卫星通信知识点
卫星 通信

下一页 返回
4. 1卫星通信的基本概念
通常,把以宇宙飞行体为对象的无线电通信统称为宇宙通信,但按照国 际电联的规定,它正式的名称为宇宙无线电通信。共同进行宇宙无线电 通信的一组宇宙站和地球站叫作宇宙系统,这里宇宙站是指设在地球大 气层之外的宇宙飞行体(如人造通信卫星、宇宙飞船等)或其他天体(如月 球或别的行星)上的通信站。宇宙通信有3种基本形式,如图4. 2所示, 包括:
上一页 下一页 返回
4. 1卫星通信的基本概念
4. 1. 4静止卫星通信的特点
1.静止卫星通信系统的主要优势 (1)通信距离远,且费用与通信距离无关。由图4.4可见,利用静止卫星,
最大通信距离高达18 000 km,且建站费用和运行费用不因通信站之间 的距离远近及两站之间地面上的自然条件的恶劣程度而变化。这在远距 离通信时,比地面微波中继、电线、光缆、短波通信等有明显的优势。 除了国际通信外,在国内或区域通信中,尤其对边远的城市、农村和交 通、经济不发达的地区,卫星通信是极有效的现代通信手段。 (2)覆盖面积大,可进行多址通信。许多其他类型的通信手段,通常只能 实现点对点通信。例如,地面微波中继线路只有干线或分支线路上的中 继站方能参与通信,不在这条线上的点无法利用它进行通信。
上一页 下一页 返回
第十二章网络营销实施与控制
教学目标 本章知识点及技能点 导入案例 第一节 网络营销实施管理 第二节 网络营销组织机构 第三节 网络营销风险控制 .4是静止卫星与地球相对位置的示意图。从卫星向地球引两条切线, 切线夹角为17. 320,两切点间的弧线距离为18 101 km,可见在这个卫 星电波束覆盖区内的地球站均可通过卫星实现通信。
通信工程师:卫星通信题库知识点(题库版)

通信工程师:卫星通信题库知识点(题库版)1、单选GPS全球定位系统由()颗卫星组网A.66B.48C.24正确答案:C2、单选关于天馈设备的主要技术要求,下面表述错误的是()A.天线的增益和天线直径与工(江南博哥)作波长之比有关B.提高天线高度,方向性及降低其反射面损耗可以降低天线噪声温度C.旋转性好是便于地球站天线更好地对准卫星.正确答案:B3、单选卫星地球站通过赤道上空约36000km的通信卫星的转发进行通信,视地球站纬度高低,其一跳的单程空间距离为72000~()km。
A、80000B、82000C、90000D、92000正确答案:A4、多选在卫星主站与基站(车)卫星链路对通完成后,卫星主站工程师可以根据基站(车)现场工程师要求将()与指定编号的()进行跳接,最终接入核心侧。
A.调制解调器B.卫星链路C.DDND.地面链路正确答案:B, D5、单选低轨卫星绕地球一周的时间为()A.24小时B.2小时左右C.12小时左右正确答案:B6、单选1颗静止卫行最大通信距离为()A.1000KmB.18000kmC.覆盖全球正确答案:B7、单选传输卫星电话时通常是采用在链路中加()来克服回波的干扰。
A.DCMEB.回波抑制器C.扰码器D.均衡器正确答案:B8、名词解释卫星移动通信正确答案:移动用户之间或移动用户与固定用户之间利用通信卫星作为中继站而进行的通信。
该系统一般由通信卫星、关口地球站、控制中心以及移动终端组成。
9、单选天线系统的主要功能是实现()。
A.对准卫星B.能量的转换C.发射信号D.接收信号正确答案:B10、单选为达到标准站射频能量扩散指标,必须在地球站的电路中加入能量扩散信号.能量扩散信号一般为()A.方波B.三角波C.尖锐脉冲正确答案:B11、单选在VipersAt系统中,利用PC进行远端站comtech570调制解调器参数设置时,在vipersAtconfig设置中,Unitrole项设为()。
2024年航空航天行业卫星通信技术培训资料

欧洲空间局通信 卫星项目
欧洲空间局的通信卫 星项目是一个致力于 提供全球通信服务的 重要工程。通过先进 的卫星技术,这个项 目实现了跨越国界的 通信连接,为全球的 信息交流和互动提供 了重要支持。该项目 的成功运作也为卫星 通信技术领域带来了 许多创新和应用。
SpaceX星链计划
全球互联网 覆盖
重要性强调
未来发展趋势展望
01 技术发展方向 02 应用领域拓展
03
感谢致辞
单位感谢
编写单位 支持单位
个人感谢
编写人员 支持人员
问题互动环节
在这个环节,我们将 提出一些关于卫星通 信技术的问题,让参 与者展开讨论,加深 对知识的理解和交流。 通过互动讨论,我们 可以共同探讨问题, 促进学习和交流的效 果。
推动全球通信进步
03 合作成果
打造通信新未来
结语
通过以上实战案例分析,我们深入了解了不同国 家和机构在卫星通信技术领域的探索和应用。随 着技术的不断进步和合作的深化,卫星通信将在 未来发展中扮演愈发重要的角色,为全球信息传 输带来更多便利和可能。
● 06
第六章 总结与展望
本资料总结
涵盖的内容 和知识点
地球同步轨 道
特点及应用
极地轨道
特点及应用
低地球轨道
特点及应用
卫星通信系统组成
01 地面站
功能和作用
02 卫星
种类和特点
03 用户终端设备
常见设备类型
卫星通信技术发展历程
1960s
首颗通信卫星上天
1980s
数字卫星通信技术出现
2000s
高性能通信卫星应用广泛
2020s
卫星通信技术不断创新
移动卫星知识点

移动卫星知识点移动卫星是指在地球轨道上运行的人造卫星,可提供各种通信服务和数据传输服务。
移动卫星技术的发展已经极大地改变了我们的生活,使得全球范围内的通信变得更加便捷和可靠。
本文将介绍移动卫星的基本概念、分类以及其应用领域。
一、移动卫星的基本概念移动卫星是指在地球轨道上运行的卫星,它们可以通过对地面站的连续覆盖,提供无缝的通信服务。
移动卫星通信系统由卫星、地面站和用户终端组成。
卫星负责接收、放大和转发信号,地面站负责与卫星的通信,用户终端则用来接收和发送信号。
二、移动卫星的分类根据功能和服务类型的不同,移动卫星可以分为以下几类:1.通信卫星:主要用于提供语音通信、数据传输和互联网接入等服务。
通过与地面站的连续覆盖,可以实现全球范围内的通信。
2.导航卫星:主要用于提供全球定位系统(GPS)等导航服务。
通过接收多颗卫星发射的信号,用户可以确定自己的位置和导航方向。
3.气象卫星:主要用于监测和预测地球的气象变化。
通过接收卫星传回的气象数据,科学家可以及时掌握天气变化情况,提供准确的气象预报。
4.地球观测卫星:主要用于监测地球表面的自然环境和人类活动。
通过接收卫星传回的图像和数据,科学家可以进行环境保护、资源管理和灾害监测等工作。
三、移动卫星的应用领域移动卫星技术在多个领域都有广泛的应用,以下是其中的几个主要领域:1.电信通信:移动卫星通信系统可以弥补地面通信网络的不足,实现远程地区的通信覆盖,提供语音、数据和互联网接入等服务。
2.紧急救援:移动卫星通信系统可以在灾难和紧急情况下提供及时的通信支持。
例如,在地震、海啸等灾害中,可以通过卫星电话和无线电通信进行救援和救援协调。
3.农业管理:移动卫星技术可以用于农业领域的土壤水分监测、农作物生长监测和灌溉控制等方面,帮助农民提高农作物产量和质量。
4.航空航天:移动卫星技术在航空和航天领域有着重要的应用。
例如,卫星导航系统可以提供飞机和航天器的精确定位和导航服务。
GPS系统应用基础必学知识点

GPS系统应用基础必学知识点1. GPS的原理:GPS系统由一组在地球上运行的卫星和接收器组成。
卫星传输位置和时间信息,接收器收集卫星信号并计算接收器与卫星之间的距离,进而确定接收器的位置。
2. GPS的基本结构:GPS系统由24颗工作卫星、地球上的控制站和用户接收器组成。
每颗卫星都维持精确的轨道,通过射频信号与控制站保持通信。
3. GPS的工作原理:GPS接收器通过接收来自至少4颗卫星的信号,并计算出与每颗卫星的距离,利用三角测量原理确定接收器的位置。
接收器还通过测量信号的传播时间来确定接收器与卫星之间的距离。
4. GPS的定位精度:GPS的定位精度取决于接收器的技术水平和接收到的卫星数量。
较高级别的GPS接收器通常具有更高的精度,同时接收到的卫星数量也影响精度。
5. GPS的应用:GPS系统广泛应用于航空导航、车辆定位、地理信息系统(GIS)、户外活动、勘测和地图制作等领域。
它还被用于船舶导航、农业、气象预报和科学研究等领域。
6. GPS接收器的选择:在选择GPS接收器时,需要考虑接收器的性能、价格和所需的功能。
接收器可以有不同的定位精度、屏幕大小、电池寿命和导航功能等。
7. GPS错误和修正:GPS定位可能受到信号阻塞、多径效应、大气延迟等因素的影响,导致定位误差。
为了减少这些误差,需要进行误差修正,如差分GPS技术和增强型GPS技术。
8. GPS的未来发展:GPS技术在不断发展,包括提高精度、增加卫星数量、增强导航功能和对农业、交通等领域的应用。
此外,与其他导航系统的整合也是未来的趋势。
初中卫星知识点整理

初中卫星知识点整理卫星是由人造的飞行器组成的天体,主要用于航天技术和通信传输。
卫星通常分为不同类型,包括地球观测卫星、通信卫星、导航卫星等。
在初中阶段的学习中,我们需要掌握一些与卫星相关的基础知识点。
本文将主要介绍关于卫星的定义、分类、应用以及对地球观测卫星的介绍。
首先,我们来了解一下什么是卫星。
卫星是由人类制造并发射到地球轨道上的人造飞行器,用于执行各种任务。
通常,卫星是由一颗或多颗人造卫星的组合体组成的。
卫星的主要特点包括不受地球引力影响的自由飞行、不需要人类进行操作以及通过广播或其他形式进行信息交流。
卫星通常根据其用途和任务分为不同类型。
其中,地球观测卫星主要用于收集、传输和分析地球表面的数据。
这些数据可以用于气象、农业、环境监测、地质勘探等领域。
通信卫星用于在不同地点之间传递信息,它们可以实现长距离的通讯并具有更大的带宽和数据传输速度。
导航卫星则用于确定地球上的位置和导航方向,它们可以帮助司机导航、飞行员导航以及海上航行员确定船只位置。
在地球观测卫星方面,我们需要了解一些重要的卫星和相关技术。
首先是“遥感”技术,它是通过卫星或者其他远程传感器获取地球表面信息的过程。
这种技术可以帮助我们监测环境变化、气象预测以及资源管理。
常见的地球观测卫星有“风云”系列卫星用于气象观测、LANDSAT系列卫星用于陆地观测以及“环境卫星”用于环境监测等。
另一个重要的地球观测卫星是“地球同步轨道卫星”,它的轨道与地球自转的速度保持一致,使得卫星在同一地点上空的时间保持不变。
这种轨道可以确保卫星持续观测同一地区,对于气象、环境等领域的研究非常有用。
一些常见的地球同步轨道卫星包括“静止轨道气象卫星”和“可见光地球同步卫星”。
此外,卫星的应用还延伸到其他领域,例如军事、科研和应急救援等。
在军事方面,卫星可以提供情报、监视和通信等功能。
在科学研究方面,卫星可以帮助天文学家观测宇宙,了解宇宙的起源和演化。
在应急救援方面,卫星可以提供灾害监测和救援支持,例如地震后的灾后重建和救援行动。
卫星通信波束的知识点总结

卫星通信波束的知识点总结卫星通信技术是指利用卫星作为中继器传输通信信号,实现全球范围内的通信服务。
而卫星通信波束是指卫星天线所发射或接收的信号束。
通过卫星通信波束,可以实现更高效的信号覆盖和传输。
本文将详细介绍卫星通信波束的概念、分类、特点以及在卫星通信系统中的应用。
一、概念卫星通信波束是指从卫星天线发射或接收的一束具有特定方向性和功率特性的电磁波。
卫星通信波束通常会根据通信需求和天线性能在空间中形成一个狭窄的波束,从而实现信号的精确覆盖和传输。
卫星通信波束可以分为宽波束和窄波束两种。
宽波束指的是覆盖范围广,传播距离远的通信波束;窄波束指的是覆盖范围窄,传播距离近的通信波束。
不同类型的卫星通信波束具有不同的应用场景和特点。
二、分类根据卫星通信波束的覆盖区域和应用范围,可以将其分为全球波束和区域波束两种。
1. 全球波束全球波束是指具有全球通信覆盖能力的通信波束。
通过全球波束,可以实现全球范围内的通信服务,满足全球化通信需求。
全球波束通常会采用宽波束的设计,以实现对较大范围的地面通信站进行信号覆盖和传输。
2. 区域波束区域波束是指具有特定区域通信覆盖能力的通信波束。
通过区域波束,可以实现对特定地区范围内的通信服务,满足区域化通信需求。
区域波束通常会采用窄波束的设计,以实现对特定区域内的地面通信站进行精确的信号覆盖和传输。
三、特点卫星通信波束具有以下特点:1. 方向性卫星通信波束具有明确的传输方向和覆盖范围,可以根据通信需求进行精确定向传输,提高信号传输效率和质量。
2. 高效性卫星通信波束可以实现精确的信号覆盖和传输,提高了通信系统的资源利用效率和传输速率,适应了各种复杂通信环境下的需求。
3. 灵活性卫星通信波束可以根据不同通信需求进行调整和变换,满足全球范围内的通信服务和区域范围内的通信需求。
4. 可控性卫星通信波束可以根据卫星天线的控制系统进行精确控制和调整,实现对信号传输的动态管理和优化。
四、应用卫星通信波束在卫星通信系统中具有广泛的应用。
卫星通讯知识点归纳总结

卫星通讯知识点归纳总结一、卫星通讯基础知识1.卫星通讯的概念卫星通讯是利用卫星作为信号中继站,进行远距离通讯的一种通讯方式。
通过卫星,可以实现全球范围内的通讯覆盖,能够跨越地面的地理障碍,适用于广域通信、广播、电视等多种通讯应用。
2.卫星通讯的原理卫星通讯是通过地面站发射信号到卫星,再由卫星转发信号到目标地点的过程。
具体而言,地面站发射的信号经过天线传输到卫星上,再由卫星的转发器转发到另一地面站或用户终端,实现通讯目的。
3.卫星通讯的组成卫星通讯系统包括地面站、卫星和用户终端三部分。
地面站通过地面设备和天线发射信号到卫星,卫星通过天线接收地面信号并转发到另一地面站或用户终端。
二、卫星通讯技术1.卫星通讯的频段卫星通讯利用的频段主要包括C波段、Ku波段和Ka波段等。
C波段通讯距离远,穿透能力强,适用于卫星广播、远程通讯等;Ku波段通讯带宽大,传输速率快,适用于高速数据传输、互联网接入等;Ka波段通讯频率高,传输速率更快,适用于高清视频传输、卫星移动通信等。
2.卫星通讯的调制技术卫星通讯采用的调制技术主要包括AM、FM、PM等模拟调制技术,以及BPSK、QPSK、8PSK等数字调制技术。
调制技术可以提高信号的抗干扰能力、增加传输速率、提高频谱利用率等。
3.卫星通讯的编码技术卫星通讯采用的编码技术主要包括差分编码、卷积编码、交织编码、纠错编码等。
编码技术可以提高信号的可靠性,减小误码率,提高通讯质量。
4.卫星通讯的多址技术卫星通讯中的多址技术包括FDMA、TDMA、CDMA等。
FDMA将频段分成不同的信道,每个信道分配给不同的用户;TDMA将时间分成不同的时隙,不同用户在不同的时隙传输;CDMA利用不同码型区分用户,提高频谱利用率。
5.卫星通讯的跟踪技术卫星通讯中的跟踪技术包括天线跟踪、频率跟踪、星上时钟跟踪等。
跟踪技术可以确保地面站和卫星之间的通讯连续性,减小信号衰减和误差。
6.卫星通讯的天线技术卫星通讯中的天线技术主要包括馈源天线、反射天线、相控阵天线等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
卫星通信卫星通信:是指利用人造地球卫星作为终极辗转发或发射无线电信号,在两个或多个地球站之间进行的通信。
(特点:它覆盖面积大、不受地理条件的限制、通信频带宽、容量大、机动灵活,因而在国际和国内通信领域中,成为不可缺少的通信手段)卫星通信系统:由空间分系统、通信地球站、跟踪遥测及指令分系统、监控管理分系统四大功能部分组成。
(①跟踪遥测及指令系统对卫星进行跟踪测量控制其准确进入静止轨道上的指定位置,并对在轨卫星的轨道位置及姿态进行监视和校正。
②监控管理分系统对在轨卫星的通信性能及参数进行业务开通前的监测和业务开通后的例行监测和控制,以便保证通信卫星的正常运行和工作。
③空间分系统指通信卫星)卫星转发器:装在卫星上的收、发系统称为转发器,作用是接受由各地面站发来的信号,经变换频率和放大后,再发给各收端站。
它主要是由天线、接收设备、发射设备和双工器组成。
(主要的功能收到地面发来的信号(上行信号)后,进行低噪声发大,然后混频,混频后的信号再进行功率放大,然后发射回地面(下行信号)。
上行信号和下行信号的频率是不同的,这是为了避免在卫星天线中产生同频率信号干扰)卫星通信频率选择中考虑的损耗(电波传播的特点)工作频段的选择主要考虑电离层的反射、吸收;对流层的吸收、散射损耗等因数与频率的关系。
常用波段:L波段(1.6/1.5GHz)C波段(6.0/4.0GHz )Ku波段(14.0/12.0GHz 14.0/11.0GHz)Ka波段30/20GHz)一般工作频率选择在1-10GHz,最理想为4-6GHz。
考虑的传播损耗:1.自由空间的传播损耗。
2.大气损耗(对流层的影响和电离层的影响)3.移动卫星通信电波的衰落现象(多径传播和多径衰落)4.多普勒频移(由于通信双方相对位置在移动时,由多普勒效应引起的附加频移)同步卫星:如果卫星的轨道是圆形且在赤道轨道上,卫星离地面约35860km时,其飞行的方向与地球自转的方向相同,则从地面上任何一点看去,卫星都是相对静止的,这种对地静止的同步卫星简称为静止卫星。
(利用静止卫星作为中继站的通信系统,称为静止卫星通信系统。
)信道:目前常用的多址方式有FDMA/TDMA/CDMA/SDMA在信道分配技术中,信道的含义,在FDMA中是指各地球站占用的频段;在TDMA中指各地球站占用的时隙;在CDMA中是指各地球站使用的码型。
信道利用率问题编码方式选择的原则:①保证话音质量-数码率越高越好②有较高的信道利用率-数码率越低越好两类编码技术:①波形编码(将时域信号直接编为数字代码如PCM、ADPCM等。
)②参量编码(抽取频域特征参量或其它参量进行数字编码的方式,如线性预测声编码器 LPC 等。
一般常用 ADPCM 方式)卫星通信中的差错控制与扰码差错控制(1)前向纠错(FEC)码是一种无反馈的差错控制方式,依靠在编码过程中选用适当的纠错码,在接收端进行识别纠错。
特点:不需要重发,适合于传输时延大的白噪声信道。
前向纠错码(FEC)分为分组码和卷积码两大类。
①分组码主要采用:循环冗长校验(CRC)码和循环(BCH)码②卷积码主要采用:代数译码和概率译码两种方法。
(2)重传技术是一种反馈差错控制方式,采用双向信道,当接收端收到信号被判有误时,反NAK信号要求重发,直到信号被确认,反馈ACK(acknowledge)信号时,再发送下一组信号。
特点:由于卫星信道时延太长(单边时延为0.27秒),重传方式适合于非实时的数据信息传输。
重传技术(ARQ)分三种类型(停止与等待ARQ/连续ARQ/有选择的ARQ)信道的分配方式:①预分配方式(PA)②按需分配方式(DAMA)③随机分配方式(RA)多径传播和多径衰落:①高频电波在传播过程中,往往经过了反射、散射、绕射等途径,最后以合成波的形式到达接收天线,这种传输方式称为多径传播。
②在多径传播的过程中,由于传播途径变化引起的衰落现象称为多径衰落。
信道的预分配方式(PA):每个地球站预先分配一个专用的上行和下行载波频率,其他地球站要接收某一地球站信号时,必须具备接收该站频率的条件。
优点:技术成熟、工作可靠等,适合用于站少而容量大的场合。
缺点:转发器同时放大多个载波,存在互调干扰。
①采用最多的方式:模拟制—频分多路复用—调频—频分多址—预分配(FDM/FM/FDMA/PA)②当前发展最快的一种方式为:数字制—时分多路复用—数字调相—频分多址—预分配(TDM/PSK/FDMA/PA)卫星通信体制:是指卫星通信系统的工作方式(即采用的信号传输方式,信号处理方式和信号交换方式等)指以下两方面内容:①卫星通信采用的信号传输方式-多路复用方式②信号处理和交换方式(调制方式/编码方式/多址连接方式)卫星通信采用的多路复用和调制方式广泛采用的多路复用方式为频分多路(FDM)和时分多路(TDM)两种。
调制方式:由于不同的数字调制方式具有不同的功率利用率和频带利用率,综合两方面考虑,现在主要采用二相移相键控和四相移相键控调制方式。
随着转发器线性技术的发展,也有采用正交调幅QAM方式,以提高频率利用率。
互调干扰:由于放大器存在非线性,在放大过程中不可避免地要产生谐波,而FDMA方式卫星转发器要同时放大多个载波,各个载波产生的谐波将互相影响,形成的干扰称为互调干扰。
多址连接方式与多路复用多址通信是指卫星天线波束覆盖区内的任何地球站可以通过共同的卫星进行双边或多边通信联接,常称之为“多址联接”多址联接方式(频分多址FDMA/时分多址TDMA/码分多址CDMA/空分多址SDMA)数字制多路复用频分多址方式:TDM/PSK/FDMA多路信号通过PCM调制后进行时分复用,以四相绝对移相键控(QPSK)对载波频率调制。
根据载波频率的不同区分站址。
TDMA系统的帧帧:在TDMA方式中,卫星转发器以循环的方式将时隙分配给各站使用,循环的一个重复周期称为一帧。
分帧:每一帧中各站使用的时隙称为分帧。
输出功率退回和输出补偿:为了抑制因互调干扰所引起的噪声,需要使总输入信号功率从饱和点减少一定数值,通常把行波管放大单个载波时的饱和输出电平与放大多个载波时工作点的总输出电平之差称为输出功率退回或输出补偿;而把放大单个载波达到饱和输出时的输入电平与放大多个载波时工作点的总输入电平之差称为输入功率退回或输入补偿。
等效噪声温度:将环境温度为T0时放大器内部噪声在输出端产生的噪声功率折算到输入端热噪声在输出端产生同样大小的噪声功率时所对应的绝对温度Te,叫做等效噪声温度VSATVSAT:(定义)即甚小天线地球站,由于天线口径可以做得很小,所以称之甚小天线地球站。
VSAT是一种工作在C频段(4-6GHz)或Ku频段(11-14GHZ)的一种小型高度软件控制的卫星地球站。
用途:可以实现VSAT终端用户之间的数据、话音、传真、广播、图像、电视等通信。
主要特点:①适用于各种数据和话音VSAT系统。
②70MHz中频接口。
③模块结构,维护扩容方便。
VSAT网络的主要优点有:1.经济效益好。
2.组网灵活,在VSAT网络中增加、减少或搬迁VSAT站都十分容易,网中用户不受地理位置及复杂的通信线路限制。
3.信道误码率低,容易构成端对端的独立专用通信网。
VSAT系统在Internet接入方面的应用主要有以下几种方式: 1.为大型ISP提供远程Internet连接 2.扩展Internet到边远地区并在ISP间提供链接 3.直连到计算机(包括连接到LAN服务器双跳方式:由于小站EIRP较小,星载转发器增益有限,小站之间的通信必须以:小站-卫星-主站-卫星-小站的方式(双跳方式)完成。
内向传输和外向传输:外向:主站-卫星-小站内向:小站-卫星-主站宇宙窗口:微波能穿透电离层,因而成为卫星通信、全球卫星导航及人类探测外层空间的“宇宙窗口”移动卫星通信系统:移动卫星通信是指利用卫星转发器构成的通信链路,使移动体之间或移动体与固定体之间建立的通信。
因此它可以看成是陆地移动通信系统的延伸和扩展。
范·艾伦带:在地球大气层以外,由高能电子和质子组成的辐射带(1000km以上高空)。
卫星必须避开这些区域。
卫星轨道:①低地球轨道(LEO)卫星(Hmax<5000Km运行周期 2-4 小时)②中地球轨道(MEO)卫星(5000Km <Hmax<20000Km运行周期4-12小时)③高地球轨道(HEO)卫星(Hmax>20000Km运行周期12小时以上)④同步地球轨道(GEO)卫星(Hmax≈35860Km运行周期24小时)几种卫星通信系统:①静止轨道(GEO)区域移动卫星通信系统(国际移动卫星INTELSAT(IS) IS具有以下特点:1.系统庞大,用户广泛。
2.IS在系统容量、可靠性、可联接性和经济性方面,均居世界前列。
3.技术先进,不断创新。
②低轨道(LEO)移动卫星通信系统(铱星系统、全球星系统):低轨道移动卫星通信系统是位于500Km-1500Km高度范围的多颗卫星组成的全球移动通信系统低轨卫星系统的主要优点:1)、信号传输时延小。
2)、地面终端设备简单、造价低,是手持式终端的最佳方式。
3)、卫星造价低、发射容易。
天线的波束:描绘以天线为中心,空间辐射电磁场能量分布情况或辐射辐射场在空间某方向上能量集中程度的图形,称为天线方向图。
天线方向图曲线上某点到天线中心距离表示天线在该点对应方向上的增益。
主波束(主瓣):对应于最大增益的波束;旁瓣:其它波束。
以主波束增益峰值向轴两侧各下降3dB的半功率点宽度,称为波束宽度。
自由空间传播损耗LP 天线增益有效全向辐射功率载波接收功率载噪比C/N。