聚类分析及k-means算法

合集下载

数据挖掘聚类方法

数据挖掘聚类方法

数据挖掘聚类方法数据挖掘是从大量数据中发现有用的信息和模式的过程。

聚类是数据挖掘中的一种重要方法,它将数据对象划分为一组相似的子集,称为簇。

聚类方法可以为数据分析和决策提供有用的信息,有助于理解数据之间的关系,以及发现数据中隐藏的模式和结构。

在数据挖掘中,有许多聚类方法可以选择,下面将简要介绍几种常见的聚类方法。

1. K-means聚类算法:K-means是最常用的聚类算法之一、它将数据划分为K个簇,其中K是用户定义的参数。

该算法通过计算每个数据点和簇中心之间的距离来确定每个数据点属于哪个簇。

迭代地更新簇中心直到达到停止准则,例如簇中心不再改变或达到最大迭代次数。

2.层次聚类算法:层次聚类是一种自底向上或自顶向下的聚类方法。

自底向上的层次聚类从每个数据点开始,并将其合并到形成类似的数据点的簇中,最终形成一个完整的层次聚类树。

自顶向下的层次聚类从所有数据点开始,将其划分为较小的簇,并逐渐进行合并,最终形成一个完整的层次聚类树。

层次聚类可以通过不同的相似度度量方法来执行,例如单连接和完整连接。

3. 密度聚类算法:密度聚类是一种根据数据点之间的密度将数据划分为不同簇的方法。

DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种常见的密度聚类算法。

DBSCAN基于定义半径内存在最小数量数据点的密度来确定核心点,并通过核心点之间的连通性来形成簇。

4. 基于模型的聚类算法:基于模型的聚类方法假设数据是从特定概率分布生成的,并试图通过对数据进行建模来识别簇。

混合高斯模型(Gaussian Mixture Model,GMM)是基于模型的聚类方法的一个例子。

GMM假设数据是由多个高斯分布组成的,通过最大似然估计来确定每个数据点属于哪个高斯分布。

在选择合适的聚类方法时,需要考虑数据的特性、问题的目标以及算法的优缺点。

不同聚类方法适用于不同类型的数据和问题。

Python中的聚类分析方法和应用

Python中的聚类分析方法和应用

Python中的聚类分析方法和应用聚类分析是一种数据挖掘技术,在数据分析、机器学习、人工智能等领域都有广泛的应用。

它的基本思想是将相似的样本归为同一类,不同的样本归为不同的类,从而实现对数据的分类和整理。

Python作为一种强大的编程语言,也提供了多种聚类分析算法的实现,以下是聚类分析在Python中的应用及其方法。

一、K-Means算法K-Means算法是一种经典的聚类算法,常用于分析数量较大的数据集。

K-Means算法通过不断迭代的方式,将数据集中的每一个样本归为k个簇中的某一个。

它的基本流程如下:首先从数据集中随机选取k个样本作为簇的中心点,然后计算数据集中其他样本与这k个簇中心点的距离,并将距离最近的样本分配给它所对应的簇。

接着重新计算每个簇的中心点,并重复这个过程,直到目标函数收敛或达到指定的迭代次数。

在Python中,K-Means算法的实现非常简单,主要依托于scikit-learn库。

引入sklearn.cluster包,并使用KMeans类即可。

以下是一个简单的Python代码示例:```from sklearn.cluster import KMeansimport numpy as npdata = np.random.rand(1000, 2)kmeans = KMeans(n_clusters=3, random_state=0).fit(data) labels = bels_centers = kmeans.cluster_centers_```其中,随机生成1000个二维数据作为数据集,然后使用KMeans 类进行聚类,将数据集划分为3个簇。

最后,通过labels和centers 变量获取分类信息和中心点坐标。

二、层次聚类算法层次聚类算法是另一种经典的聚类算法,在Python中同样得到了广泛的应用。

层次聚类算法又被称为自底向上聚类(bottom-up clustering)或自上而下聚类(top-down clustering),它的基本思想是不断合并距离最近的样本,直到所有的样本都被归为一类为止。

聚类算法介绍(K-means+DBSCAN+典型案例)

聚类算法介绍(K-means+DBSCAN+典型案例)
的影响;缺点是计算中位数时需要对数据集中的数据进行
排序,速度相对于K-Means较慢,一般只适合小数据量。
二,DBSCAN
在DBSCAN算法中将数据点分为一下三类:
01
核心点:在半径r内含有超过minPoints数目的点
边界点:在半径r内点的数量小于minPoints,但是落在核心点的邻域内
噪音点:既不是核心点也不是边界点的点
算密度单元的计算复杂度大,
每一簇内较大的点代表核心对象,较
小的点代表边界点(与簇内其他点密
度相连,但是自身不是核心对象)。
黑色的点代表离群点或者叫噪声点。
三,凝聚层级聚类(HAC)
HAC是自下而上的一种聚类算法。
1
HAC首先将每个数据点视为一个单一的簇,然后计算所有簇之间的距离来合并
簇,直到所有的簇聚合成为一个簇为止。
之间具有更多的相似性。
是一种探索性的分析。聚类分析所
使用方法的不同,常常会得到不同
的结论。不同研究者对于同一组数
据进行聚类分析,所得到的聚类数
未必一致。
从机器学习的角度讲,簇相当
于隐藏模式。聚类是搜索簇的
无监督学习过程。
01
02
04
03
05
06
从统计学的观点看,聚类分析
是通过数据建模简化数据的一
种方法。
典型的应用案例
例3:基于DBSCAN算法的交通事故读法点段排查方法
核心思想:对于构成交通事故多发点段的每个交通事敌,其发生的地点半径e(邻域)公里范围以内的其它交通
事故的个数,必须不小于一个给定的阈值(MinPts),也就是说其邻域的密度必须不小于某个阈值。
下面是DBSCAN算法的交通事故多发点段排查方法在交通事故黑点排查中的一些定义:

聚类算法:K-Means和DBSCAN的比较

聚类算法:K-Means和DBSCAN的比较

聚类算法:K-Means和DBSCAN的比较聚类是一种无监督学习的方法,它将数据分组成具有相似特征的集合,称为簇(cluster)。

簇分析是统计学、计算机科学、机器学习和数据挖掘等领域中的常用技术之一。

目前,聚类算法已广泛应用于用户行为分析、市场营销、图像处理、生物信息学、搜索引擎、社交网络等领域。

在聚类算法中,K-Means和DBSCAN是两种具有代表性的算法。

本文将从算法原理、优缺点、适用场景等方面对它们进行比较分析。

一、K-Means算法K-Means算法是一种基于距离的聚类算法。

它的基本思想是从数据集中选取k个初始聚类中心,不断迭代,把每个数据点归为距离最近的聚类中心所在的簇。

K-Means算法的优点是计算简单、速度快、可并行计算,适用于处理大规模数据集。

但是K-Means算法的聚类结果受初始聚类中心的影响较大,算法的性能对于簇的形状、大小和分布较为敏感。

算法流程:1.选择k个聚类中心2.对于每个数据点,计算距离最近的聚类中心,将其划分到相应的簇中3.对于每个簇,重新计算该簇的聚类中心4.重复步骤2和步骤3,直到聚类中心不再变化或达到最大迭代次数二、DBSCAN算法DBSCAN算法是一种基于密度的聚类算法。

它的基本思想是将密度高于某一阈值的数据点定义为核心点(Core Points),将与核心点距离不超过一定距离的数据点归为同一个簇(Cluster),将距离较远的数据点称为噪声点(Noise)。

DBSCAN算法的优点是可以自动识别任意形状的簇,对初始聚类中心不敏感,适用于处理稠密数据集。

但是DBSCAN算法的聚类结果对于数据点密度分布的敏感度较高,平均时间复杂度较高。

算法流程:1.对于每个数据点,计算其邻域(Neighborhood)内的数据点个数,如果邻域内的数据点个数大于等于密度阈值,则该点为核心点,否则该点为噪声点2.将所有核心点加入到一个簇中,对每个核心点进行扩展,将邻域内的数据点加入到该簇中,直到不能再扩展3.继续处理下一个未被归类的核心点,直到所有核心点都在某个簇中或被标记为噪声点三、K-Means和DBSCAN的比较1.聚类精度K-Means算法适用于簇形状较为规则且大小相似的数据集,但对于不规则形状、大小差异较大的数据集,其聚类效果并不理想。

第二讲聚类Kmeans算法跟运用(K-meanscluster)

第二讲聚类Kmeans算法跟运用(K-meanscluster)

第⼆讲聚类Kmeans算法跟运⽤(K-meanscluster)CLEMENTINE 1212 CLEMENTINE--SEGMENTATION(K-MEANS)何谓集群分析何谓集群分析((CLUSTERING ANALYSIS )集群分析是⼀种将样本观察值进⾏分析,具有某些共同特性者予以整合在⼀起,再将之分配到特定的群体,最后形成许多不同集群的⼀种分析⽅法。

Clementine 12.0中提供的集群分析⽅法有三种:1. K-means2. Two-step3. KohonenK-MEANS的理论背景K-Means是集群分析(Cluster Analysis)中⼀种⾮阶层式((Nonhierarchical))的演算⽅法,由J. B. Mac Queen于1967年正式发表,也是最早的组群化计算技术。

其中,⾮阶层式则是指在各阶段分群过程中,将原有的集群予以打散,并重新形成新的集群。

K-Means是⼀种前设式群集算法,也就是说必须事前设定群集的数量,然后根据此设定找出最佳群集结构。

⽽K-Means算法最主要的概念就是以集群内资料平均值为集群的中⼼。

计算距離并分群的中⼼点重新计算新的距離并分群不断重复步骤三四,直到所设计的停⽌条件发⽣。

⼀般是以没有任何对象变换所属集群为停⽌绦件,也就是所谓的s q u a r e -e r r o r c r i t e r i o n :代表集群的中⼼(平均数),是集群内的物件,则代表集群。

210iKi p CiE p m =∈=?=∑∑i m i p i iC iK-MEANS的基本需求与优缺点建⽴K-means模型的要求:需要⼀个以上的In字段。

⽅向为Out、Both、None的字段将被忽略。

优点:建⽴K-means模型不需要分组数据。

对于⼤型数据集,K-means模型常常是最快的分群⽅法。

缺点:对于初始值的选择相当敏感,选择不同的初始值,可能会导致不同的分群结果。

数据科学中的聚类分析方法使用教程

数据科学中的聚类分析方法使用教程

数据科学中的聚类分析方法使用教程聚类分析是数据科学领域中常用的一种方法,它能够将数据集中的观测对象分成若干个互相独立的组或簇,组内的对象相似性较高,组间的对象相似性较低。

这种方法可以帮助我们从大量的数据中找出相似的群体,以便进行更有效的数据分析和决策。

本文将介绍三种常用的聚类分析方法:K-means、层次聚类和DBSCAN,并讨论它们的使用方法和注意事项。

1. K-means聚类算法K-means算法是最常见且易于理解的聚类算法之一。

它将数据集中的观测对象划分为K个簇,其中K是一个预先设定的参数。

算法的步骤如下:1. 随机选择K个中心点作为初始簇中心。

2. 计算每个观测对象与各个簇中心的距离,并将其归类到离它最近的簇中心。

3. 更新每个簇的中心点,将其设为簇中所有观测对象的均值。

4. 重复步骤2和步骤3,直到触发终止条件(例如簇中心不再发生变化)。

K-means算法的优点是简单易懂,并且在处理大规模数据时效率较高。

然而,它的缺点是对初始簇中心的选择较为敏感,可能会得到不理想的聚类结果。

2. 层次聚类算法层次聚类算法通过逐步合并或分割观测对象来构建聚类结构。

它有两种主要类型:凝聚型层次聚类和分裂型层次聚类。

凝聚型层次聚类从每个观测对象作为一个簇开始,然后不断合并最相似的簇,直到满足终止条件为止。

分裂型层次聚类的过程则相反,从所有观测对象作为一个簇开始,然后不断拆分最不相似的簇,直到满足终止条件为止。

层次聚类算法的优点是它不需要预先设定聚类的数量K,并且它可以生成树状的聚类结构,帮助我们理解数据的层次关系。

然而,层次聚类算法的计算复杂度较高,特别是处理大型数据集时。

3. DBSCAN聚类算法DBSCAN(Density-Based Spatial Clustering of Applications with Noise)算法是一种基于密度的聚类方法,它能够识别出任意形状的聚类,并且能够将离群点识别为噪声。

聚类分析方法

聚类分析方法
选方法之一 06
优缺点
缺点
对初始点的选择敏感:K-means算法的初始点选择对结果有很大影响,可能会导致不同 的初始点导致不同的聚类结果 需要预设k值:使用K-means算法需要预先设定k值,而最佳的k值可能并不容易确定
不适合大规模数据集:对于大规模数据集,K-means算法可能需要很长时间才能收敛
means||等
第1部分 算法步骤
算法步骤
以下是K-means算法的 基本步骤
算法步骤
初始化:选择k个点作为初始的聚类中心。这些点可以 是数据集中的实际数据点,也可以是随机生成的数据点
分配数据点到最近的聚类中心:对于数据集中的每个点,计 算它与k个聚类中心的距离,并将其分配到最近的聚类中心。 这一步通常使用欧氏距离来计算两点之间的距离
聚类分析—— Kmeans方法
-
目录
CONTENTS
1
算法步骤
2
优缺点
3
应用场景
2
聚类分析——Kmeans方法
聚类分析是一种无监督学习方法,用于将对象分组,使得同一组(或簇)内的对象相互之间 相似(按照某些度量方式),而不同组之间的对象相互之间不相似。其中,K-means算法是 一种常用的聚类算法,以其发明者Arthur James和Donald Fisher的名字来命名
特征选择和降维:在聚类之前,可以 进行特征选择和降维,以减少数据的 维度和噪声,提高聚类的效果
可视化:可以将聚类结果进行可视化, 以更直观地展示聚类的效果和结果
优缺点
通过以上改进方向,可以 进一步提高K-means算法的 性能和适用性,使其在更 多的实际应用中得到广泛
应用
第3部分 应用场景
应用场景
应用场景

K-means-聚类算法研究综述

K-means-聚类算法研究综述

K -means 聚类算法研究综述摘要:总结评述了K -means 聚类算法的研究现状,指出K -means 聚类算法是一个NP 难优化问题,无法获得全局最优。

介绍了K -means 聚类算法的目标函数,算法流程,并列举了一个实例,指出了数据子集的数目K ,初始聚类中心选取,相似性度量和距离矩阵为K -means 聚类算法的3个基本参数。

总结了K -means 聚类算法存在的问题及其改进算法,指出了K -means 聚类的进一步研究方向。

关键词:K -means 聚类算法;NP 难优化问题;数据子集的数目K ;初始聚类中心选取;相似性度量和距离矩阵Review of K-means clustering algorithmAbstract: K-means clustering algorithm is reviewed. K-means clustering algorithm is a NP hard optimal problem and global optimal result cannot be reached. The goal , main steps and example of K-means clustering algorithm are introduced. K-means algorithm requires three user-specified parameters: number of clusters K , cluster initialization , and distance metric. Problems and improvement of K-means clustering algorithm are summarized then. Further study directions of K-means clustering algorithm are pointed at last.Key words: K-means clustering algorithm; NP hard optimal problem; number of clusters K; cluster initialization; distance metricK -means 聚类算法是由Steinhaus 1955年、Lloyed 1957年、Ball & Hall 1965年、McQueen 1967年分别在各自的不同的科学研究领域独立的提出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

举例应用
中国男足近几年到底在亚洲处于几流水平?下 图是采集的亚洲15只球队在2005年-2010年间大 型杯赛的战绩
对数据做了如下预处理:对于世界杯,进入决赛 圈则取其最终排名,没有进入决赛圈的,打入预 选赛十强赛赋予40,预选赛小组未出线的赋予50。 对于亚洲杯,前四名取其排名,八强赋予5,十六 强赋予9,预选赛没出现的赋予17。这样做是为了 使得所有数据变为标量,便于后续聚类。
处理后的数据如下:
数据变换:进行[0,1]规格化得到
初始类个数的选择; 初始类中心的选择;
设k=3,即将这15支球队分成三个集团。现 抽取日本、巴林和泰国的值作为三个类的种子, 即初始化三个类的中心为
A:{0.3, 0, 0.19}; B:{0.7, 0.76, 0.5}; C:{1, 1, 0.5};
相似性度量指标
空间距离 相似系数(similarity coefficient)
空间距离
假使每个样品有p个变量,则每个样品都 可以看成p维空间中的一个点,n个样品 就是p维空间中的n个点,则第i样品与第
j 样品之间的距离记为 dij
样品距离必须满足的条件
➢ 对称性 dij d ji 0 ➢ 三角不等式 dij dik d jk ➢ dij 0 则样品i与样品j不相等
样品到类中心的距离; 归类;
计算所有球队分别对三个中心点的欧氏 距离。下面是用程序求取的结果:
第一次聚类结果: A:日本,韩国,伊朗,沙特; B:乌兹别克斯坦,巴林,朝鲜; C:中国,伊拉克,卡塔尔,阿联酋,泰
国,越南,阿曼,印尼。
重新计算类中心;
下面根据第一次聚类结果,采用k-均值法调整各个类 的中心点。
斜交空间距离
相似系数
相似系数表示作为对 象的两个分类单位 (所进行的分类单位) 间相似程度的指标。
相似系数通常介于0 cij 和1 之间,相似系数等 于1 ,说明两个样品完 全相同;相似系数等 于0,说明样品完全不 同。
n
t 1
xti
xi
xtj
xj
n
2
t1 xti xi
2
n
t1 xtj x j
有序样品聚类法
开始将所有样品看成一类,然后根据某种最优 准则将它们分割为二类、三类,一直分到K类 为止。这种方法适用于有序样品的分类问题。 又称为最优分割法。
模糊聚类法
利用模糊集理论来处理分类问题,它对经济领 域中具有模糊特征的两态数据或多态数据具有 明显的分类效果。
K-means聚类法
首先对n个对象初步分类,然后根据分类的损 失函数尽可能小的原则对分类进行调整,直到 分类合理为止。又称为动态聚类法、逐步聚类 法.
p
dij xi x j
(xik x jk )2
k 1
3. 切比雪夫距离(Chebyshev)
dij
xi x j
max k
xik
x jk
其它计算方法
兰氏距离:
dij
1 m
m t 1
xit x jt xit x jt
马氏(Mahalanobis) 距离 Williams距离
C: {1, 0.94, 0.40625}。
用调整后的中心点再次进行聚类,得到: 第二次迭代后的结果为:
A类:日本,韩国,伊朗,沙特; B类:乌兹别克斯坦,巴林,朝鲜; C类:伊拉克,卡塔尔,阿联酋,中国,
泰国,越南,阿曼 ,印尼;
结果无变化,说明结果已收敛,于是给出最终 聚类结果:
亚洲一流:日本,韩国,伊朗,沙特 亚洲二流:乌兹别克斯坦,巴林,朝鲜 亚洲三流:中国,伊拉克,卡塔尔,阿联酋,
聚类分析常用方法
1. 直接聚类法 2. 有序样品聚类法 3. 模糊聚类法 4. K-means聚类法 5. 系统聚类法 6. 图论聚类法
直接聚类法
先把各个分类对象单独视为一类,然后根据距 离最小的原则,依次选出一对分类对象,并成 新类。如果其中一个分类对象已归于一类,则 把另一个也归入该类;如果一对分类对象正好 属于已归的两类,则把这两类并为一类。每一 次归并,都划去该对象所在的列与列序相同的 行。经过m-1次就可以把全部分类对象归为一 类,这样就可以根据归并的先后顺序作出聚类 谱系图。
聚类分析及k-means算法
聚类分析概念
聚类分析指将物理或抽象对象的集合 分组成为由类似的对象组成的多个类 的分析过程。
聚类分析的基本思想
把相似程度较大的样品聚合为一类,把另 外一些彼此之间相似程度较大的样品又聚 合为另一类,直到把所有的样品聚合完毕。
聚类分析的原则是同一类中的个体有较 大的相似性,不同类中的个体差异很大。
系统聚类法
开始每个对象自成一类,然后每次 将最相似 的两类合并,合并后重新计算新类与其他类之 间的距离或相似系数。
图论聚类法
利用图论中最小支撑树的概念来处理分类问题, 创造了独具风格的方法。
K-means 聚类算法
K-means算法是聚类分析众多算法的一 种。
K-means算法是输入聚类个数k,以及包 含 n个数据对象的数据库,输出满足方差 最小标准的k个聚类
常见距离计算方法
明式(Minkowski)距离
p
r1
dij xi x j ( xik x jk ) r
k 1
明, r=2时为欧氏距离。
r= 时为切比雪夫距离。
2.绝对距离
m
dij
xit x jt
t 1
2. 欧氏(Euclidian)距离
A类的新中心点为:{(0.3+0+0.24+0.3)/4=0.21, (0+0.15+0.76+0.76)/4=0.4175, (0.19+0.13+0.25+0.06)/4=0.1575} = {0.21, 0.4175, 0.1575} (算术平均数。)
用同样的方法计算得到B和C类的新中心点分别为 B:{0.7, 0.7333, 0.4167},
K-means算法流程
1. 从 n个数据对象任意选择 k 个对象作为初 始聚类中心;
2. 根据每个聚类对象的均值(中心对象), 计算每个对象与这些中心对象的距离; 并根据最小距离重新对相应对象进行划 分;
3. 重新计算每个(有变化)聚类的均值 (中心对象);
4. 循环(3)到(4)直到每个聚类不再发生变化 为止 ;
相关文档
最新文档