纳米涂层技术

合集下载

纳米涂层技术的制备与应用指南

纳米涂层技术的制备与应用指南

纳米涂层技术的制备与应用指南纳米涂层技术是近年来快速发展的一项技术,它通过在物体表面形成纳米级的保护膜,提供了诸多优化性能和功能的可能。

本文将从纳米涂层的制备方法和应用领域两个方面,为读者提供一份关于纳米涂层技术的制备与应用指南。

第一部分:纳米涂层的制备方法纳米涂层的制备方法有很多,以下主要介绍几种常见的方法。

1. 物理气相沉积法(Physical Vapor Deposition, PVD)物理气相沉积法是一种常用的纳米涂层制备方法,包括蒸镀、磁控溅射、离子束辅助沉积等。

该方法通过将材料加热至一定温度,使其蒸发或溅射并在基底表面沉积,形成纳米级的薄膜。

该方法制备的纳米涂层具有较高的附着力和致密性,适用于金属、陶瓷等材料。

2. 化学气相沉积法(Chemical Vapor Deposition, CVD)化学气相沉积法是一种通过在气相中分解挥发性前驱体生成纳米颗粒,并在基底表面沉积的方法。

该方法具有高度可控性,可以制备出均匀、致密的纳米涂层。

常见的CVD方法有热CVD、低压CVD、气相燃烧CVD等。

3. 溶胶-凝胶法(Sol-gel method)溶胶-凝胶法是一种通过溶胶胶体化、凝胶成型和热处理得到纳米涂层的方法。

该方法可用于制备均匀、连续的纳米涂层,并且对于复杂形状的基底具有较好的适应性。

溶胶-凝胶法主要适用于氧化物和有机-无机杂化纳米涂层的制备。

第二部分:纳米涂层的应用领域纳米涂层技术在许多领域都有广泛的应用,以下是几个典型领域的介绍。

1. 表面保护纳米涂层可以在物体表面形成一层保护膜,能够有效阻隔外界环境对物体的侵蚀,提高物体的耐磨性、耐腐蚀性和耐高温性。

因此,纳米涂层广泛应用于汽车、航空航天、建筑等领域,保护金属、陶瓷等材料的表面。

2. 功能增强纳米涂层可以赋予物体新的功能和性能。

例如,通过在汽车玻璃表面涂覆纳米涂层,可以提高玻璃的防水性和自清洁性;在纺织品表面涂覆纳米涂层,则可以赋予纺织品防水、防污染等功能。

纳米涂层技术的原理和应用

纳米涂层技术的原理和应用

纳米涂层技术的原理和应用近年来,纳米科技不断发展壮大,纳米涂层技术作为其重要应用领域之一,呈现出广阔的发展前景和丰富的应用场景。

本文将对纳米涂层技术的原理和应用进行详细介绍。

一、纳米涂层技术的原理纳米涂层技术是指在微米或纳米级别的基材表面上应用纳米材料,通过物理、化学或生物方法,形成具有特定功能和性能的涂层。

其原理主要包括以下几个方面。

1. 纳米材料纳米涂层技术的核心是使用纳米材料。

纳米材料具有较大的比表面积和界面效应,因此在表面上形成涂层时,能够表现出与传统涂层截然不同的性能。

常用的纳米材料包括纳米粒子、纳米管、纳米薄膜等。

2. 涂层形成方式纳米涂层技术的涂层形成方式主要包括物理沉积、化学反应和生物合成等。

物理沉积方式常用的方法有溅射、蒸发和磁控溅射等;化学反应方式包括溶胶-凝胶法、化学气相沉积等;生物合成方式则利用生物体自身合成纳米材料的特性。

3. 表面改性纳米涂层技术的原理之一是通过对基材表面进行改性,使其具备所需的特定性能。

例如,可以通过表面处理使基材表面变得亲水或疏水、抗菌或抗腐蚀、耐磨或耐高温等。

改性方式包括化学改性、物理改性和生物改性等。

二、纳米涂层技术的应用纳米涂层技术的应用范围广泛,涵盖了许多领域。

以下是几个典型的应用场景。

1. 光电领域在光电领域,纳米涂层技术可以应用于太阳能电池、光纤通信、显示屏等方面。

例如,在太阳能电池中,使用纳米涂层技术可提高吸收光的效率和光电转换效率,从而提高太阳能电池的性能。

2. 材料保护纳米涂层技术可用于材料的保护。

通过使用纳米涂层,可以增强材料的耐磨性、耐腐蚀性和耐高温性等。

例如,在飞机制造业中,纳米涂层技术可保护飞机外壳免受氧化、腐蚀和高温等因素的损害。

3. 医学领域纳米涂层技术在医学领域有着广泛的应用。

例如,在药物传递方面,通过利用纳米涂层技术,可以将药物封装在纳米粒子中,增加药物的稳定性并减少副作用。

此外,纳米涂层还可以应用于人工关节、植入物等医疗器械上,提高其生物相容性和耐用性。

纳米涂层技术的研究及应用

纳米涂层技术的研究及应用

纳米涂层技术的研究及应用在当今的现代社会,纳米科技是一个备受瞩目的领域,它涵盖了物理学、化学、材料科学、生物学等多个学科,广泛应用于生物、环境、电子、通讯、医疗等诸多领域。

而纳米涂层技术作为纳米科技的重要分支,不仅在产品的性能和质量上有了突破性的进展,也为未来的科技发展带来了无限可能。

一、纳米涂层技术的定义及分类纳米涂层技术是指以纳米粒子为原料,通过化学、物理方法在表面形成一层薄膜的技术。

它不仅能在产品表面形成密闭的防护层,而且能保持好的光滑度、透明度、导电性和导热性等。

根据涂层的材料和用途等方面的不同,纳米涂层技术可以分为以下几类:1. 金属纳米涂层技术金属纳米涂层技术是指将金属纳米粒子应用于涂层中,形成具有金属纳米结构的表面修饰技术。

这种技术可以制造出很多新材料,如金属黏着剂、导电、光学薄膜以及各种材料的防腐蚀层等。

2. 无机纳米涂层技术无机纳米涂层技术是指以无机纳米粒子为主要原料,通过特殊工艺加工成涂料,赋予其他材料附加的特性的技术。

在防火、耐磨、防腐、防污等诸多方面得到了广泛的应用。

3. 有机纳米涂层技术有机纳米涂层技术是指以有机材料的纳米粒子为主要原料,制备出一种紧密而完整的有机薄膜的技术。

这种技术可以制备出各种具有高防护性、高透明度、耐酸碱、遮光、耐水的薄膜,如塑料、橡胶、纸张等各种材料的防护层。

二、纳米涂层技术应用领域1. 汽车制造业在汽车制造业中应用纳米涂层技术能够加强汽车表面的硬度、降低密度、增强耐蚀性,提高涂层的附着力和粘合力。

同时,在减少外观漆膜厚度的情况下,能够提升光泽度、降低摩擦损失、提高车身质量,从而提高了汽车的耐用性和市场竞争力。

2. 电子工业在电子制造领域,纳米涂层技术可以应用于电子元器件、液晶显示器及其他电器制造领域中,使电子产品具有防水、防油污、防磨损、防氧化等特性,同时也可以降低产品能量消耗、提高机械精度及可靠性等方面的指标。

3. 航空航天领域在航空航天领域,纳米涂层技术是一项极其重要的技术,可以有效地提高飞机表面的耐腐蚀、耐磨损性能,从而可以减少飞行过程中的机械损耗,增强机体的防腐能力和强度,为飞机的空气动力性能和机体气动设计做出了重要贡献。

纳米陶瓷涂层技术

纳米陶瓷涂层技术

纳米陶瓷涂层技术纳米陶瓷涂层技术是指利用纳米技术制备的陶瓷涂层,主要应用于金属、玻璃、塑料等材料表面,能够提供优异的耐磨、耐腐蚀、耐高温等性能。

本文将从纳米陶瓷涂层的基本原理、制备方法、应用领域及发展前景等方面进行探讨,以期对读者有所帮助。

一、基本原理纳米陶瓷涂层是指由纳米级陶瓷颗粒组成的薄膜,在表面涂覆于物体表面。

与普通涂层相比,纳米陶瓷涂层具有优异的耐磨、耐腐蚀、耐高温等性能,主要原理如下:1.纳米级陶瓷颗粒具有较高的硬度和抗磨损性能,能够有效增强涂层的耐磨损性能。

2.纳米级陶瓷颗粒对外界腐蚀介质具有较强的抵抗能力,能够有效提高涂层的防腐蚀性能。

3.纳米级陶瓷颗粒具有较高的热稳定性和耐高温性能,能够有效提高涂层的耐高温性能。

基于以上原理,纳米陶瓷涂层能够为物体表面提供优异的保护效果,广泛应用于汽车、航空航天、医疗器械等领域。

二、制备方法纳米陶瓷涂层的制备方法多种多样,常见的有物理气相沉积、化学气相沉积、溶胶-凝胶法、电沉积法等。

下面将分别对几种常见的制备方法进行介绍:1.物理气相沉积法物理气相沉积法是利用物质的物理性质在真空或低压环境下进行涂层制备的一种方法。

具体步骤包括蒸发源的加热、蒸发源的蒸发、蒸发物质的传输和沉积在衬底表面等过程。

通过控制沉积条件和衬底温度,可以制备出具有优异性能的纳米陶瓷涂层。

2.化学气相沉积法化学气相沉积法是利用气相化学反应在衬底表面进行涂层制备的一种方法。

具体步骤包括气相前驱体的裂解、反应产物的沉积和涂层的形成等过程。

通过选择合适的前驱体和反应条件,可以制备出具有优异性能的纳米陶瓷涂层。

3.溶胶-凝胶法溶胶-凝胶法是利用溶胶和凝胶过程在衬底表面进行涂层制备的一种方法。

具体步骤包括制备溶胶、溶胶成型、凝胶和烧结等过程。

通过控制溶胶的成分和制备条件,可以制备出具有优异性能的纳米陶瓷涂层。

4.电沉积法电沉积法是利用电化学反应在电极表面进行涂层制备的一种方法。

具体步骤包括电解液的选择、电极的处理、电沉积过程和电沉积后的处理等过程。

纳米科技在家庭清洁产品中的应用教程

纳米科技在家庭清洁产品中的应用教程

纳米科技在家庭清洁产品中的应用教程随着科技的不断发展,纳米技术在各个领域的应用也越来越广泛。

在家庭清洁产品的制造与使用中,纳米科技也发挥了重要作用。

本文将介绍纳米科技在家庭清洁产品中的应用,并给出相应的使用教程。

一、纳米科技在家庭清洁产品中的应用1. 纳米涂层技术纳米涂层技术是指利用纳米颗粒形成的一层薄膜覆盖在物体表面,起到保护和增强功能的效果。

在家庭清洁产品中,纳米涂层技术广泛应用于洗碗机、洗衣机、清洗剂等产品中。

纳米涂层能够形成一层防水、抗污染的保护膜,使得清洗过程更加高效,同时还能保护物体的表面免受磨损和氧化的影响。

2. 纳米材料的应用纳米材料是指材料的粒径在纳米尺度范围内的材料。

在家庭清洁产品中,纳米材料通常被用来增强产品的清洁能力和去除顽固污渍的能力。

例如,纳米银材料被广泛应用于家庭清洁产品中,能够有效去除细菌和病毒,保持清洁和卫生。

3. 纳米空气净化技术纳米空气净化技术是指利用纳米材料来净化空气中的有害物质和异味。

家庭清洁产品中常见的纳米空气净化技术包括纳米空气净化器和纳米过滤器。

纳米空气净化器可以吸附和分解空气中的有害物质,提供清新的空气环境。

纳米过滤器则是利用纳米孔隙结构来过滤空气中的颗粒物,保持室内空气清洁。

二、家庭清洁产品中纳米科技的使用教程1. 纳米涂层技术的使用教程(1)清洁要使用纳米涂层的表面,确保表面干净无尘。

(2)将纳米涂层产品均匀涂抹在表面,并按照说明等待涂层干燥。

(3)根据产品说明,使用蘸水湿的布或纳米喷雾器,对表面进行适量的湿润处理。

(4)根据使用情况,定期对涂层表面进行保养,如清洁、补涂、重新激活等。

2. 纳米材料的使用教程(1)根据产品说明,将纳米材料加入清洁水中充分溶解。

(2)将溶解后的纳米材料水均匀喷洒或涂抹在需要清洁的表面。

(3)等待一定时间(根据产品说明)让纳米材料发挥作用。

(4)用清水将表面彻底清洗干净,并使用干净的布擦干。

3. 纳米空气净化技术的使用教程(1)根据纳米空气净化器的说明,选择适当的位置放置净化器。

纳米涂层技术

纳米涂层技术

一、纳米材料与纳米涂层简介1、什么是纳米材料?(1)纳米(nanometrer)是一个度量单位,1纳米(nm)等于10-9米。

(2)纳米材料(nano material),就是指用直径达到纳米级(1~100nm)的微小粒子制成的各种材料。

2、为何纳米材料的性能比普通材料更优?●当构成物质的颗粒尺寸进入纳米尺度,特别是几个纳米时,因其内部粒子间的结构形态将发生根本性变化,从而使得一系列的物理性能都更加优化,甚至发生本质上的变化,比如硬度、韧性、耐热性、防腐性能等等。

3、纳米涂层(也称纳米薄膜)●纳米薄膜具有的光,电,热以及机械方面的性能等方面的独特功能。

第二章、我们的纳米涂层1、我们的纳米涂层属于金属陶瓷材料,有金属和陶瓷双重特性,如下所述:(1)涂层硬度极高,是刀具,模具钢材硬度的3倍以上,甚至可达4000HV以上(陶瓷特性)(2)涂层细腻光滑,与钢材之间的摩擦系数小(陶瓷特性):(3)涂层与金属不易粘黏,可以防止积屑,提高被加工件表面质量(陶瓷特性):(4)良好的韧性,耐冲击,耐碰撞,可用于冲压模具(金属特性)(5)良好的热稳定性,部分涂层甚至可以承受1000℃以上的工作温度(陶瓷特性)(6)涂层晶粒极其微小,结构极为紧密,故有良好的耐酸碱腐蚀性能(7)涂层无毒无害,且环保,可用于医疗器械,人工环节食品加工的刀工具(例如:果汁刀片机)等(8)可导电,导磁(金属特性)2、应用中表现出的优点主要有:(1)刀具,模具的耐磨性大大增强,使用寿命提高3~10倍,甚至更高,使得客户成本大大降低;(2)减少换刀,修模的时间,提高生产效率;(3)产品表面质量提高,且不良率下降;(4)涂层的厚度很薄,仅为3µm左右(0.0003mm),故一般不会影响刀具,模具的尺寸精度。

三、涂层特性表四、涂层应用推荐表五、对工件的要求1、材质(1)一般要求是金属材料,如模具钢、高速钢、硬质合金、不锈钢、铜、铝合金等。

纳米涂层技术

纳米涂层技术

纳米涂层技术
纳米涂层技术是利用纳米材料实现涂层的新技术,它可以改善产品表面的物理和化学性质,广泛应用于日常的金属表面护理、工业耐腐蚀等。

纳米涂层技术有多种,空气固化涂层是其中最常用的一种。

空气固化涂层由纳米颗粒和表面活性剂构成,只要将颗粒在物体表面均匀地涂布,并在特定环境下(如加压加热),颗粒就可以在物体表面自发聚合,形成一层致密的纳米涂层,从而为物体提供美观、耐磨、抗腐蚀的防护效果。

纳米涂层技术的应用非常广泛,可以改善和提升各种表面的物理和化学性能。

它可以改善金属表面的疲劳性能,可以防止金属表面的氧蚀,还可以提高金属表面的耐腐蚀性,从而有效延长物体表面的使用寿命。

此外,它还可以改善塑料表面的粘附性,如表面粘接性、力学性能等,从而有效改善物体表面的美观性。

此外,纳米涂层技术还可以提高绝缘体表面的绝缘性能,减少绝缘体表面的损耗,从而提高绝缘体表面的耐压强度,有效延长绝缘体的使用寿命。

当然,纳米涂层技术的应用也有一定的局限性。

由于纳米涂层技术的运用对技术人员的要求较高,涂层过程中也需要控制温度、压力、时间等多种参数,因此其应用范围有限,且十分复杂。

综上所述,纳米涂层技术是一种新技术,它可以改善产品表面的物理和化学性质,改善金属表面的耐腐蚀性、提升绝缘体表面的绝缘
性能,改善塑料表面的粘附性,进而提高物体表面的耐磨性和抗腐蚀性。

但是,由于它的应用技术条件复杂,目前应用范围较小,尚有待进一步发展。

纳米涂层技术的使用方法及应用范围

纳米涂层技术的使用方法及应用范围

纳米涂层技术的使用方法及应用范围随着科技的不断进步和发展,纳米材料技术的应用范围越来越广泛,其中纳米涂层技术在多个领域有着重要的应用。

纳米涂层技术是一种将纳米材料应用于表面涂层的技术,通过在材料表面形成纳米级的涂层,可以改善材料的各种性能。

本文将介绍纳米涂层技术的使用方法和广泛的应用范围。

纳米涂层技术的使用方法:1. 材料的选择:首先需要选择适合的基底材料,如金属、塑料等。

根据所需的性能和应用领域,选择合适的纳米材料作为涂层材料,如纳米颗粒、纳米纤维等。

2. 涂层制备:一般来说,纳米涂层的制备可以通过物理方法、化学方法、生物方法等多种途径。

物理方法包括溅射、磁控溅射、离子束沉积等;化学方法包括溶胶-凝胶法、化学气相沉积等;生物方法包括生物矿化、生物合成等。

3. 涂层表面处理:在涂层制备完成后,通常需要对涂层表面进行处理以增强其性能。

常见的表面处理方法包括热处理、化学改性、使用等离子体等。

4. 涂层的应用:根据不同的涂层性能和需求,将纳米涂层应用于具体的领域。

涂层可以涵盖很多方面的应用,如机械、汽车、电子、医疗等。

纳米涂层技术的应用范围:1. 防腐蚀涂层:纳米涂层在防腐蚀领域有着广泛的应用。

通过在金属表面形成纳米级的涂层,可以阻挡氧气和水分进入金属内部,从而延长金属材料的使用寿命。

此外,纳米涂层还可以提高金属材料的硬度和抗磨损性能。

2. 光学涂层:纳米涂层在光学领域的应用也非常重要。

纳米涂层可以在光学器件表面形成高反射或抗反射涂层,从而提高光学器件的效率和性能。

在太阳能电池、摄像头透镜等领域,纳米涂层的应用可以显著改善这些器件的能源转换效率和成像质量。

3. 自洁涂层:纳米涂层技术可以制备出具有自洁性能的涂层,这种涂层可以在表面形成一层纳米级的保护膜,使尘埃、油脂和水分不易附着在物体表面。

这种自洁涂层在建筑、汽车等领域有着广泛的应用,可以减少清洁和维护的成本。

4. 医疗涂层:纳米涂层技术在医疗领域的应用也越来越受关注。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、纳米材料与纳米涂层简介1、什么是纳米材料?(1)纳米(nanometrer)是一个度量单位,1纳米(nm)等于10-9米。

(2)纳米材料(nano material),就是指用直径达到纳米级(1~100nm)的微小粒子制成的各种材料。

2、为何纳米材料的性能比普通材料更优?●当构成物质的颗粒尺寸进入纳米尺度,特别是几个纳米时,因其内部粒子间的结构形态将发生根本性变化,从而使得一系列的物理性能都更加优化,甚至发生本质上的变化,比如硬度、韧性、耐热性、防腐性能等等。

3、纳米涂层(也称纳米薄膜)●纳米薄膜具有的光,电,热以及机械方面的性能等方面的独特功能。

第二章、我们的纳米涂层1、我们的纳米涂层属于金属陶瓷材料,有金属和陶瓷双重特性,如下所述:(1)涂层硬度极高,是刀具,模具钢材硬度的3倍以上,甚至可达4000HV以上(陶瓷特性)(2)涂层细腻光滑,与钢材之间的摩擦系数小(陶瓷特性):(3)涂层与金属不易粘黏,可以防止积屑,提高被加工件表面质量(陶瓷特性):(4)良好的韧性,耐冲击,耐碰撞,可用于冲压模具(金属特性)(5)良好的热稳定性,部分涂层甚至可以承受1000℃以上的工作温度(陶瓷特性)(6)涂层晶粒极其微小,结构极为紧密,故有良好的耐酸碱腐蚀性能(7)涂层无毒无害,且环保,可用于医疗器械,人工环节食品加工的刀工具(例如:果汁刀片机)等(8)可导电,导磁(金属特性)2、应用中表现出的优点主要有:(1)刀具,模具的耐磨性大大增强,使用寿命提高3~10倍,甚至更高,使得客户成本大大降低;(2)减少换刀,修模的时间,提高生产效率;(3)产品表面质量提高,且不良率下降;(4)涂层的厚度很薄,仅为3µm左右(0.0003mm),故一般不会影响刀具,模具的尺寸精度。

三、涂层特性表镀膜种类性质优点应用领域TiN氮化钛颜色:金色硬度:2300HV摩擦系数:0.23VSNI最高工作温度:580℃减小摩擦力可低温涂层避免刀口积屑现象通用性涂层可广泛应用于切削刀具、五金模具、冲具、塑胶模具以及零组件TiCN氮碳化钛颜色:灰色硬度:3300HV摩擦系数:0.21VSNI最高工作温度:450℃表面光滑高表面温度避免刀口积屑现象适合重切削常用于高速钢铣刀(尤其波刃刀)、丝攻、滚刀加工不锈钢、镀锌板等粘性材料的拉伸模具等ALTiN铝氮化钛颜色:紫黑色硬度:3400HV摩擦系数:0.33VSNI最高工作温度:800℃高热稳定性可高速,干式切削常用于硬质合金刀具,也用于高速钢模具适合不锈钢钻,铣,冲加工,以及高温加工四、涂层应用推荐表类别细类工具材料被加工材料推荐涂层优先考虑可选刀具铣刀、丝攻、钻头、锯片、滚刀、拉刀等高速钢普通钢铁TiN TiCN不锈钢等TiCN TiN铜,镁铝合金等Cro-G®TiCN铣刀、钻头、锯片、舍弃式刀片、丝攻等硬质合金普通钢铁ALTiN TiN硬度>50HRC的淬火钢Altimax®白金铝钛ALuwa®DLC铝钛铸铁TiCN ALTiN不锈钢、钛合金等ALTiN TiCN/TiN铜合金、镁铝合金等Cro-G®ALTiN冲压模具精冲、冲棒、小冲裁模、折弯模高速钢/SKD11普通钢铁TiN TiCN不锈钢等TiCN TiN铜、镁铝合金等Crotac®TiCN拉伸模、冲压模高速钢硬质合金普通钢铁/不锈钢/镀锌钢板等TiCN TiN锌合金、银Aluwa®DLC铝钛TiCN中型冲压、拉伸模具(直径约200左右)SKD11/高速钢普通钢铁/不锈钢/镀锌钢板等Crotac®/TiCNTiNRalox®大型冲压、拉伸模具(直径约350以上)SKD11普通钢铁/不锈钢/镀锌钢板等Ralox®TiCN/TiN塑胶模具/S136、SKD61、NAK80等如PVC(有腐蚀性)Cro-G®TiNPP、ABS等TiN Cro-G®粉末成型模具/硬质合金、HSS、SKD11有酸性的粉末Crotac® TiN无酸性的粉末TiN Cro-G®零组件活塞环、轴承等碳钢/ Cro-G®Medica® DLC五、对工件的要求1、材质(1)一般要求是金属材料,如模具钢、高速钢、硬质合金、不锈钢、铜、铝合金等。

(2)需要的工件必须能够承受至少200~450℃而不能熔化或碳化,故不能是塑胶、橡胶、纸张、棉麻、木材等材料。

(3)工件要能导电,一般不能是陶瓷、玻璃等。

2、钢件热处理回火温度(1)对钢件热处理回火温度的要求①回火温度必须高于镀膜温度。

因为如果工件回火温度低于镀膜温度,就会导致工件材料硬度下降,下降程度会因具体材料和温度不同而不同,可能会是几度到20度以上(HRC)②不论回火温度如何,我司在镀膜过程中只能选择比热处理回火温度更低的温度处理,才能保证工件硬度不下降。

③一般的回火温度有:a.高温:500℃以上b.中温:350℃左右c.低温:200℃左右※注:实际上,热处理厂可以根据不同的材料、不同的要求设计出不同温度参数的回火工艺,并不单纯是上述几个数值。

(2)我司镀膜的温度①根据不同的要求,我司的镀膜温度可以作三种选择:a.高温:450℃b.中温:320℃c.低温:180℃②不同的镀膜温度镀的薄膜的特性会有些许差异,用TiN(氮化钛)举例说明:a.颜色:高温镀的就会更金黄、光亮;低温镀的就会相对淡一些。

b.耐磨性:低温镀的相对于高温镀的耐磨性要差一些。

(3)如何选择回火温度①无论何种材料,选择不同的回火温度所得到的硬度值一般是不一样的。

②如果在硬度、韧性等基本要求都可以满足的情况下,请尽量选择更高的回火温度,以便于我们镀膜处理可以选择更高的温度,以达到更佳的效果。

③并非任何材料都可以选择高温回火,因为有些材料选择高温回火比低温回火得到的硬度值相处很多,甚至可能达到20HRC。

④不同的材料,其热处理特性也是不同的。

应如何选择适合的回火温度,最后咨询您的热处理供应商(别忘了将您对工件硬度和需要镀膜的要求告诉他)。

3、工件外形与镀面(1)工件最大尺寸:①细长件:长度≤1000mm;②圆柱形大模具,圆柱面未涂层重点:最大尺寸≤Φ460*1000mm;③板状大模具,板的一面为涂层重点:最大尺寸≤1000(长)*460(宽)*460(高)mm。

(2)工件上必须有不需要涂层的部位(如柄部、孔、螺纹、台阶等),以便于涂层中用于支撑和固定工件。

(3)对于要求涂层的内孔,要求孔径≥孔深,否则不能保证内孔深处涂层厚度和质量。

(4)为了保证使用重点面的涂层质量,客户须明确告知“使用重点部位”、“可镀可不镀的部位”、“一定不能镀的部位”,最好不要为追求美观而要求全镀。

4、工件表面状况(1)工件一定要是已经过精加工,完全成型并且是可用的,涂层是所有制作工序中的最后一道工序。

(2)工件一定要做好防锈工作,如涂抹防锈油等。

(3)工件表面不能做渗碳、渗氮、氧化、TD、喷漆、电镀等处理。

5、工件结构(1)工件上不能有密闭的中空结构,因为密闭的空气受热后膨胀,其压力会引起爆裂。

(2)工件上如果有细长孔、缝隙(如喷水钻的注水孔)等,孔内或缝隙不能阻塞,否则残留的油污等会影响镀膜(同理,塑胶模具试模后,残留的胶料要清理干净)。

(3)镶嵌件,如果可用拆分的,就拆开镀,然后再组合使用;如果不开拆分的,要绝对保证镶嵌内部不能有油污,否则会影响镀膜。

(4)焊接件,要注意两个问题:①焊接材料能否承受450℃高温而不熔化,一旦熔化,会造成焊接和突出的异常;②工件的精度是否允许焊接处在承受450℃高温的变形量,否则不宜做涂层。

6、包装(1)任何工件在交我司做涂层的运输途中,均需要有包装,且包装必须能保证工件的安全。

(2)对于锋利刃具,如铣刀、丝攻、铰刀等,建议采用每只产品之间都有区隔的包装方式。

(3)对于较重的大型件,如果采用快递或货运,一定要有足够强度的包装箱,以保证运输途中不被损伤。

六、PVD涂层与其他表面处理的比较1、CVD简介(Chemical Vapor Deposition——化学气相沉积)(1)将各种化学反应物质:如四氯化钛(TiCl4)和甲烷(CH4)等含碳气体(或其它碳氮气体)蒸气等通入反应炉体内,在高温(900~1200℃)状态下,TiCl4中的钛(Ti)和碳氢化合物中的碳(C)在模具表面进行化学反应,从而生成一层金属化合物涂层碳化钛(TiC)。

利用不同的反应物,可得到不同的薄膜,如TiN、Ti(CN)、CrC 等等。

(2)CVD的优点:①镀膜与基材的附着性优良;②复杂的形状都可以处理:如深孔、内管、细缝等。

(3)CVD的优点:①镀膜温度太高,对基材和反应设备的耐热性要求很高,很多工件难以承受;②高温使基材尺寸变化和变形严重,故适于精密度高的工件;③对于要求工件局部镀膜,难以实现;④活泼性气体源的使用,制程中有爆炸、毒性气体泄漏等隐患,且对环境有污染。

2、TD简介(Thermal Diffusion Coating Process——热扩散法碳化物覆层处理)(1)在空气炉或盐槽中放入一个耐热的坩埚,将硼砂放入坩埚加热熔化至800~1200℃,然后加入相应的碳化物形成粉末(如钛、钡、铌、铬),再将钢或硬质合金工件放入坩埚中浸渍保温1~2小时,加入元素将扩散至工件表面并与钢中的碳发生反应形成碳化物层(如:VC—碳化钒;CrC—碳化铬),所得到的碳化物层具有很高的硬度和耐磨性。

国际标准中国日本美国瑞典—Cr12MoV SKD11、SLD D2 XW—41 160CrMoV12 Cr12Mo1V1 SKD11 D2 XW—42 100CrMoV5 Cr5Mo1V SKD12 A2 XW—10210Cr12 Cr12 SKD1 D3 XW—5 ——DC53 ——(3)TD的优点:①覆层与基材的附着性优良;②覆层的厚度较厚。

(4)TD的缺点:①处理温度太高,对基材的耐热性要求很高,很多工件难以承受;②高温使基材尺寸变化和形变严重,故不适于精密度高的工件;③对于要求工件局部镀膜,难以实现;④覆层的厚度较厚,精密工件精度会受影响;⑤覆层后表面状况较差,一般须作后处理(如抛光等)才可使用。

3、电镀硬铬(Cr)简介(1)用铬酐、硫酸和添加剂等配制成电镀液,将工件放入溶液中电镀金属铬沉积在工件表面形成镀层。

(2)实际上所谓“镀硬铬”,其铬层硬度并不比装饰铬层硬度高,只因其镀层较厚,故能发挥其硬度高、耐磨的特点,故称镀硬铬。

(3)镀硬铬的优点:①工件大小不受限制;②镀层厚度较厚,可以适当弥补因加工超差的工件尺寸;③成本较低。

(4)镀硬铬的缺点:①硬度较差,耐磨性较差;②镀层厚度较厚,不能满足高精度要求,锋利的刀具镀后刃口会变钝;③环保问题严重。

相关文档
最新文档