高考复习资料:函数与方程的思想方法

合集下载

函数和方程的思想方法总结

函数和方程的思想方法总结

函数和方程的思想方法总结函数和方程是数学中两个非常重要的概念,它们在不同的数学领域和学科中具有广泛的应用。

在解决实际问题、研究数学定理和推导数学公式时,函数和方程的思想方法非常有用。

下面我将总结函数和方程的思想方法,并举例说明它们的应用。

一、函数的思想方法:1. 函数是一种映射关系,将自变量映射为因变量。

在研究函数时,我们常常关注函数的定义域、值域、图像和性质等特征。

例如,对于一个电商平台的销售额函数,我们可以通过输入商品价格来计算销售额。

我们可以研究函数的增减性、最大值和最小值等,以优化销售策略。

2. 函数具有一些重要的性质,如奇偶性、周期性和可导性等。

这些性质可以帮助我们进一步研究函数的特点和行为。

例如,对于一个正弦函数,它是一个周期函数,周期为2π。

我们可以利用这个性质来分析正弦函数的周期性变化和极值点。

3. 函数的组合和复合是函数思想方法的重要工具。

通过将多个函数进行组合或复合,我们可以得到新的函数,从而解决更加复杂的问题。

例如,对于一个物体在空中自由落体运动的高度函数和速度函数,我们可以通过将这两个函数进行复合,得到物体的位置函数和加速度函数,进一步分析物体的运动规律。

二、方程的思想方法:1. 方程是含有未知数的等式,通过求解方程,我们可以确定未知数的值。

解方程是数学中的一个重要问题,有很多不同的解法和技巧。

例如,对于一个一元一次方程,我们可以通过移项、消元和代入等方法求解。

对于一个一元二次方程,我们可以通过配方法、因式分解和求根公式等方法求解。

2. 方程的应用非常广泛,它可以用来描述和解决各种实际问题。

在解决实际问题时,我们常常将问题抽象成一个方程,然后通过求解方程来得到问题的解。

例如,对于一个汽车行驶的问题,我们可以根据汽车的速度、时间和距离的关系建立一个方程,然后求解这个方程来得到汽车行驶的时间或速度。

3. 方程的解有可能是多个,也有可能是无解。

我们在解方程时,需要考虑方程的解集和解的存在性等问题。

高三数学专题一 函数与方程的思想方法课件

高三数学专题一 函数与方程的思想方法课件

[答案] 3 返回目录
模拟训练
2.设向量a=(1, 2),b=(2, 3),若向量λa+b与向量c=(-4, -7)共线,则λ= [解析] . 由向量坐标运算法则得λa+b=(λ+2, 2λ+
3),由向量共线条件得-7(λ+2)=-4(2λ+3),解得λ=2.
[点评] 本题主要考查向量的基本运算和向量共线
函数是方程与不等式的“中介”,他们既有区别,又联系
紧密.高考试题中既通过客观试题考查函数与方程的思想的基本 应用,又利用解答题从深层次上对函数与方程思想进行综合考
查.
返回目录
模拟训练
1.已知在△ABC中, ∠ACB=90°, BC=3, AC=4, P是AB上 的点, 则点P到AC、BC的距离乘积的最大值是 [分析] 如右图,设P点到 AC 、 BC 的距离分别为 x 、 y ,由 y 都是正实数,问题转化为在此 条件下,求xy的最大值问题.
模拟训练
4. 如图,正方形 ABCD 、 ABEF 的 边长都是 1 ,而且平面 ABCD 、 ABEF 互相垂直 . 点 M 在 AC 上移动 , 点 N 在 BF 上移动,若CM=BN=a (0<a< 2 ). (Ⅰ)求MN的长; (Ⅱ)当a为何值时,MN的长最小. [分析] 取a作为变量,建立MN的长的表达式,利用 函数思想求MN的最小值. [解析] (Ⅰ)作MP∥AB交BC于点P, NQ∥AB交BE于 点Q, 连结PQ, 依题意可得MP∥NQ, 且MP=NQ, 即MNQP是 平行四边形, 所以MN=PQ, 返回目录
返回目录
模拟训练
解法2:(看成不等式的解集) ∵a,b都是正数,∴a+b 2 ab . 又ab=a+b+3,∴ab 2 ab +3,
即( ab ) 2 2 ab 3 0. 解得 ab 3或 ab 1(舍), ab 9.

高中数学函数与方程的思想方法

 高中数学函数与方程的思想方法

高中数学函数与方程的思想方法高中数学函数与方程的思想方法在高中数学的学习中,函数与方程是非常重要的概念和内容。

掌握了函数与方程的思想方法,不仅可以帮助我们解决实际问题,还能培养我们的逻辑思维和分析能力。

本文将从函数与方程的定义、解题思路和实际应用等方面探讨高中数学函数与方程的思想方法。

一、函数与方程的定义函数是数学中的基本概念,我们可以将函数理解为两个集合之间的一种特殊关系。

简单来说,函数就是将自变量映射到因变量的规则。

函数通常用符号表示,如f(x)、g(x)等。

在方程中,通常出现的是一元函数,如y=f(x)。

方程是关于未知数的等式,它通常由等号连接的表达式组成,其中包含未知数和已知数。

方程的解是使得方程成立的未知数的值。

在数学中,函数与方程是密切相关的概念,通过函数可以建立方程,通过求解方程可以得到函数的零点或特殊点。

二、解题思路1. 函数图象与函数性质分析:对于给定的函数,我们可以通过观察其图象来推测函数的性质。

例如,对于一个二次函数,当a>0时,函数的图象开口向上;当a<0时,函数的图象开口向下。

通过观察函数图象,我们可以推测函数的最值、零点等重要信息。

2. 函数与方程的转化:有时候题目给出的是函数,要求解的是方程;有时候题目给出的是方程,要求分析函数的性质。

在这种情况下,我们需要运用函数与方程之间的转化关系进行思考。

例如,已知函数的表达式,要求函数的零点,就需要解方程f(x)=0。

反之亦然,已知方程,可以通过构造函数直观地分析方程的性质。

3. 实际问题的建模与解析:高中数学中的函数与方程往往是为了解决实际问题而引入的。

因此,在解题过程中,我们需要将问题进行数学建模,将实际问题转化为数学问题,然后通过函数与方程的知识进行分析和求解。

例如,求解优化问题时,我们可以通过函数的极值来确定最优解。

三、实际应用函数与方程在实际生活中有着广泛的应用。

下面以几个例子来说明:1. 经济学中的需求函数:在经济学中,需求函数描述了商品需求与价格之间的关系。

高考数学:数学解题七大基本思想方法

高考数学:数学解题七大基本思想方法

高考数学:数学解题七大基本思想方法为您准备“高考数学:数学解题七大基本思想方法”,欢迎阅读参考,更多有关内容请密切关注本网站高考栏目。

高考数学:数学解题七大基本思想方法数学学科有自己独特的思维模式,所以在解决数学问题时,就要以数学的基本方法去考虑,这样才能在最有效的时间内答对题目。

第一:函数与方程思想(1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用(2)方程思想是解决各类计算问题的基本思想,是运算能力的基础注:高考把函数与方程思想作为七种重要思想方法重点来考查第二:数形结合思想(1)数学研究的对象是数量关系和空间形式,即数与形两个方面(2)在一维空间,实数与数轴上的点建立一一对应关系在二维空间,实数对与坐标平面上的点建立一一对应关系数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化第三:分类与整合思想(1)分类是自然科学乃至社会科学研究中的基本逻辑方法(2)从具体出发,选取适当的分类标准(3)划分只是手段,分类研究才是目的(4)有分有合,先分后合,是分类整合思想的本质属性(5)含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性第四:化归与转化思想(1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法(3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化第五:特殊与一般思想(1)通过对个例认识与研究,形成对事物的认识(2)由浅入深,由现象到本质、由局部到整体、由实践到理论(3)由特殊到一般,再由一般到特殊的反复认识过程(4)构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程(5)高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向第六:有限与无限的思想(1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路(2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向(3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用(4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查第七:或然与必然的思想(1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性(2)偶然中找必然,再用必然规律解决偶然(3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点。

函数与方程的思想方法

函数与方程的思想方法

函数与方程的思想方法 知识点导读查,使知识考查服务于能力考查.而函数与方程的思想方法作为基本的数学思想方法之一,在知识的互相联系、互相沟通中起到了纽带作用.函数与方程的思想共分为两个方面:函数思想与方程思想.一、 函数思想函数是数学中十分重要的内容,如果在某一变化过程中有两个变量x 、y ,变量x 每取一个值,按照某一法则变量y 都有唯一确定的值与之相对应,这时我们称变量y 是x 的函数,因此,函数是研究两个变量之间关系的数学分支.什么是函数思想呢?函数思想是对函数概念的本质的认识,用于指导解题就是善于利用函数知识或函数观点来观察、处理问题.利用函数思想解题的一般步骤:1.构造与题目有关的函数.在有关函数的观点下,方程、不等式可以得到统一.2.借助函数有关的知识(奇偶性,单调性,周期性,定义域,值域,图形等)讨论相关问题.二、 方程思想含有未知数的等式叫做方程.我们把一个等式看成是含有某个未知数的等式,从而用方程的理论与方程来解决问题的思想我们称之为方程思想.例如,等差数列{a n }的通项公式是a n =a 1+(n -1)d (n ∈N +),在这个等式中有四个字母:a n, a 1, n 和d ;如果把这个等式看成是已知其中三个字母,求第四个字母的值,那么,我们就把这个等式看成了是第四个字母(未知数)的方程,这种观点和思想就是方程思想.由于数学研究的数量关系有相等关系和不等关系两类,在数量相等关系中出现的是等式,有些等式中含有字母,如果把字母看成未知数,那么,等式就成了方程.于是,很多问题便可转化为方程问题来解决. 范例分类与解题分析一、函数思想【例1】 已知x +y =1,求x 2+y 2的最小值.【分析】 令t =x 2+y 2,则求x 2+y 2的最小值即是求t 的最小值,而通过建立函数关系求函数最小值是求变量最小值的一般方法.【解】 令t =x 2+y 2 ∵x +y =1∴t =x 2+(1-x )2=2x 2-2x +1=2⎝⎛⎭⎫x 2-x +14+12=2⎝⎛⎭⎫x -122+12∴t 的最小值是12,即x 2+y 2的最小值是12. 【点评】 求变量的最小值可通过建立函数关系求函数的最小值,因此一个变量若随另一个变量的变化而变化,该问题可归结为函数问题.【例2】 已知数列{a n }是等差数列,S n 是前n 项和,S q =S p (p <q),则S p +q =( )A .0B .p +qC .pD .q【分析】 等差数列的通项公式及前n 项和公式都可看成是关于n 的代数表达式,其中S n =a 1n +n (n -1)2d 可写成S n =An 2+Bn(A ≠0),为此本例可用二次函数的方法去解决. 【答案】 A【解】 由S n =An 2+Bn 及S q =S p 代入,得Aq 2+Bq =Ap 2+Bp,∴ A(p 2-q 2)+B(p -q)=0 ∵ p <q, ∴ p -q ≠0, ∴ A(p +q)+B =0∴ S p +q =A(p +q)2+B(p +q)=(p +q)[A(p +q)+B]=0.【点评】 函数的思想贯穿于中学数学的始终,是数学的一条主线,函数与方程等知识点的交汇,为利用函数思想解题提供了广阔的空间.【例3】 某租赁公司拥有汽车100辆,每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元,未租出的车将会增加一辆,租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?【解】 (1)当每辆车的月租金定为3600元时,未出租的车辆数为3600-300050=12,所以这时租出了100-12=88辆车.(2)设每辆车的月租金定为x 元,租赁公司的月收益为y 元,则y =(100-x -300050)(x -150)-x -300050×50=-x 250+162x -21000 =-150(x -4050)2+307050. 所以当x =4050时,y 最大,最大值为307050,即当每辆车的月租金为4050元时,租赁公司的月收益最大,最大月收益为307050元.【点评】 本例在月租金和月收益间有一种量的制约关系,如果把月收益看作每辆车月租金的函数后,就可以通过研究月收益函数得到一系列结论.因此函数就是解决此类应用问题的工具.借用函数的思想和方法完成对许多实际问题的科学处理,就恰恰体现了“以能力立意”的高职升学考试命题思想.【举一反三】 某商店将进货单价为20元的内衣,按24元一件出售时,每天能卖出200件,根据市场分析预测,单价每提高1元,其每天销售量将递减10件,问怎样制订内衣的售出价每天才能获得最大利润?【解】 设每件内衣单价提高x 元,则这时每件内衣利润为(x +4)元,每天可售出(200-10x).而这时能获取的利润的函数关系为y =(x +4)(200-10x)=-10x 2+160x +800.这是一个二次项系数为负数的二次函数,∴当x =-1602×(-10)=8,此时每件内衣销售价为24+8=32元时,销售利润y max 为1440元.答:该内衣的销售价为每件32元,能获取最大利润,最大利润为1440元.二、方程思想【例4】 设函数f (x )=1+f ⎝⎛⎭⎫1x ·log 2x ,则f(2)等于( )A .1B .-1C .2D .12【答案】 A【分析】 要求f(2)可将f(2)看成未知数,通过列方程解方程求f(2),也可先求f(x)后求f(2).【解】 解法一:∵f (x )=1+f ⎝⎛⎭⎫1x log 2x∴f (2)=1+f ⎝⎛⎭⎫12log 22=1+f ⎝⎛⎭⎫12 f ⎝⎛⎭⎫12=1+f (2)·log 212=1-f (2) ∴f (2)=1+[1-f (2)]=2-f (2) ∴2f (2)=2 ∴f (2)=1 故选A.解法二:∵f (x )=1+f ⎝⎛⎭⎫1x log 2x ∴f ⎝⎛⎭⎫1x =1+f (x )log 21x=1-f (x )log 2x ∴f (x )=1+[1-f (x )log 2x ]log 2x ∴f (x )=1+log 2x 1+(log 2x )2 ∴f (2)=1+log 221+(log 22)2=1,故选A. 【点评】 求未知数的值可通过列方程、解方程,因此数学解题中求未知数的问题可归结为方程的问题.【举一反三】 已知函数f (x )=a x +b (a >0且a ≠1),满足f (x +y )=f (x )·f (y )且f (3)=8,求f (x ).【解】 ∵f(x +y)=f(x)·f(y),∴a x +y +b =a x +b ·a y +b =a x +y +2b ,∴x +y +b =x +y +2b ,即b =0,∴f(x)=a x ,又f(3)=8,∴a 3=8,即a =2,∴f(x)=2x .【例5】 已知二次函数f(x)=ax 2+bx +c 的图象与x 轴有两个交点,两交点间距离为6,且当x =2时函数有最小值-9.(1)求a ,b ,c 的值;(2)如果f(x)不大于7,求对应x 的取值范围.【解】 (1)由题意设f(x)=a(x -2)2-9,由对称性知f(x)图象过(5,0)与(-1,0)代入方程得a(5-2)2-9=0,解得a =1,∴f(x)=(x -2)2-9=x 2-4x -5,∴a =1,b =-4,c =-5.(2)由题意得x 2-4x -5≤7 解得-2≤x ≤6.【点评】 方程思想在数学中应用很广泛,为我们的解题带来很大的方便. 综合训练1.已知不等式ax 2+bx -1>0的解为x <-12x >1,则( ) A .a =2,b =1 B .a =2,b =-1 C .a =-2,b =1 D .a =-2,b =-1【分析】 由题得x =-12,x =1是方程ax 2+bx -1=0的两个解,则 ⎩⎪⎨⎪⎧ 14a -12b -1=0a +b -1=0,解得⎩⎪⎨⎪⎧a =2b =-1 2.已知等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 9+a 10a 7+a 8=( ) A .1+ 2 B .1- 2 C .3+22 D .3-22【分析】 因为a 1,12a 3,2a 2成等差数列,所以a 3=a 1+2a 2,即a 1q 2=a 1+2a 1q ,所以q 2-2q -1=0,解得q =1+2(负值舍去),∴a 9+a 10a 7+a 8=q 2=3+2 2. 3.直线x +2y =2,则x 2+y 2的最小值为( )A.15B.25C.35D.45 【分析】 因x +2y =2 ∴x =2-2y ∴x 2+y 2=(2-2y )2+y 2=5y 2-8y +4=5⎝⎛⎭⎫y 2-85y +1625+45=5⎝⎛⎭⎫y -452+45∴x 2+y 2的最小值是45,故选D. 4.若对于任意实数x ,不等式|x -3|+|x -2|>a 均成立,则有( )A .0≤a <1B .a <1C .a ≥1D .a >1【分析】 设f (x )=|x -3|+|x -2|=⎩⎪⎨⎪⎧2x -5,x ∈[3,+∞)1, x ∈(2,3)5-2x , x ∈(-∞,2],∴f (x )min =1,又∵|x -3|+|x -2|>a 恒成立,∴a <1.二、填空题5.已知等差数列的首项a 1=17,公差d =-2,则其前n 项和中的最大值为_81_________.【分析】 由题得S n =na 1+n (n -1)2d =-n 2+18n =-(n -9)2+81 则当n =9时,S n 有最大值81.6.若曲线y =2x +1与直线y =b 没有公共点,则b 的取值范围是__(-∞, 1] ________.【分析】 y =2x +1的值域为(1, +∞),∴b 的取值范围为(-∞, 1].7.其家电商场将电脑价格按原价提高40%后,在广告中宣传“八折优惠”的促销手段,结果每台电脑比原价多赚了270元,那么每台电脑的原价是__2250______元.【分析】 由题设每台电脑原价为x 元,则x (1+40%)×0.8=x +270解之,得x =2250(元).8.若x ,y 满足x 2+2y 2-y =1,则x 2+y 2的最大值为___54_______. 【分析】 因x 2+2y 2-y =1 ∴x 2=1-2y 2+y∴x 2+y 2=1-2y 2+y +y 2=-y 2+y +1=-⎝⎛⎭⎫y 2-y +14+54=-⎝⎛y -122+54 又∵x 2=1-2y 2+y ≥0 ∴2y 2-y -1≤0∴-12≤y ≤1 ∴x 2+y 2=-⎝⎛⎭⎫y -122+54的最大值为54 三、 解答题9.已知函数f (x )满足条件f (x )+2f ⎝⎛⎭⎫1x =x ,求f (x ).【解】 由f (x )+2f ⎝⎛⎭⎫1x =x 得: f (x )=x -2f ⎝⎛⎭⎫1x ① 在①中设x =1x ,则f ⎝⎛⎭⎫1x =1x -2f ⎝ ⎛⎭⎪⎫11x 即f ⎝⎛⎭⎫1x =1x -2f (x )② 把②代入①得: f (x )=x -2⎣⎡⎦⎤1x -2f (x )=x -2x+4f (x ) ∴ 3f (x )=2x -x ,故f (x )=23x -x 3. 10.已知在等差数列{a n }中,a 4=lg x ,a 5=2,a 6=lg(x +990),求x 的值及通项公式a n .【解】 lg x +lg(x +990)=4,lg x (x +990)=4,x 2+990x -10000=0,(x -10)(x +1000)=0x 1=10,x 2=-1000(舍)∴a 4=lg10=1,a 5=2得d =1,a 1=a 4-3d =-2a n =a 1+(n -1)d =-2+(n -1)=n -3.11.求过两点A (1,4),B (3,2),且圆心在y =0上的圆的方程.【解】 ∵圆心在y =0上,∴设所求圆的方程为:(x -a )2+y 2=r 2∵所求圆过A 、B 两点 ∴⎩⎪⎨⎪⎧(1-a )2+16=r 2(3-a )2+4=r 2∴a =-1,r 2=20 ∴所求圆的方程为:(x +1)2+y 2=20.12.已知曲线x -y 2-1=0与直线kx -y =0相交,求实数k 的取值范围.【解】 ⎩⎪⎨⎪⎧x -y 2-1=0kx -y =0⇒k 2x 2-x +1=0 当k =0时,x =1,当k ≠0时Δ=1-4k 2≥0解得-12≤k ≤12且k ≠0. 综上k 的取值范围为[-12,12]. 13.已知二次函数f (x )=x 2+bx +c 满足f (0)=3, f (-1)=f (3),求:(1)b, c 的值;(2)若f (x )≥0求x 的解集.【解】 (1)由题意得⎩⎪⎨⎪⎧ c =31-b +c =9+3b +c 解得⎩⎪⎨⎪⎧b =-2c =3. (2)由(1)知f (x )=x 2-2x +3,由f (x )≥0得x 2-2x +3≥0 解得x ∈R ,所以f (x )≥0的解集为R .14.用12m 长的篱笆围成一个一边靠墙的矩形养鸡场,要使场地面积最大,问矩形的边长应为多少?【解】 设场地面积为y m 2,矩形场地靠墙一边的长为x m ,则另一边长为12-x 2m ,由已知可得 y =x ·12-x 2,y =-12x 2+6x 显然上式为一个二次函数,a =-12,故y 有最大值 y =-12(x 2-12x )=-12(x -6)2+18 ∴ 当x =6时,矩形场地面积最大,这时矩形靠墙一边的长为6m ,另一边长为12-62=3m.。

高中数学解题方法辅导-函数和方程的思想方法

高中数学解题方法辅导-函数和方程的思想方法

函数和方程的思想方法【高考能力要求】函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。

方程思想,是从问题的数量入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题解决。

有时,还需要函数与方程的互相转化、接轨,达到解决问题的目的。

高考中有关函数思想的试题主要涉及四个方面 (1) 具体的原始意义上的函数问题 (2) 方程、不等式与函数的综合题 (3) 数列这一特殊的函数 (4) 利用辅助函数解体高考中有关方程的试题主要有三个方面(1) 列方程解应用题 (2) 求曲线的方程 (3) 方程与函数的综合在高考复习时,函数和方程之间往往是可以互相转化的。

函数的许多性质可以归纳为对方程的研究;而方程问题、不等式问题和某些代数问题也可以转化为与其相关的函数的问题,即用函数思想解答菲函数问题。

【例题精讲】【例1】若关于x 的方程0322=++k kx x 的两不同的根都在1-和3之间,求k 的取值范围。

分析:若令,k kx x x f 32)(2++= 其图像与x 的交点的横坐标就是方程0)(=x f 的解而根据要求更根必须都在1-和3之间,则可以先画出符合题意函数)(x f y =的草图,结合图像找关系。

解:若令,k kx x x f 32)(2++= 其图像与x 的交点的横坐标就是方程0)(=x f 的解 而根据要求更根必须都在1-和3之间,则画出符合题意函数)(x f y =的草图由)(x f y =的图像可知,要使两根都在1-和3之间则只需⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧-∈-=-<-=->>-)3,1(20)()2(0)3(0)1(k abk f a bf f f )0,1(-∈k说明:本题是二次方程的实数根问题,是高中阶段的重要问题之一。

主要考查了三个二次:二次函数、二次方程根及二次不等式之间的关系,结合对应的二次函数草图来得到满足二次方程根要求的二次不等式。

高中数学常见思想方法总结

高中数学常见思想方法总结

高中常见数学思想方法方法一 函数与方程的思想方法函数是中学数学的一个重要概念,它渗透在数学的各部分内容中,一直是高考的热点、重点内容.函数的思想,就是用运动变化的观点,分析和研究具体问题中的数量关系,建立函数特征,重在对问题的变量的动态研究,从变量的运动变化、联系和发展角度拓宽解题思路.方程的思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解.函数与方程的思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的.有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的.【例1】 设等差数列{}n a 的前n 项的和为n S ,已知3121312,0,0a S S =><.(1)求公差d 的取值范围;(2)指出1S 、2S 、…、12S 中哪一个值最大,并说明理由.【分析】 (1)利用公式n a 与n S 建立不等式,容易求解d 的范围;(2)利用n S 是n 的二次函数,将n S 中哪一个值最大,变成求二次函数中n 为何值时n S 取最大值的函数最值问题.【解】(1) 由3a =12a d +=12,得到1a =12-2d ,所以12S =121a +66d =12(12-2d )+66d =144+42d >0,13S =131a +78d =13(12-2d )+78d =156+52d <0.解得:2437d -<<-. (2)解法一:(函数的思想)n S =21115(1)(12)222na n n d dn d n ++=+- =22124124552222d d n d d ⎡⎤⎡⎤⎛⎫⎛⎫---- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦因为0d <,故212452n d ⎡⎤⎛⎫-- ⎪⎢⎥⎝⎭⎣⎦最小时,n S 最大.由2437d -<<-得12465 6.52n d ⎛⎫<--< ⎪⎝⎭,故正整数n =6时212452n d ⎡⎤⎛⎫-- ⎪⎢⎥⎝⎭⎣⎦最小,所以6S 最大. 解法二:(方程的思想)由0d <可知12313a a a a >>>>.因此,若在112n ≤≤中存在自然数n ,使得0n a >,10n a +<,则n S 就是1S ,2S ,,n S 中的最大值.121300S S >⎧⎨<⎩⇒1150260d a d a d ⎧+>->⎪⎨⎪+<⎩⇒6700a a >⎧⎨<⎩, 故在1S 、2S 、…、12S 中6S 的值最大.【点评】 数列的通项公式及前n 项和公式实质上是定义在自然数集上的函数,因此可利用函数思想来分析,即用函数方法来解决数列问题;也可以利用方程的思想,利用不等式关系,将问题进行算式化,从而简洁明快.由此可见,利用函数与方程的思想来解决问题,要求灵活地运用、巧妙的结合,发展了学生思维品质的深刻性、独创性.【例1】 在平面直角坐标系xoy 中,如图,已知椭圆15922=+y x 的左右顶点为A,B ,右顶点为F ,设过点T (m t ,)的直线TA,TB 与椭圆分别交于点M ),(11y x ,),(22y x N ,其中m>0,0,021<>y y(1)设动点P 满足422=-PB PF ,求点P 的轨迹;(2)设31,221==x x ,求点T 的坐标; (3)设9=t ,求证:直线MN 必过x 轴上的一定点(其坐标与m 无关).【解】 (1)由题意知)0,2(F ,)0,3(A ,设),(y x P ,则4)3()2(2222=---+-y x y x化简整理得29=x . (2)把21=x ,312=x 代人椭圆方程分别求出)35,2(M ,)920,31(N 直线)3(31:+=x y AM ① A B O F直线)3(65:--=x y BN ② ①、②联立得107,3T ⎛⎫ ⎪⎝⎭. (3)),9(m T , 直线)3(12:+=x m y TA ,与椭圆联立得)8040,80)80(3(222++--m m m M 直线)3(6:-=x m y TB ,与椭圆联立得)2020,20)20(3(222+-+-m m m N 直线2222222224020203(20)8020:3(80)3(20)20208020m m m MN y x m m m m m m +⎛⎫-+++=- ⎪--++⎝⎭--++, 化简得222220103(20)204020m y x m m m ⎛⎫-+=-- ⎪+-+⎝⎭令0y =,解得1x =,即直线MN 过x 轴上定点(1,0).【点评】 本题主要考查求简单曲线的方程,考查直线与椭圆的方程等基础知识,考查运算求解能力和探究问题的能力.而且,本题在解决问题时,无论求点的坐标,还是求点P 的轨迹方程,都灵活运用了方程的思想,特别是在证明过程中更是很好地利用方程的有关知识,使问题画繁为简,华难为易.方法二 数形结合的思想方法正确利用数形结合,应注意三个原则:(1)等价性原则数形信息的转换应该是等价的、充要的.要注意由于图形的直观性,往往可以成为严格推证的启导,但有时不能完整表现数的一般性,考虑问题可能不完备.(2)双向性原则数形结合的含意是双向的,即考虑问题既注意代数问题几何化,也注意几何问题代数化,而不仅仅指前者.(3)简单性原则有了解题思路,思考用几何方法,还是代数方法,还是两者兼而用之,要取决于解题的简单性原则,而不能形而上学地让几何问题代数化,代数问题几何化成为一种机械模式.运用数形结合的思想方法解题的途径主要有三条:第一,以形助数:把一些数式的几何意义明朗化,构造出解题的几何模型,突显问题的直观性,使解题思路变得形像而通畅;第二,以数助形:利用几何图形或图像图表中隐含的数式特征,构造出解题的代数模型(必要时建立坐标系),突显问题的本质,另辟解题的捷径;第三,数形互助:根据问题的需要,将以形助数和以数助形二方面结合运用.数形结合的应用是广泛的,数与形的结合点主要集中在以下几个方面:1.研究函数的性质(单调性、奇偶性、周期性、对称性、值域与最值等),可从函数图像的直观性得到鲜明的启示.2.利用数轴与坐标系(包括直角坐标系、极坐标系),使数与点对应,使函数与图像、方程与曲线结合,使代数与几何联结.这样,可利用坐标或向量的运算,探索几何图形的相关性质;利用函数图像与方程曲线的直观性,探索函数或方程的性质.3.从统计图表、图像中,收集分析出“数”的信息,由破译的数量关系建立代数模型,探索相关的结论.这类数形信息的转换能力是近年高考的新亮点.4.三角函数与单位圆、三角函数曲线的联系.5.复平面与复数、向量的沟通.6.利用类比法、换元法(如三角换元)、构造法、坐标法等构造代数问题的几何模型、几何问题的代数模型,开辟解题的新思路.【例1】 (12年上海模拟)若函数()()y f x x R =∈满足(2)()f x f x -=,且[1,1]x ∈-时,2()1f x x =-,函数lg(1),11(),00,01x x g x x xx ->⎧⎪⎪=-<⎨⎪≤≤⎪⎩,则函数()()()h x f x g x =-在区间[5,6]-内的零点个数为_________.【答案】 9【解】 由题意,直接求解会很麻烦,且不易得到正确的答案,所以该题中求()()()h x f x g x =-的零点,可以转化为求()f x 与()g x 两函数图像的交点.则画出()f x 与()g x 的图像,由于()f x 在[1,1]x ∈-上为2()1f x x =-,且为周期函数,周期为2,而()g x 是分段函数,注意其图像共分为三部分,如图,可等共有9个交点,其中有一个易错点,即其中1个交点为(1,0)很容易被遗漏.【点评】 要求()()()h x f x h x =-在区间[5,6]-内的零点的个数,可转化为求()f x 与()h x 交点的个数,可以作出图形,观察图形易得交点的个数.本题体现了数形结合的思想,正是运用数形结合的思想方法解题的途径中的以形助数.【例2】 函数y =f (x )的图像为圆心在原点的两段圆弧,试解不等式f (x )>f (-x )十x .【解】 解法一:(以数助形) 由题意及图像,有⎪⎩⎪⎨⎧<≤---≤<-=011101)(22x x x x x f , (1)当0<x ≤1时, f (x )>f (-x )+x 得21x ->-2)(1x --+x , 解得0<x <552; (2)当-1≤x <0时, 得-21x ->2)(1x --+x , 解得-1≤x <-552, ∴ 原不等式的解集为[-1, -552)∪(0, 552). 解法二:(数形互助) 由图象知f (x )为奇函数,∴ 原不等式为f (x )>2x ,而方程f (x )= 2x 的解为x =±552,据图像可知原不等式解集为[-1, -552)∪(0, 552). 【点评】 本题以形看数(解式,奇偶性),以数解形(曲线交点A 、B ),最后以形解数(不等式),这才是真正意义上的数形结合,扬长避短.方法三 分类讨论的思想方法1.通常引起分类讨论的原因,大致可归纳为如下几点:(1)涉及的数学概念是分类定义的;(2)涉及运算的数学定义、公式或运算性质、法则是分类给出的;(3)涉及题中所给的限制条件或研究对像的性质而引起的;(4)涉及数学问题中参变量的不同取值导致不同结果而引起的;(5)涉及的几何图形的形状、位置的变化而引起的;(6)一些较复杂或非常规的数学问题,需要采用分类讨论的解题策略解决的.2.分类讨论的步骤一般可分为以下几步:(1)确定讨论的对像及其范围;(2)确定分类讨论的标准,正确进行分类;(3)逐类讨论,分级进行;(4)归纳整合,作出结论.其中最重要的一条是“不漏不重”.学生必须对相关知识点或涉及的概念、定义、定理相当清楚,对于一些结论成立的条件掌握牢固,这样才能在解题时思路清晰,才能知道何时必须进行分类讨论,而何时无须讨论,从而可以知道怎样进行分类讨论.【例1】(12年上海二模)点),(y x Q 是函数122-=x y 图像上的任意一点,点(0,5)P ,则P 、Q 两点之间距离的最小值是______________.【答案】 11【解】 ①当2102x -<时,222221,(5)(6)92x y PQ x y y =-=+-=--. 63y -=±时,即y =9或y =3,PQ 取最小值0,但222x y =-都为负数,∴不成立; ②当2102x -≥时,212x y =-,2222(5)(4)11PQ x y y =+-=-+.当y =4时,PQ 取最小值为11.综上所述,P 、Q 两点之间距离的最小值为11.【点评】 由于题中给出的是绝对值函数,需要利用分类讨论的思想去掉绝对值,然后再求解.体现了数学概念是分类定义的而引起的分类讨论.【例2】设等比数列{}n a 的公比为q ,前n 项和0(1,2,3,)n S n >=,求q 的取值范围.【分析】在应用等比数列前n 项和的公式时,由于公式的要求,分q =1和q ≠1两种情况.【解】{}n a 是等比数列,且前n 项和0(1,2,3,)n S n >=,110a S ∴=>,且0q ≠当1q =时,10n S na =>;当1q ≠时,1(1)01n n a q S q-=>-,即10(1,2,3,)1nq n q ->=-. 上式等价于1010n q q ⎧->⎨->⎩ ①或1010n q q ⎧-<⎨-<⎩ ②,由①得1q >,由②得11q -<<,∴q 的取值范围为()()1,00,-+∞.【点评】本题正是分类讨论中运算的数学定义、公式或运算性质、法则是分类给出的体现.【例4】已知实数0a ≠,函数()2,1,2, 1.x a x f x x a x +<⎧=⎨--≥⎩若()()11f a f a -=+,则a 的值为________. 【答案】 34-【解】首先讨论1a -,1a +与1的关系.当0a >时,11a -<,11a +<,所以()()1121f a a a a -=---=--;()12(1)32f a a a a +=++=+.因为()()11f a f a -=+,所以132a a --=+,所以34a =-; 当0a <时,11a ->,11a +>,所以()()1212f a a a a -=-+=-;()1(1)231f a a a a +=-+-=--.因为()()11f a f a -=+,所以231a a -=--,所以32a =-(舍去). 综上,满足条件的34a =-. 【点评】本题的解题关键在于讨论1a -,1a +与1的关系,正是体现了数学问题中参变量的不同取值导致不同结果而引起的分类讨论.方法四 概括归纳的思想方法概括是在思维中将同一种类型的对像共同的本质属性集中起来,结合为一般类型的属性.归纳是一种逻辑型的思维形状,是从几个特殊情形做出一般结论的不完全的属性.一类是性质和法则的归纳,如数列的基本性质,对数运算的法则的归纳过程;另一类是解题方法的归纳,如向量在物理中的应用等;第三类是归纳猜想,如由表格所给数据归纳几个连续奇数的和等.【例2】在数列{n a }中,1a =13 ,且前n 项的算术平均数等于第n 项的2n -1倍(n ∈N*).(1)写出此数列的前5项;(2)归纳猜想{n a }的通项公式,并用数学归纳法证明.【分析】(1)利用数列{n a }前n 项的算术平均数等于第n 项的2n -1倍,推出关系式,通过n =2,3,4,5求出此数列的前5项;(2)通过(1)归纳出数列{n a }的通项公式,然后用数学归纳法证明.第一步验证n =1成立;第二步,假设n =k 猜想成立,然后证明n =1k +时猜想也成立.【解】 (1)由已知1a =13,123n a a a a n++++ =(2n -1)n a ,分别取n =2,3,4,5,得2111153515a a ===⨯,()312111145735a a a =+==⨯, ()4123111277963a a a a =++==⨯,()512341114491199a a a a a =+++==⨯, 所以数列的前5项是:113a =,2115a =,3135a =,4163a = ,5199a = . (2)由(1)中的分析可以猜想1(21)(21)n a n n =-+(n ∈N*). 下面用数学归纳法证明:①当n =1时,猜想显然成立.②假设当n =k (k ≥1且k ∈N*)时猜想成立,即1(21)(21)k a k k =-+ . 那么由已知,得12311(21)1k k k a a a a a k a k +++++++=++, 即21231(23)k k a a a a k k a +++++=+.所以221(2)(23)k k k k a k k a +-=+,即1(21)(23)k k k a k a +-=+,又由归纳假设,得11(21)(23)(21)(21)k k k a k k +-=+-+, 所以11(21)(23)k a k k +=++,即当1n k =+时,猜想也成立. 综上①和②知,对一切n ∈N*,都有1(21)(21)n a n n =-+成立. 【点评】 本题考查数列的项的求法,通项公式的猜想与数学归纳法证明方法的应用,注意证明中必须用上假设,考查计算能力,分析问题解决问题的能力.正是体现了概括归纳的思想方法.方法五化归与等价变换的思想方法在解决数学问题时,常遇到一些问题直接求解较为困难,需将原问题转化成一个新问题(相对来说,对自己较熟悉的),通过对新问题的求解,达到解决原问题的目的.这一思想方法我们称之为“转换化归思想”.而转换化归思想的基本原则就是:化难为易,化生为熟,化繁为简,化未知为已知.1.利用转换化归思想解决数学问题时必须明确三个问题:(1)把什么东西进行转换化归,即化归对像;(2)化归转换到何处,即化归转换的目的;(3)如何进行转换化归,即转换化归的方法.2. 化归与转化常遵循以下几个原则.(1)目标简单化原则:将复杂的问题向简单的问题转化;(2)和谐统一性原则:即化归应朝着使待解决问题在表现形式上趋于和谐,在量、形关系上趋于统一的方向进行,使问题的条件和结论更均匀和恰当;(3)熟悉化原则:将陌生的问题转化为熟悉的问题,以利于我们运用熟知的知识、经验和问题来解决;(4)直观化原则:将比较抽象的问题转化为比较直观的问题来解决;(5)正难则反原则:即当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探求,使问题获解.3.转化与化归常用到的方法(1)直接转化法:把问题直接转化为基本定理、基本公式或基本图形问题.(2)换元法:运用“换元”把超越式转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题.(3)数形结合法:研究原问题中数量关系(解式)与空间形式(图形)关系,通过互相变换获得转化途径.(4)构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题.(5)坐标法:以坐标系为工具,用计算方法解决几何问题,是转化方法的一个重要途径.(6)类比法:运用类比推理,猜测问题的结论,易于确定转化途径.(7)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的结论适合原问题.(8)等价问题法:把原问题转化为一个易于解决的等价命题,达到转化目的.(9)加强命题法:在证明不等式时,原命题难以得证,往往把命题的结论加强,即命题的结论加强为原命题的充分条件,反而能将原命题转化为一个较易证明的命题,比如在证明不等式时:原命题往往难以得证,这时常把结论加强,使之成为原命题的充分条件,从而易证.(10)补集法:如果下面解决原问题有困难,可把原问题结果看作集合A ,而包含该问题的整体问题的结果类比为全集U ,通过解决全集U 及补集使原问题得以解决.化归与等价变换的思想方法所涉及到的具体问题很多很多,如果不断努力地用这种方法去解决一些数学问题或数学范畴以外的问题时,往往会出现事半功倍的奇特效果.【例1】 设x 、y ∈R 且22326x y x +=,求22x y +的范围.【解】 方法一:等价转化法(转化为函数问题)由22623x y x -=≥0得0≤x ≤2.设22k x y =+,则22y k x =-,代入已知等式得:2620x x k -+=, 即2132k x x =-+,其对称轴为x =3. 由0≤x ≤2得k ∈[0,4].所以22x y +的范围是:0≤22x y +≤4.方法二:数形结合法(转化为解几何问题): 由22326x y x +=得()221132y x -+=,即表示如图所示椭圆,其一个顶点在坐标原点.22x y +的范围就是椭圆上的点到坐标原点的距离的平方.由图可知最小值是0,距离最大的点是以原点为圆心的圆与椭圆相切的切点.设圆方程为22x y k +=,代入椭圆中消y 得2620x x k -+=.由判别式3680k ∆=-=得4k =,所以22x y +的范围是:2204x y ≤+≤.方法三: 三角换元法,对已知式和待求式都可以进行三角换元(转化为三角问题): 由22326x y x +=得()221132y x -+=,设1cos 6sin 2x y αα-=⎧⎪⎨=⎪⎩,则 2222233112cos cos sin 12cos cos 222x y ααααα+=+++=++- []215cos 2cos 0,422αα=-++∈ 所以22x y +的范围是:2204x y ≤+≤.优秀学习资料 欢迎下载【点评】本题运用多种方法进行解答,实现了多种角度的转化,联系了多个知识点,有助于提高发散思维能力.而且各种方法的运用,分别将代数问题转化为了其它问题,属于问题转换题型,正是体现了熟悉化原则,将不熟悉的知识转化为自己熟悉的知识.【例2】设等比数列{a n }的公比为q ,前n 项和为S n ,若S n +1、S n 、S n +2成等差数列,则q =___________.【答案】-2【解】q a a S 112+=,11S a =,23111S a a q a q =++∵1322S S S =+ ∴12111222a q a q a a =++(a 1≠0)∴2q =-或0q =(舍去).【点评】 由于该题为填空题,我们不防用特殊情况来求q 的值.如:213,,S S S 成等差,求q 的值.这样就避免了一般性的复杂运算.既体现简单化原则,也是特殊化方法的使用,正是转化与化归的思想方法的典型体现。

专题 解题有魂——领悟贯通4大数学思想 2023高考数学二轮复习课件

专题 解题有魂——领悟贯通4大数学思想 2023高考数学二轮复习课件
目录
|技法点拨| 此题是一道典型的求离心率的题目,一般需要通过a,b,c之间的关系, 得出关于a,c的方程,经过恒等变形就可以求出离心率.
目录
在△ABC 中,内角 A,B,C 所对的边分别为 a,b,c.已知△ABC 的面积为
3 15,b-c=2,cos A=-14,则 a=____8____.
目录
构造函数关系解决问题 在高考试题中,综合问题的比较大小、求最值等,一般均需利用构 造函数法才能完成.如何正确的构造出恰当的函数,是解决此类问题的 关键,因此充分挖掘原问题的条件与结论间的隐含关系,通过类比、联 想、抽象、概括等手段,构造出恰当的函数,在此基础上利用函数思想 和方法使原问题获解,这是函数思想解题的更高层次的体现.
目录
|技法点拨| 挖掘、提炼多变元问题中变元间的相互依存、相互制约的关系,反客为 主,主客换位,创设新的函数,并利用新函数的性质创造性地使原问题获解, 是解题人思维品质高的表现.本题主客换位后,利用新建函数 y=x1+ln x 的 单调性巧妙地求出实数 k 的取值范围.此法也叫主元法.
目录
已知函数 f(x)=33xx- +11+x+sin x,若存在 x∈[-2,1],使得 f(x2+x)+f(x-k) <0 成立,则实数 k 的取值范围是__(_-__1_,__+__∞__)__. 解析:由题意知,函数f(x)的定义域为R,且f(x)是奇函数. 又 f′(x)=(2l3nx+3·1)3x2+1+cos x>0 在 x∈[-2,1]上恒成立,函数 f(x)在 x∈[- 2,1]上单调递增.若存在 x∈[-2,1],使得 f(x2+x)+f(x-k)<0 成立,则 f(x2+x)<-f(x-k)⇒f(x2+x)<f(k-x)⇒x2+x<k-x,故问题转化为存在 x∈[-2,1],k>x2+2x,即 k>(x2+2x)min,当 x∈[-2,1]时,y=x2+2x= (x+1)2-1 的最小值为-1.故实数 k 的取值范围是(-1,+∞).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4讲函数与方程的思想方法一、知识整合函数与方程是两个不同的概念,但它们之间有着密切的联系,方程f(x)=0的解就是函数y=f(x)的图像与x轴的交点的横坐标,函数y=f(x)也可以看作二元方程f(x)-y=0通过方程进行研究。

就中学数学而言,函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的.许多有关方程的问题可以用函数的方法解决,反之,许多函数问题也可以用方程的方法来解决。

函数与方程的思想是中学数学的基本思想,也是历年高考的重点。

1.函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。

函数思想是对函数概念的本质认识,用于指导解题就是善于利用函数知识或函数观点观察、分析和解决问题。

2.方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。

方程的数学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题。

方程思想是动中求静,研究运动中的等量关系.3.(1) 函数和方程是密切相关的,对于函数y=f(x),当y=0时,就转化为方程f(x)=0,也可以把函数式y=f(x)看做二元方程y-f(x)=0。

函数问题(例如求反函数,求函数的值域等)可以转化为方程问题来求解,方程问题也可以转化为函数问题来求解,如解方程f(x)=0,就是求函数y=f(x)的零点。

(2) 函数与不等式也可以相互转化,对于函数y=f(x),当y>0时,就转化为不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式。

(3) 数列的通项或前n项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要。

(4) 函数f(x)=n( (n∈N*)与二项式定理是密切相关的,利用这个函数用ax)b赋值法和比较系数法可以解决很多二项式定理的问题。

(5) 解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元方程组才能解决,涉及到二次方程与二次函数的有关理论。

(6) 立体几何中有关线段、角、面积、体积的计算,经常需要运用布列方程或建立函数表达式的方法加以解决。

二、例题解析Ⅰ.运用函数与方程、表达式相互转化的观点解决函数、方程、表达式问题。

例1 已知155=-acb ,(a 、b 、c ∈R ),则有( ) (A) ac b 42> (B) ac b 42≥ (C) ac b 42< (D) ac b 42≤ 解析 法一:依题设有 a ·5-b ·5+c =0∴5是实系数一元二次方程02=++c bx ax 的一个实根; ∴△=ac b 42-≥0 ∴ac b 42≥ 故选(B) 法二:去分母,移项,两边平方得:22210255c ac a b ++=≥10ac +2·5a ·c =20ac∴ac b 42≥ 故选(B)点评解法一通过简单转化,敏锐地抓住了数与式的特点,运用方程的思想使问题得到解决;解法二转化为b 2是a 、c 的函数,运用重要不等式,思路清晰,水到渠成。

练习1 已知关于x 的方程 2x -(2 m -8)x +2m -16 = 0的两个实根 1x 、2x 满足 1x <23<2x ,则实数m 的取值范围_______________。

答案:17{|}22m m -<<; 2 已知函数 32()f x ax bx cx d =+++的图象如下,则( ) (A )(),0b ∈-∞ (B)()0,1b ∈ (C) (1,2)b ∈ (D)(2,)b ∈+∞ 答案:A.3 求使不等式)lg(xy ≤a lg ·y x 22lg lg +对大于1的任意x 、y 恒成立的a 的取值范围。

Ⅱ:构造函数或方程解决有关问题:例2 已知tt f 2log )(=,t ∈[2,8],对于f(t)值域内的所有实数m ,不等式x m mx x 4242+>++恒成立,求x 的取值范围。

解析∵t ∈[2,8],∴f(t)∈[21,3] 原题转化为:2)2()2(-+-x x m >0恒成立,为m 的一次函数(这里思维的转化很重要) 当x =2时,不等式不成立。

∴x ≠2。

令g(m)=2)2()2(-+-x x m ,m ∈[21,3] 问题转化为g(m)在m ∈[21,3]上恒对于0,则:⎪⎩⎪⎨⎧>>0)3(0)21(g g ;解得:x>2或x<-1评析 首先明确本题是求x 的取值范围,这里注意另一个变量m ,不等式的左边恰是m 的一次函数,因此依据一次函数的特性得到解决。

在多个字母变量的问题中,选准“主元”往往是解题的关键。

例3 为了更好的了解鲸的生活习性,某动物保护组织在受伤的鲸身上装了电子监测装置,从海洋放归点A 处,如图(1)所示,把它放回大海,并沿海岸线由西向东不停地对它进行了长达40分钟的跟踪观测,每隔10分钟踩点测得数据如下表(设鲸沿海面游动),然后又在观测站B 处对鲸进行生活习性的详细观测,已知AB =15km ,观测站B 的观测半径为5km 。

(1)据表中信息:①计算出鲸沿海岸线方向运动的速度;②试写出a 、b 近似地满足的关系式并 画出鲸的运动路线草图;(2)若鲸继续以(1)-②运动的路线运动,试预测,该鲸经过多长时间(从放归时开设计时)可进入前方观测站B 的观测范围?并求出可持续观测的时间及最佳观测时刻。

(注:41≈6.40;精确到1分钟)解析(1)由表中的信息可知: ①鲸沿海岸线方向运动的速度为:101(km/分钟) ②a 、b 近似地满足的关系式为:a b =运动路线如图(2)以A 为原点,海岸线AB 为x 位置点P (x ,y ),由①、②得:x y =,又B (15,0), 依题意:观测站B 的观测范围是:海岸西东图1B22)15(y x +-≤5 (y ≥0) 又x y =∴x x +-2)15(≤25 解得:11.30≤x ≤17.70由①得:∴该鲸经过t =10130.11=113分钟可进入前方观测站B 的观测范围 持续时间:10130.1170.17-=64分钟∴该鲸与B 站的距离d =22)15(y x +-=225292+-x x当d 最小时为最佳观测时刻,这时x =229=14.5,t =145分钟。

练习4.已知关于x 的方程x a x cos sin 2+-2a = 0有实数解,求实数a 的取值范围。

(答案:0≤a ≤4-32)Ⅲ:运用函数与方程的思想解决数列问题例4设等差数列{a n }的前n 项和为S n ,已知123=a ,12S >0,13S <0, (1)求公差d 的取值范围;(2)指出1S 、2S 、3S …,12S 中哪一个最大,并说明理由。

解析(1)由123=a 得:d a 2121-=,∵12S =d d a 4214444121+=+>0 13S =d d a 5215678131+=+<0 ∴724-<d<-3 (2)n d dn d n n na S n )2512(212)1(21-+=-+= ∵d<0,n S 是关于n 的二次函数,对称轴方程为:x =d1225- ∵724-<d<-3 ∴6<d 1225-<213 ∴当n =6时,n S 最大。

三、强化练习 1.8(x展开式中5x 的系数为____________.2.已知方程22(2)(2)0x x m x x n -+-+=的四个根组成一个首项为14的等差数列,则m n -=( )A 1B 34C 12D 383.设双曲线的焦点x 在轴上,两条渐近线为12y x =±,则该双曲线的离心率e =( )A 5 BC2D 544.已知锐角三角形ABC 中,31sin(),sin()55A B A B +=-=。

Ⅰ.求证tan 2tan A B =;Ⅱ.设3AB =,求AB 边上的高。

5.甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为14,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为112,甲、丙两台机床加工的零件都是一等品的概率为29。

Ⅰ.分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;Ⅱ.从甲、乙、丙加工的零件中各取一个进行检验,求至少有一个是一等品的概率。

6.设0a >,2()f x ax bx c =++,曲线()y f x =在点00(,())P x f x 处切线的倾斜角的取值范围为0,4π⎡⎤⎢⎥⎣⎦,则点P到曲线()y f x =对称轴距离的取值范围是( ) 1.0,2A ⎡⎤⎢⎥⎣⎦ 1.0,2B a ⎡⎤⎢⎥⎣⎦ .0,2b C a ⎡⎤⎢⎥⎣⎦ 1.0,2b D a ⎡-⎤⎢⎥⎣⎦7.设双曲线C :2221(0)x y a a-=>与直线:1l x y +=相交于两个不同的点A 、B 。

Ⅰ.求双曲线C 的离心率e 的取值范围; Ⅱ.设直线l 与y 轴的交点为P ,且512PA PB =,求a 的值。

相关文档
最新文档