高中物理:实验二十三变力做功的动能定理

合集下载

动能定理求变力做功汇总课件

动能定理求变力做功汇总课件
通过积分或微元法,将变力在 时间或位移上的积累效应计算
出来,得到变力所做的功。
实例分析一:弹簧力做功问题
确定弹簧力的变化规律
求解弹簧力做功
根据胡克定律,弹簧力F与弹簧的形变 量x成正比,即F=kx。
将弹簧力在位移上的积累效应计算出 来,得到弹簧力所做的功。
运用动能定理
设物体的初速度为v1,末速度为v2, 通过运用动能定理,可以求出弹簧力 所做的功。
在解决变力做功问题时,动能定理提供了一个简便的方法,可以将变力的冲量转化 为动能的变化,从而简化了问题的解决过程。
动能定理在解决实际问题中具有广泛的应用,例如在工程、航天、军事等领域中, 都需要用到动能定理来计算变力做功。
动能定理在未来的应用前景
随着科技的发展,动能定理的应 用前景将更加广阔。
在新能源、环保、医疗等领域中, 动能定理都有重要的应用价值。
理解如何利用动能定 理求变力所做的功。
02 动能定理概述
动能定理定义
总结词
动能定理是描述物体动能变化的定理, 其定义是合外力的功等于物体动能的变 化量。
VS
详细描述
动能定理是物理学中一个重要的定理,它 描述了物体的动能如何随外力做功而变化。 具体来说,如果一个物体受到合外力的作 用,并且这个合外力对物体做了功,那么 这个功就等于物体动能的增量。数学表达 式为:W = ΔE_k。其中,W表示合外力 做的功,ΔE_k表示物体动能的增量。
04 动能定理在变力做功中 的应用
变力做功的求解步骤
确定物体运动过程
首先需要明确物体在整个过程 中的运动情况,包括初速度、 末速度、加速度等。
确定变力的变化规律
分析变力的变化规律,找出力 随时间或位移变化的函数关系。

3_1变力的功 动能定理

3_1变力的功 动能定理

外力功
内力功
3-1
变力的功 动能定理
第三章功能原理和机械能守恒定律
对质点系, 对质点系,有
∑A =∑A
i
(e) i
+ ∑ A = Ekb Eka = Ek
(i ) i
n
动能增量
n 1 1 2 2 Ek = Ekb Eka = ∑ mi vib ∑ mi via i =1 2 i =1 2 (e) (i) 质点系动能定理 质点系动能定理 A + A = Ekb Eka
v v v v dAi = f ij dri ; dA j = f ji dr j
dA = dAi + dA j v v v v v r v r v v = f ij dri + f ji drj o Q f ij = f ji v v v v v v v v ∴ dA = f ij (dri drj ) = f ij d (ri rj ) = f ij drij
质点系的动能定理 质点系的动能定理 作用于质点系中各个质点上的外 力和内力所做的功的代数和,等于质点系动能的增量. 力和内力所做的功的代数和,等于质点系动能的增量. 注意 内力可以改变质点系的动能
3-1
变力的功 动能定理
第三章功能原理和机械能守恒定律
注意
功是过程量, 是能量变化的量度; (1) 功是过程量, 是能量变化的量度 ; 动能是状态 是运动状态的单值函数. 量 , 是运动状态的单值函数 . 它们的单位和量 纲相同. 纲相同. 动能定理由牛顿第二定律导出, (2) 动能定理由牛顿第二定律导出, 只适用于惯性 参考系, 动能也与参考系有关. 参考系, 动能也与参考系有关.
v dri
v dr θ

高考物理模型101专题讲练:第29讲 变力做功的6种计算方法

高考物理模型101专题讲练:第29讲 变力做功的6种计算方法

第29讲变力做功的6种计算方法一.知识回顾方法举例说法1.应用动能定理用力F把小球从A处缓慢拉到B处,F做功为W F,则有:W F-mgL(1-cosθ)=0,得W F=mgL(1-cosθ)2.微元法质量为m的木块在水平面内做圆周运动,运动一周克服摩擦力做功W f=F f·Δx1+F f·Δx2+F f·Δx3+…=F f(Δx1+Δx2+Δx3+…)=F f·2πR3.等效转换法恒力F把物块从A拉到B,绳子对物块做功W=F·⎝⎛⎭⎪⎫hsinα-hsinβ4.平均力法弹簧由伸长x1被继续拉至伸长x2的过程中,克服弹力做功W=kx1+kx22·(x2-x1)6.图像法在F­x图像中,图线与x轴所围“面积”的代数和就表示力F在这段位移上所做的功7.功率法汽车恒定功率为P,在时间内牵引力做的功W=Pt二.例题精析题型一:应用动能定理例1.如图所示,质量均为m的木块A和B,用一个劲度系数为k的竖直轻质弹簧连接,最初系统静止,重力加速度为g,现在用力F向上缓慢拉A直到B刚好要离开地面,则这一过程中弹性势能的变化量△E p和力F做的功W分别为()A .m 2g 2k,m 2g 2kB .m 2g 2k,2m 2g 2kC .0,m 2g 2kD .0,2m 2g 2k题型二:微元法例2.在水平面上,有一弯曲的槽道AB ,槽道有半径分别为R 2和R 的两个半圆构成,现用大小恒为F 的拉力将一光滑小球从A 点沿槽道拉至B 点,若拉力F 的方向时时刻刻均与小球运动方向一致,则此过程中拉力所做的功为( )A .0B .FRC .32πFRD .2πFR题型三:等效转换法例3.如图所示,轻绳一端受到大小为F 的水平恒力作用,另一端通过定滑轮与质量为m 、可视为质点的小物块相连。

开始时绳与水平方向的夹角为θ,当小物块从水平面上的A 点被拖动到水平面上的B 点时,位移为L ,随后从B 点沿斜面被拖动到定滑轮O 处,BO 间距离也为L ,小物块与水平面及斜面间的动摩擦因数均为μ,若小物块从A 点运动到B 点的过程中,F 对小物块做的功为W F ,小物块在BO 段运动过程中克服摩擦力做的功为W f ,则以下结果正确的是( )A .W F =FL (2cos θ﹣1)B .W F =2FLcos θC .W f =μmgLcos θD .W f =FL ﹣mgLsin2θ题型四:平均值法例4.当前,我国某些贫困地区的日常用水仍然依靠井水。

巧用动能定理求变力的功

巧用动能定理求变力的功

第28点巧用动能定理求变力的功利用动能定理求变力的功通常有以下两种情况:1.如果物体只受到一个变力的作用,那么W=E k2-E k1.只要求出做功过程中物体的动能变化量ΔE k,也就等于知道了这个过程中变力所做的功.2.如果物体同时受到几个力作用,但是其中只有一个力F1是变力,其他的力都是恒力,则可以先用恒力做功的公式求出这几个恒力所做的功,然后再运用动能定理来间接求变力做的功:W1+W其他=ΔE k.对点例题如图1所示,质量m=60 kg的高山滑雪运动员,从A点由静止开始沿滑道滑下,然后由B点水平飞出,最后落在斜坡上的C点.已知BC连线与水平方向夹角θ=37°,A、B两点间的高度差为h AB=25 m,B、C两点间的距离为L=75 m,(不计空气阻力,g取10 m/s2,sin 37°=0.6,cos 37°=0.8)求:图1(1)运动员从B点飞出时的速度v B的大小.(2)运动员从A滑到B的过程中克服摩擦力所做的功.解题指导运动员从A点滑下后,由B点水平飞出做平抛运动,先根据平抛运动的规律求出运动员飞离B点时的速度v B,然后对AB段运用动能定理求克服摩擦力所做的功.(1)设由B到C平抛运动的时间为t竖直方向:h BC=L sin 37°=12gt2水平方向:L cos 37°=v B t代入数据,解得v B=20 m/s.(2)A到B过程由动能定理有mgh AB+W f=12m v2B代入数据,解得W f=-3 000 J,运动员克服摩擦力所做的功为3 000 J 答案(1)20 m/s(2)3 000 J在离地面高为h 处竖直上抛一质量为m 的物块,抛出时的速度为v 0,当它落到地面时速度为v ,用g 表示重力加速度,则在此过程中物块克服空气阻力所做的功等于( )A .mgh -12m v 2-12m v 20B .-12m v 2-12m v 20-mgh C .mgh +12m v 20-12m v 2 D .mgh +12m v 2-12m v 20答案 C解析 选取物体从刚抛出到正好落地,由动能定理可得:mgh -W f 克=12m v 2-12m v 20. 解得:W f 克=mgh +12m v 20-12m v 2.。

高中物理电学公式 高中物理动能定理机械能守恒定律公式

高中物理电学公式 高中物理动能定理机械能守恒定律公式

高中物理电学公式高中物理动能定理机械能守恒定律公式动能定理和机械能守恒定律公式是高中物理的重点内容和难点知识,同时在高考中占有很大的比重。

下面小编给高中同学带来物理动能定理以及机械能守恒定律公式,希望对你有帮助。

高中物理动能定理机械能守恒定律公式1、功的计算:力和位移同方向:W=Fl,功的单位:焦尔2、功率:3、重力的功:重力做功:为重力和竖直方向位移乘积W=mglcosα=mgh重力势能:为重力和高度的乘积. Ep=mgh位置高低与重力势能的变化: W=mglcosθ=mgh=mg4、动能定理:物理意义:力在一个过程中对物体做功,等于物体在这个过程中动能的变化。

注意:a、如果物体受多个力的作用,则W为合力做功。

b、适用于变力做功、曲线运动等,广泛应用于实际问题。

=EK2-EK15、机械能守恒定律:只有重力或弹力做功的系统内,动能和势能可以相互转化,而总的机械能保持不变。

EP1+EK1=EK2+EP26、能量守恒定律:能量既不会消灭,也不会创生,它只会从一种形式转化为其它形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量保持不变。

高中物理动能定理知识点做功可以改变物体的能量.所有外力对物体做的总功等于物体动能的增量. W1+W2+W3+……=½mvt2-½mv021.反映了物体动能的变化与引起变化的原因——力对物体所做功之间的因果关系.可以理解为外力对物体做功等于物体动能增加,物体克服外力做功等于物体动能的减小.所以正功是加号,负功是减号。

2.“增量”是末动能减初动能.ΔEK>0表示动能增加,ΔEK学好高中物理的方法三个基本基本概念要清楚,基本规律要熟悉,基本方法要熟练。

在学习物理的过程中,总结出一些简练易记实用的推论或论断,对帮助解题和学好物理是非常有用的。

独立做题要独立地,保质保量地做一些题。

独立解题,可能有时慢一些,有时要走弯路,但这是走向成功必由之路。

高中物理模块要点回眸25巧用动能定理求变力的功新人教版必修220180307243

高中物理模块要点回眸25巧用动能定理求变力的功新人教版必修220180307243

第25点 巧用动能定理求变力的功利用动能定理求变力的功通常有以下两种情况:(1)如果物体只受到一个变力的作用,那么W=E k2-E k1.只要求出做功过程中物体的动能变化量ΔE k,也就等于知道了这个过程中变力所做的功. (2)如果物体同时受到几个力作用,但是其中只有一个力F1是变力,其他的力都是恒力,则可以先用恒力做功的公式求出这几个恒力所做的功,然后再运用动能定理来间接求变力做的功:W1+W其他=ΔE k.对点例题 如图1所示,质量m=60 kg的高山滑雪运动员,从A点由静止开始沿滑道滑下,然后由B点水平飞出,最后落在斜坡上的C点.已知BC连线与水平方向夹角θ=37°,A、B两点间的高度差为h AB=25 m,B、C两点间的距离为L=75 m,(不计空气阻力,g取10 m/s2,sin 37°=0.6,cos 37°=0.8)求:图1(1)运动员从B点飞出时的速度v B的大小;(2)运动员从A滑到B的过程中克服摩擦力所做的功.解题指导 (1)设由B到C平抛运动的时间为t竖直方向:h BC=L sin 37°=gt2水平方向:L cos 37°=v B t代入数据,解得v B=20 m/s.(2)A到B过程由动能定理有mgh AB+W f=mv代入数据,解得W f=-3 000 J,运动员克服摩擦力所做的功为3 000 J.答案 (1)20 m/s (2)3 000 J如图2所示,质量为m的物体静止在光滑的水平平台上,系在物体上的绳子跨过光滑的定滑轮,由地面上的人以速度v0水平向右匀速拉动,设人从地面上平台的边缘开始向右行至绳与水平方向夹角为45°处,在此过程中人的拉力对物体所做的功为( )图2A. B.C. D.mv答案 C解析 人行至绳与水平方向夹角为45°处时,物体的速度为v=v0cos θ,由动能定理,人对物体所做的功:W=ΔE k=mv2=mv,正确选项为C.。

变力做功

变力做功

变力做功功的计算在中学物理中占有十分重要的地位,中学阶段所学的功的计算公式W=FScosa只能用于恒力做功情况,对于变力做功的计算则没有一个固定公式可用,本文对变力做功问题进行归纳总结如下:一、等值法等值法即若某一变力的功和某一恒力的功相等,则可以同过计算该恒力的功,求出该变力的功。

而恒力做功又可以用W=FScosa计算,从而使问题变得简单。

例1、定滑轮至滑块的高度为H,已知细绳的拉力为F牛(恒定),滑块沿水平面由A点前进s米至B点,滑块在初、末位置时细绳与水平方向夹角分别为α和β。

求滑块由A点运动到B点过程中,绳的拉力对滑块所做的功。

分析:设绳对物体的拉力为T,显然人对绳的拉力F等于T。

T在对物体做功的过程中大小虽然不变,但其方向时刻在改变,因此该问题是变力做功的问题。

但是在滑轮的质量以及滑轮与绳间的摩擦不计的情况下,人对绳做的功就等于绳的拉力对物体做的功。

而拉力F的大小和方向都不变,所以F做的功可以用公式W=FScosa直接计算。

二、微元法当物体在变力的作用下作曲线运动时,若力的方向与物体运动的切线方向之间的夹角不变,且力与位移的方向同步变化,可用微元法将曲线分成无限个小元段,每一小元段可认为恒力做功,总功即为各个小元段做功的代数和。

三、平均力法如果力的方向不变,力的大小对位移按线性规律变化时,可用力的算术平均值(恒力)代替变力,利用功的定义式求功。

例3、一辆汽车质量为105千克,从静止开始运动,其阻力为车重的0.05倍。

其牵引力的大小与车前进的距离变化关系为F=103x+f0,f0是车所受的阻力。

当车前进100米时,牵引力做的功是多少?分析:由于车的牵引力和位移的关系为F=103x+f0,是线性关系,故前进100米过程中的牵引力做的功可看作是平均牵引力所做的功。

由题意可知f0=0.05×105×10N=5×104N,所以前进100米过程中的平均牵引力=N=1×105N,∴W=S=1×105×100J=1×107J。

高考物理:变力做功的求解方法!

高考物理:变力做功的求解方法!

高考物理:变力做功的求解方法!一、变力做功的计算方法1、用动能定理动能定理表达式为,其中是所有外力做功的代数和,△E k是物体动能的增量。

如果物体受到的除某个变力以外的其他力所做的功均能求出,那么用动能定理表达式就可以求出这个变力所做的功。

2、用功能原理系统内除重力和弹力以外的其他力对系统所做功的代数和等于该系统机械能的增量。

若在只有重力和弹力做功的系统内,则机械能守恒(即为机械能守恒定律)。

3、利用W=Pt求变力做功这是一种等效代换的思想,用W=Pt计算功时,必须满足变力的功率是一定的。

4、转化为恒力做功在某些情况下,通过等效变换可将变力做功转换成恒力做功,继而可以用求解。

5、用平均值当力的方向不变,而大小随位移做线性变化时,可先求出力的算术平均值,再把平均值当成恒力,用功的计算式求解。

6、微元法对于变力做功,我们不能直接用公式进行计算,但是可以把运动过程分成很多小段,每一小段内可认为F是恒力,用求出每一小段内力F所做的功,然后累加起来就得到整个过程中变力所做的功。

这种处理问题的方法称为微元法,其具有普遍的适用性。

在高中阶段主要用这种方法来解决大小不变、方向总与运动方向相同或相反的变力做功的问题。

二、摩擦力做功的特点1、静摩擦力做功的特点:A、静摩擦力可以做正功,也可以做负功,还可以不做功。

B、在静摩擦力做功的过程中,只有机械能的相互转移(静摩擦力起着传递机械能的作用),而没有机械能转化为其他形式的能。

C、相互摩擦的系统内,一对静摩擦力所做功的代数和总是等于零。

2、滑动摩擦力做功的特点:如图所示,顶端粗糙的小车,放在光滑的水平地面上,具有一定速度的小木块由小车左端滑上小车,当木块与小车相对静止时木块相对小车的位移为d,小车相对地面的位移为s,则滑动摩擦力F对木块做的功为W木=-F(d+s)①由动能定理得木块的动能增量为ΔE k木=-F(d+s)②滑动摩擦力对小车做的功为W车=Fs ③同理,小车动能增量为ΔE k车=Fs ④②④两式相加得ΔE k木+ΔE k车=-Fd ⑤⑤式表明木块和小车所组成系统的机械能的减少量等于滑动摩擦力与木块相对于小车位移的乘积,这部分能量转化为内能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二十三变力做功的动能定理
实验器材
朗威DISLab数据采集器、位移传感器、光电门传感器、DISLab力学轨道、DISLab力学轨道小车、支架、天平、计算机。

实验装置
如图23-1。

实验操作
1.将力传感器测钩取下换上强磁铁后固定到轨道一端,将位移传感器接收器固定到轨道另一端,将光电门传感器固定到轨道上,将0.01m的挡光片和位移接收器固定到小车上。

2.将位移传感器和光电门传感器分别接入数据采集器一、二通道。

3.点击教材专用软件主界面上的实验条目“变力做功的动能定理”,打开该软件。

4.将小车的质量,挡光片的宽度填写到界面相应位置。

5.打开位移发射器开关,点击“开始记录”,推动小车使车上的两片挡光片通过光电门,系统自动记录小车的初速度、末速度及小车动能的变化(图23-2)。

图23-2 F-S曲线
图23-1 变力做功的动能定理实验装置
6.点击“选择区域”,选择需要研究的一段F-S 图线即可得到相应的面积值(图23-3、图23-4)。

7.比较动能变化与面积值之间的大小,总结变力做功的动能关系。

图23-3 选择区域 图23-4 实验结果。

相关文档
最新文档