初二数学轴对称与中心对称的知识点
八年级数学复习考点1 轴对称及轴对称图形的意义

ABCDP八年级数学复习考点1 轴对称及轴对称图形的意义一、考点讲解:1.轴对称:两个图形沿着一条直线折叠后能够互相重合,我们就说这两个图形成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点,对应线段叫做对称线段.2.如果一个图形沿某条直线对折后,直线两旁的部分能够互相重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴.3.轴对称的性质:如果两个图形关于某广条直线对称,那以对应线段相等,对应角相等,对应点所连的线段被对称轴垂直平分,对应点的连线互相平行或在同一条直线上,对应的线段(或其延长线)相交,交点在对称轴上。
4.简单的轴对称图形:线段:有两条对称轴:线段所在直线和线段中垂线. 角:有一条对称轴:该角的平分线所在的直线. 等腰(非等边)三角形:有一条对称轴,底边中垂线. 等边三角形:有三条对称轴:每条边的中垂线. 等腰梯形:过两底中点的直线 正n 边形有n 条对称轴 圆有无数条对称轴。
二、基本图形:1.已知:点A 、B 分别在直线l 的同侧,在直线l 上找一点P ,使PA+PB 最短。
变形1:正方形ABCD 中,点E 是AB 边上的一点,在对角线AC 上找一点P ,使PA+PB 最短。
变形2:已知点A (1,6)、点B (6,4),在x 轴和y 轴上各找一点C 、D ,使四边形ACDB 的周长最短。
三、经典考题剖析:1.(2006无锡市3分)在下面四个图案中,如果不考虑图中的文字和字母,那么不是轴对称图形的是( )2.(2006 山西省3分)下列图形中是轴对称图形的是( )。
3.(2006河南省3分)下列图形中,是轴对称图形的有( )ABABlB A CDA.4个B.3个C.2个D.1个4.(2006鸡西市3分)在下列四个图案中,既是轴对称图形,又是中心对称图形的是( )(A) (B) (C) (D)5.(2006苏州市3分)如图,如果直线m 是多边形ABCDE 的对称轴,其中∠A=1300, ∠B=1100.那么∠BCD 的度数等于 ( ) A. 400B.500C .60D.7006.(2006梅州市3分)小明在镜中看到身后墙上的时钟,实际时间最接近8时的是下图中的( )7.(2006 湛江市6分)如图5,请你画出方格纸中的图形关于点O 的中心对称图形,并写出整个图形的对称轴的条数.四、针对性训练:1.(2006宜昌市3分)从汽车的后视镜中看见某车车牌的后5位号码是 ,该车的后5位号码实际是 。
对称知识点总结

对称知识点总结对称是指某一对象的两侧是完全一致的,可以通过某个中心或轴线进行重合。
对称在数学、艺术、自然界以及日常生活中都有着重要的作用。
在数学中,对称性是一种重要的概念,包括点对称、轴对称、中心对称等不同的形式。
本文将对对称的相关知识点做一个总结,包括对称的定义、性质、应用等方面。
一、对称的定义对称是指某个对象的一个部分或全体在某个中心或轴线附近重合的性质。
对称可以分为几种不同的类型,主要包括点对称、轴对称和中心对称。
1. 点对称如果一个图形中的每一点关于给定的点O对称,那么这个图形就是关于点O对称的。
对称点O就是图形的中心。
点对称是一种基本的对称形式,常见于各种几何图形中,例如圆、椭圆、正多边形等。
2. 轴对称如果一个图形中的每一点关于一条直线l对称,那么这个图形就是关于直线l对称的。
轴对称是一种常见的对称形式,在许多几何图形中都有所体现,例如直线、矩形、椭圆等。
3. 中心对称如果一个图形中的每一点关于某个点O对称,且这个点O同时也在这个图形中,那么这个图形就是关于点O中心对称的。
中心对称在计算机图形学、晶体学等领域有着广泛的应用。
二、对称的性质对称具有一些基本的性质,这些性质对理解和应用对称有着重要的意义。
1. 对称性对称性是指一个对象关于某个中心或轴线的重合性质。
所有的对称图形都具有对称性,这是对称的基本特征。
2. 对称轴/中心对称图形具有对称轴或对称中心,这个轴线或中心是图形对称的基础,通过这个轴线或中心可以将整个图形分为对称的两部分。
3. 对称图形的性质对称图形的性质包括:a. 对称图形的对边(对侧)相等b. 对称图形的特定角度相等,如正多边形的内角相等c. 对称图形的重心位于对称中心d. 对称图形可以通过对称变换得到e. 对称图形满足某些特定的几何关系三、对称的应用对称不仅是一种几何性质,还广泛地应用于各个领域。
以下是对称在不同领域中的应用:1. 对称在几何学中的应用对称在几何学中有着广泛的应用,可以帮助我们理解和分析各种几何图形,解决各种几何问题。
八年级上册数学轴对称知识点总结

八年级上册数学轴对称知识点总结篇1:八年级上册数学轴对称知识点总结八年级上册数学轴对称知识点总结1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
2.性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
(2)角平分线上的点到角两边距离相等。
(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。
(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
(5)轴对称图形上对应线段相等、对应角相等。
3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。
5.等腰三角形的判定:等角对等边。
6.等边三角形角的特点:三个内角相等,等于60°,7.等边三角形的判定:三个角都相等的三角形是等腰三角形。
有一个角是60°的.等腰三角形是等边三角形有两个角是60°的三角形是等边三角形。
8.直角三角形中,30°角所对的直角边等于斜边的一半。
9.直角三角形斜边上的中线等于斜边的一半。
数学学习方法诀窍1细心地发掘概念和公式很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。
例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式”。
二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。
这样就不能很好的将学到的知识点与解题联系起来。
三是,一部分同学不重视对数学公式的记忆。
记忆是理解的基础。
如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?我们的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。
2养成良好的解题习惯要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。
初中数学轴对称与中心对称

中心对称图形
把一个图形绕着某一点旋转 _1_8_0_°_ 把一个图形绕着某一点旋转_1_8_0_°_,如 后,如果它能与另一个图形_重__合___, 果旋转后的图形能够与原来的图形重 定义 那么就说这两个图形关于这个点成 合,那么我们把这个图形叫中心对称 中心对称,该点叫做_对__称__中__心___ 图形,这个点叫做_对__称__中__心___
图 31-4
解:得到的图形是一个菱形,对折两次得到有两条对称 轴的轴对称图形,而且剪刀所剪的虚线就是得到图形的边长, 四边相等,所以是一个菱形.
轴对称与中心对称
[方法点析] 动手操作题目主要是利用剪刀或对折,得 到的图形部分或整体是一个轴对称图形,然后根据轴对称图 形的性质解答,注意把握轴对称图形的特征.
称与中心对称 中考预测 1.把一张正方形纸片如图 31-5①、图②对折两次后, 再如图③挖去一个三角形小孔,则展开后图形是( C )
图31-5图31-6 Nhomakorabea轴对称与中心对称
2.图 31-7 的长方形 ABCD 中,E 点在 AD 上,且 BE= 2AE.分别以 BE、CE 为折线,将 A、D 向 BC 的方向折过去, 图②为对折后 A、B、C、D、E 五点均在同一平面上的位置图, 若图②中,∠A′ED′=15°,则∠BCE 的度数为( D )
例 3 [2013·钦州] 如图 31-3,在平面直 角坐标系中,△ABC 的三个顶点都在格点上, 点 A 的坐标为(2,4),请解答下列问题:
(1) 画 出 △ABC 关 于 x 轴 对 称 的 △A1B1C1,并写出点 A1 的坐标;
(2)画出△A1B1C1 绕原点 O 旋转 180°后 得到的△A2B2C2,并写出点 A2 的坐标.
对称轴,折叠后重合的点是对应 我们也说这个图形关于这条直线
轴对称图形中心对称图形的定义及性质

轴对称图形、中心对称图形的基本概念轴对称图形的定义如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形。
轴对称图形的性质1)如果沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形,这条直线叫做这个图形的对称轴。
(对于一个图形来说)(2)把一格图形沿着某一条直线翻折过去,如果它能够与另一个图形重合,那么就说这两个图形成轴对称。
这条直线就是对称轴。
两个图形中的对应点(即两个图形重合时互相重合的点)叫做对称点。
(对于两个图形来说)(3)轴对称图形(或关于某条直线对称的两个图形)的对应线段相等,对应角相等。
中心对称的定义:把一个图形绕着某一点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称(central symmetry),这个点叫做对称中心,这两个图形的对应点叫做关于中心的对称点。
中心对称的性质:①于中心对称的两个图形是全等形。
②关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
③关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等。
识别一个图形是否是中心对称图形就是看是否存在一点,使图形绕着这个点旋转180°后能与原图形重合。
中心对称是指两个图形绕某一个点旋转180°后,能够完全重合,这两个图形关于该点对称,该点称为对称中心.二者相辅相成,两图形成中心对称,必有对称中点,而点只有能使两个图形旋转180°后完全重合才称为对称中点。
既是轴对称图形又是中心对称图形的有:直线,线段,两条相交直线,矩形,菱形,正方形,圆等.只是轴对称图形的有:射线,角等腰三角形,等边三角形,等腰梯形等.只是中心对称图形的有:平行四边形等.既不是轴对称图形又不是中心对称图形有:不等边三角形,非等腰梯形等.。
八年级对称图形知识点

八年级对称图形知识点对称图形是一种美丽而神秘的艺术形式,在日常生活和自然界中随处可见。
在数学学科中,对称图形也是一个非常重要的概念,它涵盖了对称轴、对称中心、轴对称图形和中心对称图形等多个知识点。
在本文中,我们将介绍八年级对称图形知识点的相关内容。
一、对称轴对称轴是指将一个图形分为两个完全相同的部分的直线。
对称轴是轴对称图形的重要概念,它有以下几个特点:(1)对称轴过图形的中心点。
(2)对称轴两侧的部分互为镜像,即对称轴将图形分成两个相似的部分。
(3)对称轴可以是直线、射线或线段。
在计算对称轴时,要注意图形的位置和形状。
正方形、长方形和圆等常见对称图形的对称轴比较容易计算,但对称轴不是直线的不规则图形就需要用推理和衍生的方法计算。
二、对称中心对称中心是指将一个图形分为两个完全相同的部分的点。
对称中心是中心对称图形的重要概念,它有以下几个特点:(1)对称中心是图形的中心点。
(2)对称中心两侧的部分互为镜像,即对称中心将图形分成两个相似的部分。
(3)对称中心可以在图形内部或外部。
在计算对称中心时,要注意图形的形状和对称性。
对称中心可以通过描画图形的所有对角线,通过交点找到。
也可以通过测量图形两侧的长度和角度来找到。
三、轴对称图形轴对称图形是指将一个图形沿着某个对称轴折叠后,两侧完全重合的图形。
轴对称图形有以下几个特点:(1)轴对称图形的所有点可以通过对称轴进行对称得到。
(2)轴对称图形的两侧完全相同,形状和大小完全相同。
(3)轴对称图形可以是二维平面图形,也可以是三维立体图形。
轴对称图形在日常生活和数学学科中都有广泛的应用。
例如矩形、圆形、星形、心形等常见图形都是轴对称图形,它们在建筑、装饰、艺术和游戏等领域都有重要的应用。
四、中心对称图形中心对称图形是指将一个图形沿着某个对称中心旋转180度后,完全重合的图形。
中心对称图形有以下几个特点:(1)中心对称图形的所有点可以通过对称中心旋转180度得到。
初中数学对称知识点总结

初中数学对称知识点总结一、对称的定义1. 点的对称:如果图形中任意一点关于某条直线对称,那么这个图形就是关于这条直线对称的。
对称的直线称为对称轴。
2. 图形的对称:如果图形关于某条直线对称,那么这个图形就是关于这条直线对称的。
对称的直线称为对称轴。
当一个图形关于一个点对称时,这个点称为图形的中心。
3. 对称性质:对称可以分为轴对称和中心对称。
轴对称是指图形可以关于一条直线对称,中心对称是指图形可以关于一个点对称。
4. 对称图形:轴对称的图形称为轴对称图形,中心对称的图形称为中心对称图形。
轴对称图形有对称轴,中心对称图形有对称中心。
二、对称的性质1. 对称性质是指图形、函数、方程等在平移、旋转或翻转后的性质不变。
2. 对称性质通常包括镜像对称、轴对称、中心对称等。
3. 对称性质在代数、几何、组合等数学领域中有着广泛的应用。
三、对称图形1. 关于坐标系的对称图形:在平面直角坐标系中,可以通过坐标变换和对称变换来研究对称图形的性质。
常见的对称图形包括点、直线、圆等。
2. 关于轴对称的图形:轴对称图形是指图形可以关于一条直线对称的图形。
常见的轴对称图形包括正方形、矩形、菱形等。
3. 关于中心对称的图形:中心对称图形是指图形可以关于一个点对称的图形。
常见的中心对称图形包括正圆、正多边形等。
四、对称的应用1. 对称在代数中的应用:对称性质在代数中有着重要的应用,可以简化问题的求解和证明过程。
2. 对称在几何中的应用:对称性质在几何中有着广泛的应用,可以帮助求解几何问题和证明几何定理。
3. 对称在组合中的应用:对称性质在组合问题中有着重要的应用,可以帮助求解排列组合和图形的对称性质等问题。
总之,对称是数学中一个非常重要的概念,它在数学的各个领域都有着广泛的应用。
对称性质可以帮助简化问题的求解和证明过程,可以帮助学生更好地理解和掌握数学的知识。
因此,学生应该认真学习对称的知识,掌握对称的定义、性质和应用,以便更好地应用对称来解决问题和证明定理。
中考数学必考知识点-轴对称与中心对称

中考数学必考知识点轴对称与中心对称知识点回顾知识点一:轴对称、轴对称图形1、轴对称图形:如果一个图形沿某条直线对折,对折的两部分是的,那么就称这样的图形为轴对称图形。
这条直线称为,一定为直线。
2、轴对称:把一个图形沿着某一条直线翻折过去,如果它能与另一个图形重合,那么这两个图形成,两个图形中的对应点叫。
例1:(2009湖南株洲)下列四个图形中,不是..轴对称图形的是A.B.C.D.解析:轴对称图形的特点就是对折后两旁部分完全重合,所以,判断图形是不是轴对称图形,关键是观察能不能找到一条直线可以对折。
四幅图案中,A、B、C都是轴对称图形;D不是。
选择D。
同步测试:1.(2009广西梧州)在下列对称图形中,对称轴的条数最少的图形是()A.圆 B.等边三角形 C.正方形 D。
正六边形【答案】B2.(2009贵州黔东南州)在下列几何图形中一定是轴对称图形的有()A、1个B、2个C、3个D、4个【答案】B知识点二:轴对称图形的性质1、轴对称图形的对应线段,对应角,对应点的连线被对称轴。
轴对称的两个图形,对应线段或延长线相交,交点在 上。
2、轴对称图形变换的特征是不改变图形的 和 ,只改变图形的 ,新旧图形具有对称性。
例2:(2009湖北荆门)如图,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A ′处,折痕为CD ,则∠A ′DB =( ) A .40° B.30° C.20° D.10° 解析:有关折叠问题是中考常考的题型,必须要辨别清楚折叠前后图形和数量关系。
本题中,将∠A 折叠,出现了轴对称,∠CA ′D =∠A ,因为∠A =50°,所以∠CA ′D =50°。
在Rt △ABC 中,∠ACB =90°,∠B =90°-∠A =40°。
∠CA ′D 是△ A ′B D 的一个外角,等于∠A ′DB 与∠B 之和,所以∠A ′DB =∠A ′DB -∠B =50°- 40°=10°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学轴对称与中心对称的知识点
初二数学轴对称与中心对称的知识点
一、轴对称与轴对称图形:
2.轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。
注意:对称轴是直线而不是线段
3.轴对称的性质:
(1)关于某条直线对称的两个图形是全等形;
(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;
(3)两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上;
(4)如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
4.线段垂直平分线:
(1)定义:垂直平分一条线段的直线是这条线的垂直平分线。
(2)性质:①线段垂直平分线上的点到这条线段两个端点的距离相等;
②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
注意:根据线段垂直平分线的这一特性可以推出:三角形三边的垂直平分线交于一点,并且这一点到三个顶点的距离相等。
5.角的平分线:
(1)定义:把一个角分成两个相等的角的射线叫做角的平分线.
(2)性质:①在角的平分线上的点到这个角的两边的距离相等.
②到一个角的两边距离相等的点,在这个角的平分线上.
注意:根据角平分线的性质,三角形的三个内角的平分线交于一点,并且这一点到三条边的距离相等.
6.等腰三角形的性质与判定:
性质:
(1)对称性:等腰三角形是轴对称图形,等腰三角形底边上的.中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴;
(2)三线合一:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合;
(3)等边对等角:等腰三角形的两个底角相等。
说明:等腰三角形的性质除三线合一外,三角形中的主要线段之间也存在着特殊的性质,如:①等腰三角形两底角的平分线相等;②等腰三角形两腰上的中线相等;
③等腰三角形两腰上的高相等;④等腰三角形底边上的中点到两腰的距离相等。
判定定理:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。
7.等边三角形的性质与判定:
性质:(1)等边三角形的三个角都相等,并且每个角都等于60
(2)等边三角形具有等腰三角形的所有性质,并且在每条边上都有三线合一。
因此等边三角形是轴对称图形,它有三条对称轴,而等腰三角形(非等边三角形)只有一条对称轴。
判定定理:有一个角是60的等腰三角形是等边三角形。
说明:等边三角形是一种特殊的三角形,容易知道等边三角形的三条高(或三条中线、三条角平分线)都相等。
二、中心对称与中心对称图形:
1.中心对称:把一个图形绕着某一个点旋转180,如果它能够和另外一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点。
2.中心对称图形:在平面内,一个图形绕某个点旋转180,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。
3.中心对称的性质:
(1)关于中心对称的两个图形是全等形;
(2)在成中心对称的两个图形中,连接对称点的线段都经过对称中心,并且被对称中心平分;
(3)成中心对称的两个图形,对应线段平行(或在同一直线上)且相等。