对于解 释GDP的作用.基于这2种经济学理论就形成了 两个相互竞争的模型,回归因子分别为政府支出 和货币.从经济学理论和计量经济学的实证,并 不知道其中的哪一个是正确设定的模型.
Yi=a1+a2X2i+vi
(13.9)
王少平教授:华中科技大学经济学院本科试验班计量经济学讲义
产生的后果
若X3i与X2i相关,即相关系数为r23≠0 这种设定误差导致参数估计有偏 若r23=0,但,即X3i与X2i无关,具有对于设
定有误偏差而的a2的模估型计(是13无.9)偏的。估计,a1的估计是 真实模型的误差ui的方差s2也不能通过估计
a1、a2和a3的估计是无偏和一致的,即 E(ˆ1) 1 E(ˆ2 ) 2 E(ˆ3) 3 0(b3在正确设定的模型中不出
现即为0)。
王少平教授:华中科技大学经济学院本科试验班计量经济学讲义

计量经济学模型整理大全

计量经济学模型整理大全



1


E








需要

0








E
对变形后的模型做 OLS 估计即可








1

先忽略异方差做普通的 OLS,得到 ,然
后用 代替 来回归变形之后的模型



可以减小异方差
做平常的 OLS,然后在认为有异方差的情
况下,用 代替 ,进而得到一致估计量









∗ ∗







方法:OLS 使得∑ ∗ 最小


∑ ∑
∑ ∑

Var

∑ ∑

1


∑ ∑

性质
未知
E

E




1







对数法
怀特稳健
标准误






1

1

1




∑ 1
Var



可线性化的模型
模型/用途

线





双对数
不变弹性模型
线性-对数
衡量增长率
设定

李子奈《计量经济学》课后习题详解(计量经济学应用模型)【圣才出品】

李子奈《计量经济学》课后习题详解(计量经济学应用模型)【圣才出品】

第7章计量经济学应用模型1.分析教材例7.1.1中的问题,回答:为什么按照(1)、(2)、(3)的方法建立的农户借贷因素分析模型都是不正确的?答:(1)若仅利用2820户发生借贷的农户为样本,以他们的借贷额为被解释变量,各种影响因素为解释变量建立的农户借贷因素分析模型是不正确的。

在损失大量样本(丢弃的样本占总样本的44.7%)导致回归精度下降的同时,如果再对其进行经典的截面数据模型分析,将会出现样本选择性问题,应该建立“选择性样本”模型,而不是经典回归模型,属于模型类型选择错误。

(2)若选用所有的5100户作为样本,以其借贷额为被解释变量,将没有发生借贷行为的农户的借贷额记为0(约占总样本的45%),进行经典的截面数据模型分析,这将会在模型中包含实际上并不满足要求的样本数据,属于“选择性样本”数据,仍然应该建立“选择性样本,模型,而不是经典回归模型,属于模型类型选择错误。

故此方法建立的农户借贷因素分析模型是不正确的。

(3)若将没有发生借贷的农户的借贷额视为小于等于0,建立Tobit模型进行回归分析,考虑了样本的选择性。

因此,从模型类型选择的角度,是正确的。

但这种处理方式同样会导致回归结果的精度下降,这主要是因为将有发生借贷的农户的借贷额视为小于等于0的数据处理方式有失偏颇,其中可能存在有借贷需求,但出于某种原因(例如提出借贷被拒绝,担心借不到而不敢提出借贷要求)没有发生借贷的农户。

故此方法建立的农户借贷因素分析模型仍是不正确的。

2.分析教材例7.1.2中的问题,回答:如果建立某类商品的单方程需求函数模型,该模型在什么情况下是可以应用的?答:在计量经济学应用研究中,单方程模型和联立方程模型的选择对经济行为具有依赖性。

根据对需求行为的分析发现,人们对各种商品的需求量,是在预算约束下,由效用函数在效用最大化下导出的。

人们在决定对某种商品的需求量时,肯定会同时考虑对其他商品的需求量。

所以,从理论上讲,不能建立某类商品的单方程需求函数模型。

计量经济学的模型

计量经济学的模型

计量经济学的模型
计量经济学是一门运用数学、统计学和经济学理论来分析经济数据的学科。

它的核心是建立经济变量之间的数学模型,并利用实际数据进行估计和验证。

计量经济学模型通常由一组方程式组成,这些方程式描述了经济变量之间的关系。

其中,最常见的模型是线性回归模型,它假设因变量与自变量之间存在线性关系。

在建立计量经济学模型时,需要考虑许多因素,例如变量的选择、数据的收集和处理、模型的假设和限制等。

为了确保模型的可靠性和有效性,需要进行一系列的统计检验和诊断,例如拟合优度检验、异方差性检验、自相关检验等。

计量经济学模型可以用于预测经济变量的未来走势、评估政策的效果、检验经济理论的正确性等。

它在宏观经济、金融市场、产业经济等领域都有广泛的应用。

总之,计量经济学是一门重要的经济学分支,它通过建立数学模型来分析经济数据,为政策制定和经济决策提供了科学依据。

单方程计量经济学应用模型

单方程计量经济学应用模型

单方程计量经济学应用模型引言单方程计量经济学应用模型是经济学中常用的一种分析工具,它通过建立和估计单个经济变量〔即单方程模型〕的数学关系,来研究经济现象之间的因果关系。

本文将介绍单方程计量经济学应用模型的根本原理和常见的应用案例。

模型根本原理单方程计量经济学应用模型的根本原理是建立一个经济变量Y与其他相关变量X之间的数学关系。

这个数学关系通常采用线性回归模型来表示,即:Y = β0 + β1X1 + β2X2 + … + βnXn + ε其中,Y是被解释变量〔也称为因变量〕,X1, X2, …, Xn是解释变量〔也称为自变量〕,β0, β1, β2, …, βn是回归系数,ε是误差项。

通过对经济数据进行统计分析,我们可以估计出这些回归系数的值,从而得到关于经济现象之间的因果关系的量化结果。

应用案例消费者支出模型消费者支出是宏观经济中的一个重要变量,在经济政策制定和预测分析中起着重要的作用。

通过建立消费者支出模型,我们可以研究消费者支出与其他经济变量之间的关系,并预测未来的消费者支出水平。

消费者支出模型常常包括收入、利率、通货膨胀等变量作为解释变量,以消费者支出作为被解释变量。

通过对历史数据进行回归分析,我们可以估计出这些变量对消费者支出的影响,并进行预测。

投资决策模型投资是经济中的另一个重要变量,对经济增长和资源配置起着重要作用。

通过建立投资决策模型,我们可以研究投资与其他经济变量之间的关系,并预测未来的投资水平。

投资决策模型常常包括利率、企业利润、经济增长等变量作为解释变量,以投资作为被解释变量。

通过对历史数据进行回归分析,我们可以估计出这些变量对投资的影响,并进行预测。

价格影响模型价格影响模型是研究价格与其他经济变量之间的关系的重要工具。

通过建立价格影响模型,我们可以研究价格与供应、需求等因素之间的关系,并分析价格变动对经济的影响。

价格影响模型常常包括供应量、需求量、生产本钱等变量作为解释变量,以价格作为被解释变量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MPK f / K MPL f / L
• 边际产量不为负。
MPK 0, MPL 0,
• 边际产量递减。 ( MPK ) 2 f 0 2 K K
( MPL ) 2 f 0 2 L L
⑵ 要素的边际替代率
(Marginal Rate of Substitution)
1 KE
1
1
b2 L )

m
•要素之间的替代弹性是否相同?是多大?为什么? ⑹多要素三级CES生产函数模型
三、以技术进步的描述为线索的生产函 数模型的发展
⒈ 将技术要素作为一个不变参数的生产函数 模型
Y AK L
Y A( 1 K



2L )
m
• 在中性技术进步中,如果要素之比不随时间变 化,则称为希克斯中性技术进步;如果劳动产 出率不随时间变化,则称为索洛中性技术进步; 如果资本产出率不随时间变化,则称为哈罗德 中性技术进步。
二、以要素之间替代性质的描述为线索 的生产函数模型的发展
⒈ 线性生产函数模型(Linear P.F.)
Y 0 1 K 2 L
四、几个重要生产函数模型的参数估计方法
五、生产函数模型在技术进步分析中的应用
六、建立生产函数模型中的数据质量问题
一、几个重要概念
⒈ 生产函数 ⑴ 定义 • 描述生产过程中投入的生产要素的某种组合同 它可能的最大产出量之间的依存关系的数学表 达式。
Y f ( A, K, L,)
• 投入的生产要素 • 最大产出量
• 在CES生产函数中要素的替代弹性是否随样本点变 化?是否合理?为什么?
• CES生产函数中每个参数的数值范围是什么?为什 么?
⒌ VES生产函数模型(Variable Elasticity 0f Substitution)
⑴ 1968年Sato和Hoffman 假定: (t ) a b t 得到:
Y B(L
( t ) 1 (t )
(1 ) K
( t ) 1 ( t ) (t ) ( t ) 1
)
•与CES有什么联系与区别?
⑵ 1971年 Revankar
K 假定 a b L
dk Z A exp k k c( )1 a a bk

生产函数模型的发展
• 从20年代末,美国数学家Charles Cobb和经济 学家Paul Dauglas提出了生产函数这一名词, 并用1899-1922年的数据资料,导出了著名的 Cobb-Dauglas生产函数。
1928年 Cobb, Dauglas 1937年 Dauglas,Durand 进型 1957年 Solow 进型 1960年 Solow 生产 函数
• 从生产函数可以求得要素的边际产量和要素的边 际替代率。

要素替代弹性
• 要素替代弹性定义为两种要素的比例的变化率 与边际替代率的变化率之比。
d ( K / L) d ( MPL / MPK ) ( K / L) ( MPL / MPK )

• •
要素替代弹性是描述生产行为的重要参数, 求得要素替代弹性是生产函数的重要应用。 要素替代弹性不为负。 特殊情况:要素替代弹性为0、要素替代弹性 为∞。

中性技术进步
• 假设在生产活动中除了技术以外,只有资本 与劳动两种要素,定义两要素的产出弹性之 比为相对资本密集度,用ω表示。即:
E L / EK
• 如果技术进步使得ω越来越大,即劳动的产出弹 性比资本的产出弹性增长得快,则称之为节约劳 动型技术进步;如果技术进步使得ω越来越小, 即劳动的产出弹性比资本的产出弹性增长得慢, 则称之为节约资本型技术进步;如果技术进步 前后ω不变,即劳动的产出弹性与资本的产出弹 性同步增长,则称之为中性技术进步。
Y AK L E



⑷ 多要素一级CES生产函数模型
Y A(1 K 2 L 3 E )
⑸ 多要素二级CES生产函数模型
1 m
• 要素之间的替代弹性是否相同?是多大?为什么?
YKE (a1 K 1 a 2 E 1 ) Y A(b Y
• 当两种要素可以互相替代时,就可以采用不同 的要素组合生产相同数量的产出量。要素的边 际替代率指的是在产量一定的情况下,某一种 要素的增加与另一种要素的减少之间的比例。
MRS K L K / L
• 要素的边际替代率可以表示为要素的边际产量之 比。
MRS K L MPL / MPK MRS L K MPK / MPL
⑵ 规模报酬
• 所有要素的产出弹性之和
• 规模报酬不变 • 规模报酬递增 • 规模报酬递减 • 为什么经常将规模报酬不变作为生产函数必 须满足的条件?
⒊ 要素替代弹性(Elasticity of Substitution)
⑴ 要素的边际产量(Marginal Product)
• 其他条件不变时,某一种投入要素增加一个单位 时导致的产出量的增加量。用于描述投入要素对 产出量的影响程度。
Y A K
1 1 c
L
1 1c
L A K
1 1 c
L
c 1 c
• 退化为C-D生产函数。为什么?
• 当a=1时,
1 bk
Y AK
1 1 c
b (L ( ) K) 1 c
c 1 c
Y AK
1 ( )m 1 c
b (L ( ) K) 1 c
• 在C-D生产函数中要素的替代弹性是否随研究对象 变化?是否合理?为什么? • 在C-D生产函数中要素的替代弹性是否随样本区间 变化?是否合理?为什么? • 在C-D生产函数中要素的替代弹性是否随样本点变 化?是否合理?为什么? • C-D生产函数中每个参数的数值范围是什么?为什 么?
⒋ CES生产函数模型(Constant Elasticity 0f Substitution)
其中:
Z Y L,k K L
• 当b=0时 ,
Y A exp L dk k 1a k c( ) a
a A exp( ln 1 a k 1 a ) c 1 1 a k a a
1 a a

1 a , Ae A a
1a
1 1 Y a ck 1 a A ( 1 a ) A(a k c) L a k
Z A exp
dk k 1a k c( ) a bk
⒉ 改进的C-D生产函数模型
Y A(t ) K L


t
Y A0 (1 ) K L
Y A0 e K L
t


• 参数的经济意义是什么? • 关于技术进步的假设是什么?为什么?
⒊ 改进的CES生产函数模型
1 KK LL 2 KL
,表现为何种时常函数? ,表现为何种时常函数?
⒎ 多要素生产函数模型
⑴ 多要素线性生产函数模型
Y 0 1 K 2 L 3 E
⑵ 多要素投入产出生产函数模型
K L E Y min( , , ) a b c
⑶ 多要素C-D生产函数模型

1 K Y A (a ( ) c) L L
1a
A (a
1a
K

cL )


1
•退化为CES模型。为什么?
• 当b=0,a=1时 ,
Y dk A exp L k (1 c)
1 ln k A exp( ) A k 1 c 1 c
⒊ C-D生产函数模型
Y AK L
Y E K K Y EL L


1
K A K L K Y Y 1 L AK L L Y
Y
d ( K / L) ( K / L)
d ( MPL / MPK ) ( MPL / MPK )
MPL K d (ln( )) d (ln( )) L MPK K K d (ln( )) d (ln( )) L L K K d (ln( )) d (ln( ) ln( )) L L 1
C-D生产函数 C-D生产函数的改 C-D生产函数的改 含体现型技术进步
1967年 Arrow等
1967年 Sato 1968年 Sato, Hoffman 1968年 Aigner, Chu 1971年 Revanker
两要素CES生产函数ห้องสมุดไป่ตู้
二级CES生产函数 VES生产函数 边界生产函数 VES生产函数
c ( )m 1 c
为实际应用的VES生产函数。
•为什么是“变替代弹性”?
⒍ 超越对数生产函数模型 (Translog P.F.)
ln Y 0 K ln K L ln L KK (ln K ) LL (ln L) KL ln K ln L
2
2
• 如果 KK LL KL 0 • 如果
⒉ 要素产出弹性(Elasticity of Output)
⑴ 要素的产出弹性 • 某投入要素的产出弹性被定义为,当其他投入 要素不变时,该要素增加1%所引起的产出量的 变化率。 Y K f K EK Y K K Y
Y EL Y L f L L L Y
• 要素产出弹性的数值区间?为什么?
Y A( 1 K

2L )

m
d ( K / L) d ( MPL / MPK ) ( K / L) ( MPL / MPK )
MPL K d (ln( )) d (ln( )) L MPK 1 1
相关文档
最新文档