K-means聚类分析

合集下载

K-means聚类分析

K-means聚类分析

K-means聚类分析⼀、原理1. 先确定簇的个数,K2. 假设每个簇都有⼀个中⼼点centroid3. 将每个样本点划分到距离它最近的中⼼点所属的簇中选择K个点做为初始的中⼼点while(1){将所有点分配个K个中⼼点形成K个簇重新计算每个簇的中⼼点if(簇的中⼼点不再改变)break;}⽬标函数:定义为每个样本与其簇中⼼点的距离的平⽅和(theSum of Squared Error, SSE) – µk 表⽰簇Ck 的中⼼点(或其它能代表Ck的点) – 若xn被划分到簇Ck则rnk=1,否则rnk= 0• ⽬标:找到簇的中⼼点µk及簇的划分rnk使得⽬标函数SSE最⼩初始中⼼点通常是随机选取的(收敛后得到的是局部最优解)不同的中⼼点会对聚类结果产⽣不同的影响:1、2、此时你⼀定会有疑问:如何选取"较好的"初始中⼼点?1. 凭经验选取代表点2. 将全部数据随机分成c类,计算每类重⼼座位初始点3. ⽤“密度”法选择代表点4. 将样本随机排序后使⽤前c个点作为代表点5. 从(c-1)聚类划分问题的解中产⽣c聚类划分问题的代表点 结论:若对数据不够了解,可以直接选择2和4⽅法需要预先确定K Q:如何选取K SSE⼀般随着K的增⼤⽽减⼩A:emmm你多尝试⼏次吧,看看哪个合适。

斜率改变最⼤的点⽐如k=2总结:简单的来说,K-means就是假设有K个簇,然后通过上⾯找初始点的⽅法,找到K个初始点,将所有的数据分为K个簇,然后⼀直迭代,在所有的簇⾥⾯找到找到簇的中⼼点µk及簇的划分rnk使得⽬标函数SSE最⼩或者中⼼点不变之后,迭代完成。

成功把数据分为K类。

预告:下⼀篇博⽂讲K-means代码实现。

k-means聚类和fcm聚类的原理概念

k-means聚类和fcm聚类的原理概念

k-means聚类和fcm聚类的原理概念摘要:一、聚类分析概述1.定义与作用2.常用的聚类算法二、K-means 聚类原理1.算法基本思想2.计算过程3.特点与优缺点三、FCM 聚类原理1.算法基本思想2.计算过程3.特点与优缺点四、K-means 与FCM 聚类的比较1.相似之处2.不同之处3.适用场景正文:一、聚类分析概述聚类分析是一种无监督学习方法,通过将相似的数据对象归为一类,从而挖掘数据集的潜在结构和模式。

聚类分析在数据挖掘、模式识别、图像处理、生物学研究等领域具有广泛应用。

常用的聚类算法有K-means 聚类和FCM 聚类等。

二、K-means 聚类原理1.算法基本思想K-means 聚类是一种基于划分的聚类方法,通过迭代计算数据点与当前中心点的距离,将数据点分配到距离最近的中心点所属的簇,然后更新中心点。

这个过程持续进行,直到满足停止条件。

2.计算过程(1)随机选择k 个数据点作为初始中心点。

(2)计算其他数据点与初始中心点的距离,将数据点分配到距离最近的簇。

(3)计算每个簇的中心点。

(4)重复步骤2 和3,直到中心点不再发生变化或达到最大迭代次数。

3.特点与优缺点特点:简单、易于实现,适用于大规模数据集。

优点:可以处理大规模数据集,对噪声数据具有一定的鲁棒性。

缺点:对初始中心点敏感,可能导致局部最优解;计算过程中需要反复计算距离,计算量较大。

三、FCM 聚类原理1.算法基本思想FCM 聚类是一种基于模糊划分的聚类方法,通过计算数据点与当前中心点的模糊距离,将数据点分配到距离最近的簇。

模糊距离是基于隶属度函数计算的,可以反映数据点对簇的隶属程度。

2.计算过程(1)随机选择k 个数据点作为初始中心点。

(2)计算其他数据点与初始中心点的模糊距离,将数据点分配到距离最近的簇。

(3)计算每个簇的中心点。

(4)重复步骤2 和3,直到中心点不再发生变化或达到最大迭代次数。

3.特点与优缺点特点:考虑了数据点对簇的隶属程度,具有更好的全局优化性能。

Python中的聚类分析方法和应用

Python中的聚类分析方法和应用

Python中的聚类分析方法和应用聚类分析是一种数据挖掘技术,在数据分析、机器学习、人工智能等领域都有广泛的应用。

它的基本思想是将相似的样本归为同一类,不同的样本归为不同的类,从而实现对数据的分类和整理。

Python作为一种强大的编程语言,也提供了多种聚类分析算法的实现,以下是聚类分析在Python中的应用及其方法。

一、K-Means算法K-Means算法是一种经典的聚类算法,常用于分析数量较大的数据集。

K-Means算法通过不断迭代的方式,将数据集中的每一个样本归为k个簇中的某一个。

它的基本流程如下:首先从数据集中随机选取k个样本作为簇的中心点,然后计算数据集中其他样本与这k个簇中心点的距离,并将距离最近的样本分配给它所对应的簇。

接着重新计算每个簇的中心点,并重复这个过程,直到目标函数收敛或达到指定的迭代次数。

在Python中,K-Means算法的实现非常简单,主要依托于scikit-learn库。

引入sklearn.cluster包,并使用KMeans类即可。

以下是一个简单的Python代码示例:```from sklearn.cluster import KMeansimport numpy as npdata = np.random.rand(1000, 2)kmeans = KMeans(n_clusters=3, random_state=0).fit(data) labels = bels_centers = kmeans.cluster_centers_```其中,随机生成1000个二维数据作为数据集,然后使用KMeans 类进行聚类,将数据集划分为3个簇。

最后,通过labels和centers 变量获取分类信息和中心点坐标。

二、层次聚类算法层次聚类算法是另一种经典的聚类算法,在Python中同样得到了广泛的应用。

层次聚类算法又被称为自底向上聚类(bottom-up clustering)或自上而下聚类(top-down clustering),它的基本思想是不断合并距离最近的样本,直到所有的样本都被归为一类为止。

聚类算法:K-Means和DBSCAN的比较

聚类算法:K-Means和DBSCAN的比较

聚类算法:K-Means和DBSCAN的比较聚类是一种无监督学习的方法,它将数据分组成具有相似特征的集合,称为簇(cluster)。

簇分析是统计学、计算机科学、机器学习和数据挖掘等领域中的常用技术之一。

目前,聚类算法已广泛应用于用户行为分析、市场营销、图像处理、生物信息学、搜索引擎、社交网络等领域。

在聚类算法中,K-Means和DBSCAN是两种具有代表性的算法。

本文将从算法原理、优缺点、适用场景等方面对它们进行比较分析。

一、K-Means算法K-Means算法是一种基于距离的聚类算法。

它的基本思想是从数据集中选取k个初始聚类中心,不断迭代,把每个数据点归为距离最近的聚类中心所在的簇。

K-Means算法的优点是计算简单、速度快、可并行计算,适用于处理大规模数据集。

但是K-Means算法的聚类结果受初始聚类中心的影响较大,算法的性能对于簇的形状、大小和分布较为敏感。

算法流程:1.选择k个聚类中心2.对于每个数据点,计算距离最近的聚类中心,将其划分到相应的簇中3.对于每个簇,重新计算该簇的聚类中心4.重复步骤2和步骤3,直到聚类中心不再变化或达到最大迭代次数二、DBSCAN算法DBSCAN算法是一种基于密度的聚类算法。

它的基本思想是将密度高于某一阈值的数据点定义为核心点(Core Points),将与核心点距离不超过一定距离的数据点归为同一个簇(Cluster),将距离较远的数据点称为噪声点(Noise)。

DBSCAN算法的优点是可以自动识别任意形状的簇,对初始聚类中心不敏感,适用于处理稠密数据集。

但是DBSCAN算法的聚类结果对于数据点密度分布的敏感度较高,平均时间复杂度较高。

算法流程:1.对于每个数据点,计算其邻域(Neighborhood)内的数据点个数,如果邻域内的数据点个数大于等于密度阈值,则该点为核心点,否则该点为噪声点2.将所有核心点加入到一个簇中,对每个核心点进行扩展,将邻域内的数据点加入到该簇中,直到不能再扩展3.继续处理下一个未被归类的核心点,直到所有核心点都在某个簇中或被标记为噪声点三、K-Means和DBSCAN的比较1.聚类精度K-Means算法适用于簇形状较为规则且大小相似的数据集,但对于不规则形状、大小差异较大的数据集,其聚类效果并不理想。

kmeans 聚类算法

kmeans 聚类算法

kmeans 聚类算法Kmeans聚类算法Kmeans聚类算法是一种基于距离的无监督机器学习算法,它可以将数据集分为多个类别。

Kmeans算法最初由J. MacQueen于1967年提出,而后由S. Lloyd和L. Forgy独立提出。

目前,Kmeans算法已经成为了机器学习领域中最常用的聚类算法之一。

Kmeans算法的基本思想是将数据集划分为k个不同的簇,每个簇具有相似的特征。

簇的数量k是由用户指定的,算法会根据数据集的特征自动将数据集分成k个簇。

Kmeans算法通过迭代的方式来更新每个簇的中心点,以此来不断优化簇的划分。

Kmeans算法的步骤Kmeans算法的步骤可以概括为以下几个步骤:1. 随机选择k个点作为中心点;2. 将每个数据点与离它最近的中心点关联,形成k个簇;3. 对于每个簇,重新计算中心点;4. 重复2-3步骤,直到簇不再变化或达到最大迭代次数。

Kmeans算法的优缺点Kmeans算法的优点包括:1. 算法简单易实现;2. 能够处理大规模数据集;3. 可以处理多维数据。

Kmeans算法的缺点包括:1. 需要用户指定簇的数量;2. 对于不规则形状的簇,效果不佳;3. 对于包含噪声的数据集,效果不佳。

Kmeans算法的应用Kmeans算法在机器学习和数据挖掘中有着广泛的应用。

以下是Kmeans算法的一些应用:1. 图像分割:将图像分为多个不同的区域;2. 文本聚类:将文本数据划分为多个主题;3. 市场分析:将消费者分为不同的群体,以便进行更好的市场分析;4. 生物学研究:将生物数据分为不同的分类。

总结Kmeans聚类算法是一种基于距离的无监督机器学习算法,它可以将数据集分为多个类别。

Kmeans算法的步骤包括随机选择中心点、形成簇、重新计算中心点等。

Kmeans算法的优缺点分别是算法简单易实现、需要用户指定簇的数量、对于不规则形状的簇效果不佳等。

Kmeans算法在图像分割、文本聚类、市场分析和生物学研究等领域有着广泛的应用。

聚类分析及k-means算法

聚类分析及k-means算法

举例应用
中国男足近几年到底在亚洲处于几流水平?下 图是采集的亚洲15只球队在2005年-2010年间大 型杯赛的战绩
对数据做了如下预处理:对于世界杯,进入决赛 圈则取其最终排名,没有进入决赛圈的,打入预 选赛十强赛赋予40,预选赛小组未出线的赋予50。 对于亚洲杯,前四名取其排名,八强赋予5,十六 强赋予9,预选赛没出现的赋予17。这样做是为了 使得所有数据变为标量,便于后续聚类。
处理后的数据如下:
数据变换:进行[0,1]规格化得到
初始类个数的选择; 初始类中心的选择;
设k=3,即将这15支球队分成三个集团。现 抽取日本、巴林和泰国的值作为三个类的种子, 即初始化三个类的中心为
A:{0.3, 0, 0.19}; B:{0.7, 0.76, 0.5}; C:{1, 1, 0.5};
相似性度量指标
空间距离 相似系数(similarity coefficient)
空间距离
假使每个样品有p个变量,则每个样品都 可以看成p维空间中的一个点,n个样品 就是p维空间中的n个点,则第i样品与第
j 样品之间的距离记为 dij
样品距离必须满足的条件
➢ 对称性 dij d ji 0 ➢ 三角不等式 dij dik d jk ➢ dij 0 则样品i与样品j不相等
样品到类中心的距离; 归类;
计算所有球队分别对三个中心点的欧氏 距离。下面是用程序求取的结果:
第一次聚类结果: A:日本,韩国,伊朗,沙特; B:乌兹别克斯坦,巴林,朝鲜; C:中国,伊拉克,卡塔尔,阿联酋,泰
国,越南,阿曼,印尼。
重新计算类中心;
下面根据第一次聚类结果,采用k-均值法调整各个类 的中心点。
斜交空间距离
相似系数

数据聚类分析方法

数据聚类分析方法

数据聚类分析方法
数据聚类分析方法是一种将数据分组或分类的技术。

聚类分析的目标是将相似的数据聚集在一起,同时将不相似的数据分开。

以下是常见的数据聚类分析方法:
1. K-means聚类算法:K-means算法是一种迭代的聚类算法。

它将数据集分为预先指定的K个簇,其中每个数据点属于距离该数据点最近的簇。

该算法通过不断迭代更新簇的中心来优化聚类结果。

2. 层次聚类算法:层次聚类算法通过以下两种方法进行聚类分析:聚合和分裂。

聚合方法将每个数据点作为一个单独的簇,并逐渐将相似的簇合并在一起。

分裂方法则是从一个包含所有数据点的簇开始,并逐渐将不相似的数据点分离开来。

3. 密度聚类算法:密度聚类算法将数据点密度作为聚类的基础。

该算法通过确定数据点周围的密度来划分不同的簇。

常见的密度聚类算法有DBSCAN和OPTICS。

4. 基于网格的聚类算法:基于网格的聚类算法将数据空间划分为网格,并将数据点分配到各个网格中。

该算法通常适用于高维数据集,可以减少计算复杂度。

5. 谱聚类算法:谱聚类算法将数据点表示为一个图的拉普拉斯矩阵,并通过谱分解将数据点分配到不同的簇中。

该算法通常用于非线性可分的数据集。

需要根据具体的数据集和分析目标来选择适合的数据聚类分析方法。

K-means算法详解

K-means算法详解

算法实例
O x y
1
2 3 4 5Βιβλιοθήκη 00 1.5 5 5
2
0 0 0 2
数据对象集合S见表1,作为一个聚类分析的二 维样本,要求的簇的数量k=2。 O (1)选择 O1 0,2 , 2 0,0 为初始的簇中心, 即 M 1 O1 0,2 , M 2 O2 0,0 。 (2)对剩余的每个对象,根据其与各个簇中心的 距离,将它赋给最近的簇。 对 O3 : 2 2

0 5
0 5
2

2 2
2
2
5
29
1
5
5
2



0 2

• 因为 d M 1 , O 5 d M 2 , O 5 所以将 O 5分配给 C
• 更新,得到新簇
E1 0 0
2 2
C1 O1 ,O5

2
C 2 O 2 , O 3 , O 4
xi1,xi2,„xid和xj1,xj2,„xjd分别是样本xi和xj对应d个描 述属性A1,A2,„Ad的具体取值。 • 样本xi和xj之间的相似度通常用它们之间的距离d(xi,xj) 来表示,距离越小,样本xi和xj越相似,差异度越小;距
离越大,样本xi和xj越不相似,差异度越大。
欧式距离公式如下:
d xi , x j
x
d k 1
ik
x jk
2
平均误差准则函数
• K-means聚类算法使用误差平方和准则函数来评价聚类 性能。给定数据集X,其中只包含描述属性,不包含类别
属性。假设X包含k个聚类子集X1,X2,„XK;各个聚类子集
中的样本数量分别为n1,n2,„,nk;各个聚类子集的均值代 表点(也称聚类中心)分别为m1,m2,„,mk。 • 误差平方和准则函数公式为:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
k 2
i
E 是一个数据集中所有对象的误差平方和,P 是一个对象,mi 是聚类 Ci 的质心, 即 mi
qC i
q
Ci
k‐means 聚类算法的具体步骤如下: ①从数据集中选择 k 个质心 C1,C2,…,Ck 作为初始的聚类中心; ②把每个对象分配到与之最相似的聚合。每个聚合用其中所有对象的均值来 代表, “最相似”就是指距离最小。对于每个点 Vi,找出一个质心 Cj,使它与其 间 的距离 d(Vi,Cj)最小,并把 Vi 分配到第 j 组; ③把所有的点都分配到相应的组之后重新计算每个组的质心 Cj; ④循环执行第②步和第③步,直到数据的划分不再发生变化。 该算法具有很好的可伸缩性,其计算复杂度为 O(nkt),其中,t 是循环的次数。 K‐means 聚类算法的不足之处在于它要多次扫描数据库,此外,它只能找出球形 的 类, 而不能发现任意形状的类。 还有, 初始质心的选择对聚类结果有较大的影响, 该算法对噪声很敏感。
K‐means 聚类分析
主要的聚类算法可以分为以下几种:划分聚类、层次聚类、密度型聚类、网 格型聚类和基于模型的聚类。 划分聚类算法把数据点集分为 k 个划分,每个划分作为一个聚类。它一般从 一个初始划分开始,然后通过重复的控制策略,使某个准则函数最优化,而每个 聚类由其质心来代表(k‐means 算法),或者由该聚类中最靠近中心的一个对象来 代 表(k‐medoids 算法)。 划分聚类算法收敛速度快, 缺点在于它倾向于识别凸形分布 大小相近、密度相近的聚类,不能发现分布形状比较复杂的聚类,它要求类别数 目 k 可以合理地估计,并且初始中心的选择和噪声会对聚类结果产生很大影响。 主要的划分聚类算法有 k‐means,EM,k‐medoids,CLARA,CLARANS 等。 下面主要介绍 K‐means 聚类方法。 k‐means 算法首先随机选择 k 个对象,每个对象代表一个聚类的质心。对于其 余的每一个对象,根据该对象与各聚类质心之间的距离,把它分配到与之最相似 的聚类中。然后,计算每个聚类的新质心。重复上述过程,直到准则函数会聚。 通常采用的准则函数是平方误差准则函数(squared‐error criterion),即 E i 1 pC p m
自组织特征神经网络简介
在人类的神经系统及脑的研究中,人们发现:人脑的某些区域对某种信息或 感觉敏感,如人脑的某一部分进行机械记忆特别有效;而某一部分进行抽象思维 特别有效。这种情况使人们对大脑的作用的整体性与局部性特征有所认识。对大 脑的研究说明,大脑是由大量协同作用的神经元群体组成的。大脑的神经网络是 一个十分复杂的反馈系统;在这个系统中含有各种反馈作用,有整体反馈,局部 反馈:另外,还有化学交互作用。在大脑处理信息的过程中,聚类是极其重要的 功能。大脑通过聚类过程从而识别外界的信号,并产生自组织过程。根据大脑对 信号的处理特点,在 1981 年,T.Kohonen 提出了一种神经网络模型,也就是自 组织特征映射 SOM(Self 一 orzanizingFeatureMap)。 SOM 网络算法是一种聚类算法,它能根据其学习规则对输入的模式进行自 动分类,即再在无监督的情况下,对输入模式进行自组织学习,通过反复地调整 连接权重系数,最终使得这些系数反映出输入样本之间地相互关系,并在竞争层 将分类结果表示出来。因此,SOM 神经网络在结构上模拟了大脑皮层中神经元 旱二维空间点阵的结构,并在功能上通过网学习功能。该算法被广泛应用于 各种模式识别和分类问题中。
问题探究
近年来,数据挖掘成为越来越热的一个研究方向,而聚类(clustering)作为数 据挖掘的主要方法之一,也越来越引起人们的关注。所谓聚类,就是把大量的 d 维数据对象(n 个)聚集成 k 个聚类(k<n), 使同一聚类内对象的相似性尽可能最大,
而不同聚类内对象的相似性尽量达到最小。也就是说,形成聚类之后,同一个聚 类内对象具有很高的相似性, 而与不属于该聚类的对象有迥然的差异(即不相似)。 聚类与分类相比,分类算法分析的是类别已知的数据集,而聚类算法分析的是类 别未知的数据。 聚类的输入是一组未分类的记录,而且事先也不知道要分成几类,它通过分 析数据,根据一定的分类准则,合理划分记录集合,从而确定每个记录所属的类 别。不同的聚类算法中,用于描述相似性的函数也有所不同,有的采用欧氏距离 或马氏距离,有的采用向量夹角的余弦,也有的采用其他的度量方法。 当预先不知道类型数目, 或者用参数估计和非参数估计难以分辨不同类型的 类概率密度函数时,就需要采用聚类分析。有些聚类分析算法可以自动地确定类 型的数目 k,而不必以预知 k 为前提条件,也可以给定 k 作为算法的终止条件若 没有给定 k,那么如何在聚类过程中自动地确定 k,这是聚类分析中的一个关键 问题。 确定 k 值的方法很多,具体哪种较好还有待探究。基于自组织特征神经网络 (SOM)的聚类分析是其中的一种解决方案。
通过计算结果作图分析可以确定 k 值。再结合 k‐means 算法快速分类。 参考文献: 【1】 基于 SOM 神经网络和 K‐均值聚类的分类器设计 曹金平 【2】 基于自组织映射神经网络的低压故障电弧聚类分析 邹云峰,吴吴为麟李智勇 【3】 基于自组织特征映射网络的聚类算法研究 吴红艳 附录: k‐mean 和 SOM 神经网络 matlab 程序(未调试) 。
相关文档
最新文档