溶剂脱沥青

合集下载

石油炼制-溶剂脱沥青

石油炼制-溶剂脱沥青

溶剂
乙烷 丙烷 丁烷 戊烷
来自FCC气体分馏
溶解度增大,脱沥青油收率提高,但选 择性下降,性质下降。
要根据原料性质及对脱沥青油的性质要 求,选择合适的溶剂或混合溶剂组成。
二.影响因素
4.原料性质
(1)含油量对最低丙烷用量影响很大
含油量高,用丙烷多 【对丙烷过程不利,减压渣油要深拔】
沥青析出是因为丙烷加入改变了油对其溶解度
本章内容提要
第1节 概 述
一、为什么溶剂脱沥青?
裂化
饱和烃
侧链断裂
芳烃
裂化产物
侧链 断裂
裂化 缩合
焦炭前身物
侧链断裂
低苛刻度 高苛刻度 高苛刻度
沥青质
TI
QI
焦炭
中间相
缩合
缩合/聚合
胶质
第1节 概 述
一、为什么溶剂脱沥青?
减渣 Arab heavy Orinoco
饱和份 wt% 17.6
12.1
2.脱沥青油性质
项目 原料 轻脱油
重脱油 总脱沥
青油
典型操作条件下DAO元素及四组分性质
H/C S,wt% N,wt% Sat
四组分,wt% Ar Re nC5沥青质
0.316 1.07 33.7 34.0 29.8
20.7
1.963 0.255 0.728 48.4 34.1 17.4
0
1.919 0.248 0.769 49.4 34.1 16.3
7
0.4
84.0 822 351 8.34 4.3 45.7 0.4 0.5 1.9 0.3 总脱油
83.8
819
9.5
6.4 43.4 0.5

溶剂脱沥青讲义-课件(PPT演示)

溶剂脱沥青讲义-课件(PPT演示)

国内溶剂脱沥青的装臵水平



我国现有溶剂脱沥青装臵28套(22个炼厂), 其中丙脱19 套(能力502.5万吨/年),丁 烷脱沥青 8 套(能力390万吨/年,异丙醇 脱沥青1套(2.5万吨/年)。 最大能力:丙脱60 万吨/年(国外100万吨 /年,Exxon公司Bayton炼厂),丁脱80 万 吨/年(国外最大260万吨/年,波兰)。 能耗:丙脱1170~2295.6MJ/t,丁脱 2284.6~1017.8MJ/t。
残炭/ ω%
Ni + V, mg/kg 脱油沥青 软化点/ ℃
4.5
1.6 94
12.5
31.0 193
12.7
29.0 -
13.0
29.0 177
7.9
22.5
11.5
64.0 -
6.9
20.0 137
国外溶剂脱沥青工业化情况



KBR公司:ROSE工艺,32套,最大260万吨/年, 总能力超过2500万吨/年。在运转的有19套, 能力为1600万吨/年。 UOP公司:Demex工艺,13套,最大210万吨/ 年,总能力约1300万吨/年。 Foster-Wheeler公司:LEDA工艺(主要是转盘 塔丙烷脱沥青),42套,总能力1250万吨/年。

ROSE工艺技术特点
亚临界抽提-超临界溶剂回收工艺 一段/两段抽提-沉降流程 早期使用乱堆填料和高压降进料分配器, 后来改用高效规整填料(KOCH-GLITSCH公司提供) 和低压降进料分配器(ROSEMAX)。 ROSEMAX:1995年工业化,处理量提高最 大达60%,循环溶剂纯度提高达90%(含 油量从4.01%降到0.41%)。
溶剂脱沥青技术 讲座

ROSE溶剂脱沥青技术

ROSE溶剂脱沥青技术

柴油
汽油 B 混合塔 BLEND ER
常压瓦斯油
柴油
减压蒸馏 原料的50%
减 压 蒸 馏 塔 V D U
石脑油 轻循环油
油浆
ROSE
沥青
常压重油 + 减压重油 ROSE消除减压 蒸馏瓶颈
原厂 设计 原油 °API 千桶/日 减压蒸馏 焦化 焦炭 吨/日 ROSE 催化裂化 (FCC) 31.1 202 100 38 2050 72 31.1 202 100 18 1420 38 90 ROSE 减压蒸馏 旁路 31.1 202 50 18 1420 69 90
ROSE帮助焦化脱瓶颈
90
ROSE消除减压蒸馏和焦化的
瓶颈
石脑油 常 压 蒸 馏 塔 C D U 原油 石脑油 加氢 精制 装置 NHTU 柴油 加氢 精制 装置 DHT C3 烯烃 常压重油 C4 烯烃 石脑油 轻质减压瓦斯油 重质减压瓦斯油 脱沥青油 DAO 石脑油 减压重油 送往DHT的轻 延迟 质焦化瓦斯油 焦化 重质焦化瓦斯油 装置 DCU 石油焦 冷流 加氢 瓦斯油 处理 CFHTU 柴油 流化 催化 裂化 装置 FCCU 烷基化 ALKY 选择性脱硫 SCANFINER 循环油加氢 裂化LCO HC 燃油 连续 催化 重整 装置 CCR 液化石油气 重整油 丙烯
重质原油对现有设备的影响
石脑油
CDU 影响不大
蒸馏馏分
重质原油 使蒸馏受限
催化裂化 原料
VDU 受限 焦化 受限
$$
焦化原料
产生更多催化裂化原料 (可溶于C3/C5溶剂)
降低的焦化原料 和焦炭生成
常规的 蒸馏方法
ROSE 方法
溶剂脱沥青 (SDA)
• 常规 SDA ♦通过沸腾进行溶剂回收 ♦产生于20世纪30年代 ♦多为小型装置

3.2.4 重质油溶剂脱沥青工艺技术

3.2.4 重质油溶剂脱沥青工艺技术
中国石油大学提出了表征重油的特征化参数KH
KH 对于重油的主要性质应该是一个单调的函数 无论重油的来源如何,只要具有相同的性质,KH 就应该 有相同的数值 KH 能预测重油的反应性能 引入反映化学结构性质的H/C比
K
1 . 216 T .6 d 15 15 . 6
1/ 3

K H 10
21
60
80
100
0 0 20 40 60 80 100 Yield, wt%
CCR,%
Yield, W t%
0 0 10 20 30 40 50 60 70 80 90 100 Yield, wt%
Saudi Arabia
15
Shengli
400 350
10
V,ppm
300 250 200 150 100 50
30.00
8.00
20
20.00
0 2 4 6 8 10 12
20.00 6.00 7.00 8.00 9.00 10.00
4.00
KH
6.00
7.00
8.00
9.00
10.00
0.00 4.00 6.00 8.00 10.00
KH
Characterization index
characteristic parameter, KH



13
14
6、溶剂脱沥青工艺
溶剂脱沥青过程需要采用数倍于原料油的溶剂,其 溶剂回收部分的能耗很高,这是制约其发展的因素 之一 脱油沥青的清洁利用是制约溶剂脱沥青发展的另一 重要因素
二、超临界流体萃取分馏-SCFE
SCFE—supercritical fluid extraction 重质油国家重点实验室对国内外多种减压渣油用超 临界溶剂萃取分馏法进行了系统的研究,结果表明 这是一种分离重质油的很有效手段

溶剂脱沥青抽提深度探讨

溶剂脱沥青抽提深度探讨

溶剂脱沥青抽提深度探讨摘要:过度抽提和混相是溶剂脱沥青装置常出现的问题之一,本文分析了影响抽提的主要因素是:原料性质、抽提温度、溶剂组成、压力。

通过优化抽提条件能够最大限度的避免过度抽提和抽提混相,生产出质量优良的低残炭脱沥青油。

关键词:过度抽提混相抽提温度溶剂组成原料性质压力一、前言溶剂脱沥青装置过程的主要作用是除去渣油中的沥青以降低其残炭值。

该装置是利用混合C4为溶剂,以减压渣油为原料,在一定的压力和温度下,利用溶剂对原料中的饱和烃和芳烃有较大的溶解性而对胶质和沥青质几乎不溶的特性,达到脱沥青油和沥青分离的目的。

但是溶剂脱装置在运行中会由于多方面因素导致过度抽提和混相,过度抽提会产出高软化点且很硬的沥青质,导致炉管压降很大,易造成炉管结焦。

混相会堵塞低压冷却系统,降低冷却的效率,还会造成脱沥青油颜色发黑、残碳偏高。

本文主要分析了抽提温度、溶剂组成、原料性质、压力等影响因素。

通过优化抽提条件最大限度的避免过度抽提和混相,生产出质量优良的低残炭脱沥青油。

所以选择适合的抽提条件变得非常重要。

二、装置工艺原则流程及主要工艺过程本装置采用抽提工艺,即在一定压力和温度下,溶剂以液态形式与原料充分混合,液-液抽提,将脱油与沥青分离。

富含溶剂的脱油,经脱沥青油溶液泵增压后进入加热炉升温至超临界状态后,在溶剂分离器内溶剂以气体状态与油分离。

分离后的溶剂在高压下换热冷却至临界温度以下,成为液相溶剂使用。

经汽提进一步回收残余溶剂后的脱油作为催化裂化原料。

而沥青溶液则经沥青加热炉升温、汽提回收溶剂后作为半沥青送出装置。

三、抽提深度不当产生的现象1.过度抽提现象过度抽提从产品的外观表现为沥青呈现粉末状的黑色小颗粒,流动性能很差,延展度差,软化点高等特点。

工艺上的表现为抽提器里的沥青很难通过加热炉,且从抽提器放料的沥青流量逐渐减小,在放料的同时会造成加热炉前的入口压力很高,几乎和抽提器本身的压力相差无几,且加热炉进出口的压降非常大,造成沥青无法正常的通过加热炉。

探讨威胁溶剂脱沥青装置安全运行的因素及控制措施

探讨威胁溶剂脱沥青装置安全运行的因素及控制措施

溶剂脱沥青是一种以小分子烃类为抽提溶剂,从渣油中将沥青质、胶质有效脱除的工艺,需要依靠专业性强、安全性高的装置进行操作。

对此,在进行溶剂脱沥青装置管理时,为有效提升管理质量,减少装置安全事故的发生,有必要掌握影响溶剂脱沥青装置安全运行的因素,并做好安全防控工作。

一、威胁溶剂脱沥青装置安全运行的关键因素分析1.人员操作因素溶剂脱沥青装置的安全运行离不开人力资源支撑。

但就目前溶剂脱沥青装置人员构成来看,普遍存在职工文化水平偏低、老龄化严重、安全意识低下等问题。

例如,某企业溶剂沥青装置职工中75%以上超过45岁,中专及以下学历占80%。

这在一定程度上制约了先进管理理念、安全管理技术、安全管理模式等在溶剂脱沥青装置安全运行中的引入,不利于安全防控水平与能力的提升。

2.设备自身因素设备性能与质量是影响溶剂脱沥青装置安全运行的关键因素。

通过统计近五年溶剂脱沥青设备故障,发现原料泵、溶剂泵、洗涤油泵、低压空冷风机、沥青加热炉瓦斯管线、蒸汽管线、溶剂换热器等均出现过故障。

严重威胁溶剂脱沥青装置运行安全,影响企业炼油质量与效率。

而对设备故障成因进行分析,主要表现为设备老化、设备磨损严重、管线腐蚀、设备与管线接触不良、加热装置局部过热等。

3.生产工艺因素由溶剂脱沥青工艺原理以及工艺流程可知,溶剂脱沥青装置主要以丙烷、丁烷、戊烷等低分子烃类为溶剂,温度、压力、溶剂类型、溶剂比、原料性质等是影响溶剂沥青的核心因素,超临界技术是溶剂油沥青装置生产核心工艺。

因此,受工艺物料性质、工艺操作条件以及产品物化性质等因素影响,溶剂脱沥青工艺危险性较大。

进行溶剂脱沥青工艺改进则是新时期石油化工企业提高生产质量,增强生产效益,降低生产风险的重要举措。

4.安全管理因素安全管理不到位是增加溶剂脱沥青装置运行风险的关键因素。

例如,安全教育培训机制缺失,无法为工作人员提供系统化、专业性指导与培训,不利于工作人员安全意识、安全操作能力、安全管理能力的提升,易出现操作风险;安全事故应急机制缺乏,影响装置安全运行风险预测与评估质量,不利于风险与事故及时防范与控制。

溶剂脱沥青工艺优化

溶剂脱沥青工艺优化

结果对比及讨论
结果对比
将实验数据与已有数据进行对比,分析优 化措施对溶剂脱沥青工艺的影响。通过对 比可以发现,优化后的溶剂脱沥青工艺具 有更高的分离效率和更好的分离效果。
结果讨论
对实验结果进行分析,探讨溶剂脱沥青工 艺的优化原理及实际应用价值。结果表明 ,优化后的溶剂脱沥青工艺能够提高渣油 的利用率和降低废弃物排放量,具有较好 的经济效益和环保效益。
07
参考文献
参考文献
张三, 李四. 溶剂脱沥青工艺研究进展. 石油化工, 2020, 49(1): 1-8. 王五, 马六. 溶剂脱沥青工艺中影响因素的研究. 石油学报(石油加工), 2021, 37(2): 143-150. 刘七, 王五. 基于溶剂脱沥青工艺的节能优化研究. 节能技术, 2019, 37(3): 23-28.
随着原油品质的劣质化和市场需求的变化,溶剂脱沥青工艺面临着诸多挑战,如 提高产品质量、降低能耗和减少环境污染等。
研究目的和意义
研究目的
通过对溶剂脱沥青工艺的优化,提高产品质量、降低能耗和减少环境污染。
研究意义
为石油化工企业提供更加高效、环保和经济的生产方式,满足市场需求,提 高企业竞争力。
02
溶剂脱沥青工艺概述
溶剂脱沥青工艺原理
基于相分离的原理
利用溶剂与沥青的溶解度差异,通过加热和混合,使沥青从 油料中分离出来。
分离过程
溶剂与油料混合,加热至一定温度,沥青溶解在溶剂中,形 成沥青溶液;然后冷却至室温,沥青从溶液中沉淀出来,实 现与溶剂的分离。
溶剂脱沥青工艺流程
原料准备
选择合适的油料,如原油、渣油等。
沉降分离
感谢您的观看
THANKS
工业化应用前景及经济效益分析

溶剂脱沥青

溶剂脱沥青

溶剂脱沥青原理
渣油中的烃类和胶状物质本来是互溶的,或 者是有些呈溶胶均匀地分散在油中。 当丙烷加入到渣油中,温度在60-70℃或更低 时,由于丙烷对烃类的溶解度还很大,于是 丙烷与烃类形成均匀的溶液。

溶剂脱沥青原理

丙烷对胶状物质的溶解度很小,因此溶液对 胶状物质的溶解度比烃类的要小得多,所以 当加入的丙烷量增加时,溶液对胶状物质的 溶解度就会下降,当下降至不能溶解全部胶 状物质时它们就会从溶液中析出,并且随着 溶剂比的继续增大,胶状物质析出量也增大。

影响溶剂脱沥青的因素 溶剂

实际生产中工业溶剂不可能是单一的溶剂,而溶剂的组成直 接影响脱沥青的结果。
一般工业丙烷来源于催化裂化气体分馏装臵,丙烷中会含有 其他烃类,由于各种烃类的基本性质不同而影响抽提操作及 效果。因此对溶剂的其它组分含量要加以限制。 如对于生产重质润滑油为主的丙烷脱沥青装臵,为了保证脱 沥青油质量与收率,降低溶剂比,减少溶剂消耗,对丙烷溶 剂的要求是:丙烷含量不小于80% ,C2不大于2%,C4不大于 4%,丙烯含量也要尽量低。

溶剂脱沥青原理

当温度升高至40℃后,又开始有不溶物析出,而且随 着温度的升高,析出的物质增加,至丙烷的临界温度 (97℃)时,油全部析出。 由此可见,从40℃到97℃又出现第二个两相区。 丙烷脱沥青过程就是在这第二个两相区温度范围内操 作的。

溶剂脱沥青原理

而第一个两相区温度范围内是不适宜脱沥青操作, 因为在-42℃-20℃温度下,不仅胶质、沥青质几乎 不溶于丙烷,而且固体烃(蜡)也只稍溶于丙烷,所 以在分出胶质、沥青状物质的同时,蜡也会被分出, 这样就会使蜡和沥青都不能应用。

溶剂脱沥青原理
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

溶剂脱沥青原理
溶剂比-油收率-油的残炭值之间的关系
由此可见,在油收率 -溶剂比曲线上就会 出现一个最低点,这 个点就是在一定温度 下能析出胶状物质的 最大量。此时,无论 怎样改变溶剂比都不
能超过这个数值。
溶剂脱沥青原理
如果要得到比上述曲线最低点的脱炭程度更高的油,只能采 用升高温度的办法,因为升高温度能降低溶解度,因而可使 曲线上最低点的位置降低。
溶剂脱沥青原理
温度由38℃ 升至72℃时,脱炭程度也随之加 深。由此可见,在丙烷脱沥青时,温度是控 制产品质量的最灵敏因素。
在温度升高至70℃以上或更高的温度时,不 仅降低了曲线的位置,而且还改变了曲线的 形状。
溶剂脱沥青原理
原因:温度升高时,油和丙烷之间的溶解度 大为减小,油中只能溶解少量丙烷,这时, 或者只能析出少量胶状物质,形成分别以沥 青、油、丙烷为主的三个液相共存;或者油 中溶入的丙烷量较少,还不足以使胶状物质 析出,于是形成油-沥青和丙烷-油两个液相。
溶剂脱沥青原理
但是这种情况并不是无限制的,因为丙烷毕 竟对胶状物质还有一定的溶解度,当加入的 丙烷量增大至一定数量时,溶液的溶解度就 接近丙烷的溶解度,此时若再加入丙烷,溶 液的溶解度降低得很少。但是由于溶液的总 量增加了,因此,总还能多溶解一些胶状物 质,于是,表现出来的现象是析出的胶状物 质随着溶剂用量的增加而减小。
概述
沥青并不是沥青质,它包括沥青质、胶质、
某些大分子烃类、以及含有硫、氮的化合物, 甚至还含有Ni、V等金属的有机化合物。
溶剂脱沥青原理
溶剂:低分子烃类,如丙烷、丁烷、戊烷以及它 们的混合物。
溶剂脱沥青原理:以各种烃类在这些低分子烃类 中的溶解度不同作为基础,利用它们对环烷烃、 烷烃及低分子芳香烃有相当大的溶解度,而对胶 质沥青质则难溶或几乎不溶的特性,使胶质和沥 青质从渣油中脱除的。
溶剂脱沥青原理
渣油中的烃类和胶状物质本来是互溶的,或 者是有些呈溶胶均匀地分散在油中。
当丙烷加入到渣油中,温度在60-70℃或更低 时,由于丙烷对烃类的溶解度还很大,于是 丙烷与烃类形成均匀的溶液。
溶剂脱沥青原理
丙烷对胶状物质的溶解度很小,因此溶液对 胶状物质的溶解度比烃类的要小得多,所以 当加入的丙烷量增加时,溶液对胶状物质的 溶解度就会下降,当下降至不能溶解全部胶 状物质时它们就会从溶液中析出,并且随着 溶剂比的继续增大,胶状物质析出量也增大。
溶剂脱沥青原理
当以低相对分子质量的烷烃(C3, C4, C5)作溶剂 时,根据溶解过程的分子相似原理,渣油中相对 分子质量较小的饱和烃和芳烃较易溶解,而胶质 及沥青质则较差,甚至不溶。
从分子的极性大小来看各组分的溶解度,也是饱 和烃最大,芳烃次之(其中的多环芳烃又差些), 胶质又次之,而沥青质则基本不溶。
丙烷-渣油体系溶解度原理图 丙烷:渣油=2:1(体积比)
溶剂脱沥青原理
从零下若干度到稍高于20℃的范围内,分离 出的不溶物量随着温度升高而减少,也即溶 解度增大;
到温度稍高于20℃时,两相变为完全互溶的 一相。这就是说,在低于20℃前出现第一个 两相区。
溶剂脱沥青原理
当温度升高至40℃后,又开始有不溶物析出,而且随 着温度的升高,析出的物质增加,至丙烷的临界温度 (97℃)时,油全部析出。
在低温时,溶解度较小,升高温度则溶解度 增大。
当温度升至一定程度后,二者完全互溶。
当温度升至临界温度,压力处于临界压力时,
溶剂已经具有气体的性质,这时它将不溶解 溶质而是把溶质全部析出。
溶剂脱沥青原理
这个变化并不是突然发生的,在靠近临界温 度而还未到临界温度的某个区域内,溶解度 就随着温度的升高而降低,等到临界温度时 溶解度等于零。
溶剂脱沥青原理
渣油中的沥青质是以胶束状态存在,芳烃和 胶质对这种状态起着稳定作用。在加入低分 子烷烃后,这种稳定状态被破坏,沥青质也 可能沉淀出来。因此,有的作者也称渣油溶 剂脱沥青过程为“抽提-沉淀分离”过程。 但从广义上考虑,此过程仍属抽提过程。
溶剂脱沥青原理
一种物质在有机溶剂中溶解度变化的一 般规律是:
溶 剂 脱 沥 青
溶剂脱沥青
概述
目录
溶剂脱沥青原理
影响溶剂脱沥青的因素
溶剂脱沥青工艺流程
概述
溶剂脱沥青是以液态的丙烷等小分子烃类为 抽提溶剂,将渣油分离成残炭、重金属、硫 和氮含量均较低的脱沥青油和含“油分”较 少的脱油沥青的工艺过程。
概述
溶剂脱沥青工艺技术始于1930年,国外至今 已有近200套。 我国也有相当数量的装置,约30套左右,单 套装置的规模在0.25-0.4 Mt/a。
由此可见,从40℃到97℃又出现第二个两相区。 丙烷脱沥青过程就是在这第二个两相区温度范围内操
作的。
溶剂脱沥青原理
而第一个两相区温度范围内是不适宜脱沥青操作, 因为在-42℃-20℃温度下,不仅胶质、沥青质几乎 不溶于丙烷,而且固体烃(蜡)也只稍溶于丙烷,所 以在分出胶质、沥青状物质的同时,蜡也会被分出, 这样就会使蜡和沥青都不能应用。
在第二个两相区内,溶解度随温度变化的规律与在 第一个两相区时是相反的,在讨论丙烷脱沥青时必 须记住这一点。
溶剂脱沥青原理
丙烷对渣油中各组分的溶解度是不同的,按 其大小次序排列依次为: 烷烃>环状烃类>高分子多环烃类>胶状 物质。
丙烷对胶状物质和高分子多环烃类的溶解度 很小,并且温度越高,其溶解度也越小。
概述
溶剂脱沥青工艺是从减压渣油制取高粘度 润滑油基础油、催化裂化或加氢裂化原料油的 一个重要加工过程,也是生产微晶蜡必不可少 的关键环节。
工艺概述
概述
概述
概述
溶剂脱沥青过程所指的“沥青”并非一种严 格定义的产品或化合物,它是指减压渣油中 最重的那一部分,主要是沥青质和胶质,有 些情况下也会包括少量芳烃和饱和烃,其具 体组成因生产目的不同而异。
溶剂脱沥青原理
因此,采用低相对分子质量烷烃作溶剂对渣 油进行抽提时,可以把渣油中的饱和烃及芳 烃(在炼厂常把这部分称为油分)提取出来, 从而分离出胶质及沥青质,也可以只分离出 重胶质及沥青质。
与原子比较高,达到生产 高粘度润滑油和改善催化裂化进料的要求。
相关文档
最新文档