凸轮机构基本尺寸的确定

合集下载

凸轮机构基本尺寸的确定

凸轮机构基本尺寸的确定

s
0
0
1
4
9
4
10
1
2
3 t
4
5
6
没有刚性冲击
但在δ =0、δt /2、δt 处,a发生有限值突
变,有柔性冲击。
适用于中速、轻载场合
(2)n = 5 五次多项式运动
s v

C0 ds
C1 C2 2 C3 / dt C1 2C2
3 C4 4 3C3
5、偏置平底直动从动件盘形凸轮
s
8 9 10
7 5 3 1
11 12
13 14

1 3 5 7 8 9 11 13 15

120º 60º 90º 90º
取长度比例尺l绘图
13 12 11
10
9
8 7
14 1 2
3 4 5 6
6、尖底摆动从动件盘形凸轮
已②知等凸分轮位的移基曲圆线半及径
◆组合运动规律
说明:凸轮一般为等速运动,有 t, 推杆运动规律常表
示为推杆运动参数随凸轮转角δ变化的规律。
1、多项式运动规律
s C0 C1 C2 2 Cn n s
(1)n = 1
h
等速运动
运动线图→
t

始、末位置:a

lim
v0 t

v
t 0
t
s
推程
远休止
h
回程
从动件位移线图
tD
s

近休止
二、从动件常用运动规律 ◆多项式运动规律
重点: 掌握各种运动规律的
运动特性
★一次多项式运动规律——等速运动 ★二次多项式运动规律——等加速等减速运动 ★五次多项式运动规律

基本尺寸的确定

基本尺寸的确定

lCP = (s2+s0 )tanα
s2
rb
s0
rb e
2
2
2
C
O
P
n
ds2 e d 1 s 2 tan
e ds2/dφ 1
e2
为使机构的结构更紧凑, α应越大越好
凸轮机构基本尺寸的确定
为了保证凸轮机构能顺利工作,要求: α ≤ [α] [α]= 30˚ ----直动从动件; [α]= 35°~45°----摆动从动件; [α]= 70°~80°----回程。
tan ds2 / d1 e s2 rb 2 e 2
ω1
v2 B
s2
v2 P s0
n
ds2/dφ1
凸轮机构基本尺寸的确定
同理,当导路位于中心左侧时,有: n s2 B ω1 Dα r
min
lOP =lCP- lOC
tan
lCP = ds2/dφ 1 + e
ds2 / d1 e
凸轮机构基本尺寸的确定
一、压力角及许用值
压力角: 凸轮对从动件作用力的方向与从动件 上力作用点的速度方向之间所夹的锐角。
F’----有用分力, 沿导路方向 F”----有害分力,垂直于导路
Ff
n F F’
F”=F’ tg α
F’ 一定时,α↑
F”↑, ω1 若α大到一定程度时,会有:
α
F”
B
Ff > F’
a rT
凸轮机构基本尺寸的确定
四、滚子半径的选择
2、外凸的凸轮轮廓: a rT
a min min rT a

最新机械设计基础教案——第5章 凸轮机构

最新机械设计基础教案——第5章 凸轮机构

第5章凸轮机构(一)教学要求1.了解凸轮机构的工作原理2.掌握常用从动件运动规律及特性3.掌握盘形凸轮轮廓的设计4.了解凸轮机构的尺寸的确定(二)教学的重点与难点1.凸轮的工作原理2.用反转法设计凸轮轮廓3.凸轮的尺寸对其机构的影响(三)教学内容5.1概述5.1.1 概念1.凸轮机构的组成:凸轮是由从动件、机架、凸轮三部分组成的高幅机构。

2.凸轮:是一种具有曲线轮廓或凹糟的构件,它通过与从动什的高副接触,在运动时可以使从动件获得连续或不连续的任意预期运动。

3.特点:结构相当简单,只要设计出适当的凸轮轮廓曲线,就可以使从动件实现任何预期的运动规律。

但另一方面,由于凸轮机构是高副机构,易于磨损,因此只适用于传递动力不大的场合。

4.凸轮机构的应用例:内燃机配气机构(如下图所示)靠模车削机构(如下图所示)自动送料机构(如下图所示)分度转位机构(如下图所示)5.1.2 凸轮机构的分类1、按照凸轮的形状分为:(1)盘形凸轮凸轮中最基本的形式。

凸轮是绕固定铂转动且向径变化的盘形零件,凸轮与从动件互作平面运动,是平面凸轮机构。

(2)移动凸轮可看作是回转半径无限大的盘形凸轮,凸轮作往复移动,是平面凸轮机构。

(3)圆柱凸轮可看作是移动凸轮绕在圆柱体上演化而成的,从动件与凸轮之间的相对运动为空间运动,是一种空间凸轮机构。

(4)曲面凸轮当圆柱表面用圆弧面代替时,就演化成曲面凸轮,它也是一空间凸轮机构。

2、按锁合方式的不同凸轮可分为:(1)力锁合凸轮,如靠重力、弹簧力锁合的凸轮等;(2)几何锁合凸轮,如沟槽凸轮、等径及等宽凸轮、共轭凸轮等。

3、按从动件型式分为:(1)尖顶从动件(2)滚子从动件(3)平底从动件根据从动件运动型式不同分为直动从动件和摆动从动件。

5.1.3 凸轮和滚子的材料凸轮机构的主要失效形式:磨损和疲劳点蚀要求凸轮和滚子的工作表面硬度高、耐磨并且有足够的表面接触强度。

对于经常受到冲击的凸轮机构还要求凸轮芯部有较强的韧性。

凸轮机构的压力角和基本尺寸

凸轮机构的压力角和基本尺寸

2.凸轮理论轮廓的外凸部分
amin min rT
min rT
amin =min-rT

min>rT amin =min-rT>0
min rT
´
´
min<rT amin =min-rT<0

´
为避免运动失真,
min=rT
amin =min-rT=0
rT<
min
凸轮机构的压力角和基本尺寸
一、凸轮机构的压力角
二、凸轮基圆半径的确定 三、滚子从动件滚子半径的选择
第四节 凸轮机构的压力角和基本尺寸
一、凸轮机构的压力角
1. 压力角 :
在不计摩擦力、重力、惯性力的条件下,机 构中驱使从动件运动的力的方向线与从动 件上受力点的速度方向线所夹的锐角。
Q n
F F2 v2
回程时:[]=70º ~80º
3、压力角与凸轮机构尺寸之间的关系 P点为速度瞬心, 于是有: v=lOPω → lOP =v / ω = ds/dφ = lOC + lCP lOC = e lCP = ds/dφ - e lCP = (S+S0 )tg α S0= r20 -e2 ds/dφ - e tgα = S + r20 - e2 r 0↑ →α ↓
F1 A
2. 压力角与凸轮机构受力情况的关系 Q—作用在从动件上的载荷
F—凸轮对从动件的作用力
F1 F cos F2 F sin
o
推动从动件运动的有效分力 阻碍从动件运动的有害分力
越小,受力越好。
n
F1 F cos F2 F sin
推动从动件运动的有效分力
阻碍从动件运动的有害分力

凸轮机构基本尺寸的确定

凸轮机构基本尺寸的确定

5
h/r0 等加等减速运动
10
85 5 80 10
作者:潘存云教授
h/r0 余弦加速度运动
85
80
15 20
α 最大压力角 max
75 70
25
65
30
60
35 40
45
50
55
15 20
最大压力角αmax
75 70
25
65
30
60
35 40
45
50
55
应用实例:一对心直动滚子推杆盘形凸轮机构, δ0=45º,h=13 mm, 推杆以正弦加速度运动, 要求:αmax ≦30º,试确定凸轮的基圆半径r0 。 作图得:h/r0=0.26 r0 ≧ 50 mm
n
∴ tgα = ds/dδ + e
s + r20 - e2
e ↑ α↑
e ds/dδ
此时,当偏距e增大时,压力角反而增大。
对于直动推杆凸轮机构存在一个正确偏置的问题!
综合考虑两种情况有: tgα = ds/dδ ± e
s + r20 - e2 “+” 用于导路和瞬心位于凸轮回转中心的两侧; “-” 用于导路和瞬心位于凸轮回转中心的同侧; 显然,导路和瞬心位于中心同侧时,压力角将减小。
对于外凸轮廓,要保证正常工作,应使: ρmin> rT
曲线之曲率半径: ρ=( x2+y2)3/2/( xy-yx ) 式中:x=dx/dδ,y=dy/dδ, x=d2x/dδ2, y=d2y/dδ2
可用求极值的方法求得ρmin ,常采用上机编程求得ρmin
工程上要求ρa ≥1~5
若不满足此条件时:
= [ds/dt] / [dδ/dt]

机械设计基础 第四章

机械设计基础 第四章

(1) 盘形凸轮机构
盘形凸轮机构是最常见的凸轮机构, 其机构中的凸轮是绕固定轴线转动并具 有变化向径的盘形零件,如图4-2所示。
图4-2 内燃机配气机构
(2) 移动凸轮机构
当盘形凸轮的 回转中心趋于无穷 远时,凸轮不再转 动,而是相对于机 架作直线往复运动, 这种凸轮机构称为 移动凸轮机构(参见 图4-4)。
用光滑的曲线连接这些点便得到推程等加速段的位移线图,等
减速段的位移线图可用同样的方法求得。
等加速、等减速运动规律的位移、速度、加速度线图如图 4-10所示。由图4-10(c) 可知,等加速、等减速运动规律在运动 起点O、中点A 和终点B 的加速度突变为有限值,从动件会产生 柔性冲击,适用于中速场合。
4.3 盘形凸轮轮廓的绘制
凸轮轮廓的设计方法有作图法和解析法两种。其中,作图 法直观、方便,精确度较低,但一般能满足机械的要求;解析 法精确高,计算工作量大。本节主要介绍作图法。
4.3.1 凸轮轮廓曲线设计的基本原理
凸轮机构工作时,凸轮是运动的,而绘在图纸上的凸轮是静 止的。因此,绘制凸轮轮廓时可采用反转法。
s
2h
2 0
2
(4-2)
等加速、等减速运动规律的位移线图的画法为:
将推程角
0 两等分,每等分为
0 2

将行程两等分,每等分 h ,将 0 若干等分,
2
2
得点1、2、3、…,过这些点作横坐标的垂线。
将 h 分成相同的等分,得点1′、2′、3′、…,连01′、02′、
2
03′、…与相应的横坐标的垂线分别相交于点1″、2″、3″、…,
图4-5 平底从动件
3. 按从动件与凸轮保持接触的方式分
(1) 力锁合的凸轮机构

机械设计基础第五章

机械设计基础第五章

3.余弦加速度运动规律
从动件加速度按余弦规律变 化的运动规律。 在推程始末点处仍存在“软 冲”,因此只适用于中、低速。 但若从动件作无停歇的升— 降—升型连续运动,则加速度曲 线为光滑连续的余弦曲线,消除 了“软冲”,故可用于高速。
4、正弦加速度运动规律
从动件加速度按正 弦规律变化的运动规律。 运动特征:没有冲击, 故可用于高速。
3.按锁合方式分
(1)力锁合凸轮机构 依靠重力、弹簧力或其他外力来 保证锁合,如内燃机配气凸轮机构。
(2)形锁合凸轮机构 依靠凸轮和从动件几何形状来锁合。
4.按从动件相对机架的运动方式分
(1)移动从动件凸轮机构 按其从动件导路是否通过凸 轮回转中心分为对心移动从动件和偏置移动从动件凸轮 机构。 (2)摆动从动件凸轮机构
移动从动件
摆动从动件
二、常用的从动件运动规律
(一)平面凸轮机构的基本尺寸及运动参数
一对心直动尖顶从动件盘 形凸轮机构,凸轮上有一最小 向径,以最小向径r。为半径 所作的圆称凸轮基圆,r。称 基圆半径,凸轮以等角速度ω1 逆时针转动。凸轮机构运动过 程如下:
升—停—降—停
凸轮机构的运动过程
(二)常用的从动件运动规律
一、概述
(一)凸轮机构的应用 1. 组成
凸轮机构由凸轮1、从动件2、机 架3三个基本构件组成,是一种高副 机构。其中凸轮是一个具有曲线轮 廓或凹槽的构件,通常作连续等速 转动,从动件则在凸轮轮廓的控制 下按预定的运动规律作往复移动或 摆动。
2. 特点: 优点:只要正确地设计和制造出凸轮的轮廓曲线,就能实 现从动件所预期的复杂运动规律的运动;凸轮机构结构
(一)凸轮机构的压力角
压力角:不计摩擦时,凸轮对 从动件的作用力(法向力)与从 动件上受力点速度方向所夹的锐 角。 将从动件所受力F分解为两个 力:

第4.4节(凸轮机构基本尺寸的设计)

第4.4节(凸轮机构基本尺寸的设计)

第四节 凸轮机构基本尺寸设计无论是作图法还是解析法,在设计凸轮廓线前,除了需要根据工作要求选定从动件的运动规律外,还需要确定凸轮机构的一些基本参数,如基圆半径b r 、偏距e 、滚子半径r r 等。

一般来讲,这些参数的选择除了应保证从动件能够准确地实现预期的运动规律外,还应当使机构具有良好的受力状况和紧凑的结构。

本节讨论凸轮机构基本尺寸设计的原则和方法。

一、移动滚子从动件盘形凸轮机构1. 压力角同连杆机构一样,压力角也是衡量凸轮机构传力特性好坏的一个重要参数。

所谓凸轮机构的压力角,是指在不计摩擦的情况下,凸轮对从动件作用力的方向线与从动件上力作用点的速度方向之间所夹的锐角。

对于图4-22所示的移动滚子从动件盘形凸轮机构来说,过滚子中心所作理论廓线的法线nn 与从动件运动方向之间的夹角α就是压力角。

(1)压力角与作用力的关系 由图4-22可以看出,凸轮对从动件的作用力F 可以分解成两个分力,即沿着从动件运动方向的分力F '和垂直于运动方向的分力F ''。

只有前者是推动从动件克服载荷的有效分力,而后者将增大从动件与导路间的摩擦,它是一种有害分力。

压力角α越大,有害分力越大。

当压力角α增大到某一数值时,有害分力所引起的摩擦阻力将大于有效分力F ',这时无论凸轮给从动件的作用力有多大,都不能推动从动件运动,即机构将发生自锁。

因此为减小侧向推力,避免自锁,压力角α应越小越好。

图4-22 凸轮机构的压力角(2)压力角与机构尺寸的关系 设计凸轮时,除了应使机构具有良好的受力状况外,还希望机构结构紧凑。

而凸轮尺寸的大小取决于凸轮基圆半径的大小。

在实现相同运动规律的情况下,基圆半径越大,凸轮的尺寸也越大。

因此,要获得轻便紧凑的凸轮机构,就应当使基圆半径尽可能地小。

但是基圆半径的大小又和凸轮机构的压力角有直接的关系。

下面以图4-22为例来说明这种关系。

图中,过滚子中心B 所作理论廓线的法线nn 与过凸轮轴心0A 所作从动件导路的垂线交于P 点,由瞬心定义可知,该点即为凸轮与从动件在此位置时的瞬心,且ϕωd ds v P A ==0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、从动件常用运动规律
◆多项式运动规律
★一次多项式运动规律——等速运动
重点: 掌握各种运动规律的 运动特性
★二次多项式运动规律——等加速等减速运动
★五次多项式运动规律
◆三角函数运动规律
★余弦加速度运动规律——简谐运动规律 ★正弦加速度运动——摆线运动规律
◆组合运动规律 说明: 凸轮一般为等速运动,有 t , 推杆运动规律常表
s = 1:4:9 ……
1

没有刚性冲击
但在δ =0、δt /2、δt 处,a发生有限值突 变,有柔性冲击。
适用于中速、轻载场合
2 3 4 五次多项式运动 v ds / dt C1 2C2 3C3 4C4 5C5 a dv / dt 2C2 2 6C3 2 12C4 2 2 20C5 2 3
1 2
A
l B1 B0 B1

1
B2 B2 B3 120º B
A1
B3
2 3
A2
3
4 5
6
A8
r0 O
B4
4
A3
4
7
5 67 8
1 2 34
120º60º 90º 90º

90º 60º B5 B8 B7 B6
A7
7
B7
B5
设计步骤 ④将各尖底点连接成一条 ③确定反转后从动件尖底 ① 选比例尺,作位 光滑曲线。 移曲线,作基圆 r0 和转轴 在各等分点占据的位置。 圆OA。
Ⅰ、根据工作要求选择主体运动规律,然后用其它运动 规律组合;
Ⅱ、保证各段运动规律在衔接点上的运动参数是连续的;
Ⅲ、在运动始点和终点处,运动参数要满足边界条件。
★组合运动规律示例
例1:改进梯形加速度运动规律
主运动:等加等减运动规律
组合运动:在加速度突变处以正弦加速度曲线过渡。
◆组合运动规律
组合运动规律示例2:
从动件滚子半径的确定
内凹轮廓
rr
理论轮廓曲线 轮廓正常
外凸轮廓
轮廓正常

a rr
a rr a rr
rr
实际轮廓曲线
a
轮廓变尖
轮廓失真
rr

rr
rr a rr 0
rr a rr 0
结论:对于外凸轮廓,要保证凸轮正常工作,应使min rr。设计时建议 rr 0.8 min
(2)n = 5
s C0 C1 C2 2 C3 3 C4 4 C5 5
既无刚性冲击,也无柔 性冲击 适用于高速、中载
场合
2、三角函数运动规律 余弦加速度运动 简谐运动
5 4 3 2 6
S
h
1
当质点沿着以推程h为直径的圆周匀速 运动时,它在直径上的投影即为从动件简 谐运动规律的位移曲线。
S3 A1
A2
A3
A4
S4

r0

r0

r0

r0
-
-
A2 A3 A4 A2 A3 A4
-

A2 A3 A4
A1
A1
A1


r0
r0
r0
二、图解法设计凸轮轮廓曲线
1、偏置尖底直动从动件盘形凸轮 已知凸轮的基圆半径r0,角速度和从 动件的运动规律及偏心距e,设计该凸轮轮 廓曲线。
s
1 5
120º
60º 90º
9 10 11 12 13 14 9 11 13 15

O
90º

设计步骤: ①确定反转后从动件尖底在各 选比例尺l,作位移曲线和 ③ 基圆 r0 。 等分点占据的位置。
11
④ ②将各尖底点连接成一条光滑曲线。 等分位移曲线及反向等分各运动角,确定反转后对应 于各等分点的从动件的位置。
B6
A4
6
A6
5
A5
7. 直动推杆圆柱凸轮机构
• •
将圆柱凸轮的外表面展在平面上,则得到一个移动凸轮; 根据反转法作出推杆滚子中心在复合运动中轨迹,即为凸轮的理论廓线;据 此再作实际廓线;
用图解法设计凸轮轮廓曲线小结: 1)确定基圆和推杆的起始位置;
2)作出推杆在反转运动中依次占据的各位置线;
示为推杆运动参数随凸轮转角δ变化的规律。
1、多项式运动规律
s C0 C1 C2 2 Cn n
s
(1)n = 1
等速运动
始、末位置:a lim
t 0 t 0 v 0 t 0v t
h
运动线图→

h/t a v
t

a lim
90º
设计步骤: ①选比例尺 l ,作位移曲线和 ③确定反转后平底与导路中心线 基圆r0。 的交点 A在各等分点占据的位置。 ②等分位移曲线及反向等分各 ④作平底直线族及平底直线族 运动角,确定反转后对应于各等分点 的内包络线。 的从动件的位置。
11
5、偏置平底直动从动件盘形凸轮
s
1 3
第九章 凸轮机构
本章基本要求: 本章重点: 用场合;
了解凸轮机构的分类及应用; 凸轮从动件常用的运动规律及适 了解凸轮从动件常用的运动
规律及推杆运动规律的选择原 则;
凸轮机构的设计问题;
凸轮机构基本尺寸的确定。
掌握凸轮机构设计的基本知
识,能根据选定的凸轮类型和 推杆的运动规律设计出凸轮的 轮廓曲线; 本章难点:
一、凸轮轮廓线设计方法的基本原理
反转法原理:
假想给整个机构加一公
共角速度-,则凸轮相
对静止不动,而从动件 一方面随导轨以-绕凸 轮轴心转动,另一方面 又沿导轨作预期运动规
s1


律的往复移动,从动件
尖底复合运动的轨迹即 为凸轮轮廓曲线。
s2
A2 A3 A4 A1
A1
A3
A2
A4
A4
S2
A1 A2 A3
5
7
8
1 3 5 7 8
120º
60º 90º
9 10 11 12 13 14 9 11 13 15


90º
取长度比例尺l绘图
12
13
14
1 2
11 10
9

8 5
3
4 7 6
6、尖底摆动从动件盘形凸轮
已知凸轮的基圆半径 ②等分位移曲线及 r 0,角速度,摆杆长度l 反向等分各运动角,确 以及摆杆回转中心与凸 定反转后对应于各等分 轮回转中心的距离 L,摆 点的转轴A的位置。 d 杆角位移曲线,设计该 凸轮轮廓曲线。
e
7
8
3
13 13 12 设计步骤 12 11 9 10 ①选比例尺 ,作位移曲线、 ④将各尖底点连接成一条光滑 ③确定反转后从动件尖底在 ②等分位移曲线及反向等分
1 3 5 7 8
120º
60º 90º
9 10 11 12 13 14 9 11 13 15
Байду номын сангаас
A
14 15 14
4、对心平底直动从动件盘形凸轮
已知凸轮的基圆半径r0,角速度和从动件的运动规律, 设计该凸轮轮廓曲线。
将平底与导路中心线的交点视为假想的尖底;
s
1 3 5 7 8 9 10 11 12 13 14 9 11 13 15
A

O
1 3 5 7 8
120º
60º 90º
(3)、平底从动件
受力好, 润滑好, 常用于 高速
3、按从动件的运动形式
(1)、 直动从动件 (2)、摆动从动件
直动从动件又分为:
对心直动从动件
偏置直动从动件
4、按封闭方式的不同
维持运动副中两个构件之间的接触方式称为封闭。
(1)几何封闭凸轮: 如槽凸轮、等径及等宽凸轮等。
(2)力封闭凸轮: 如靠重力、弹簧力锁合的凸轮等。
r0
O
C
D
行程h:最大位移(或角度) 推程运动角:t=BOB=AOB1AOB 远休止角:s=BOC=B1OC1 回程运动角:h=C1OD 近休止角:s=AOD s
h
B
e
A
h

r0
s
O
t
B
s
B1
h
t
C1
C
D
0
t
推程
s
远休止
h
回程
s
近休止

从动件位移线图
组合方式:
主运动:等速运动规律 组合运动:等速运动的行程 两端与正弦加速度运动规律 组合起来。
小结:
运动规律
等速 等加速等减速 五次多项式 余弦加速度
运动特性
刚性冲击 柔性冲击 无冲击 柔性冲击 无冲击
适用场合
低速轻载 中速轻载
高速中载
中低速中载 中高速轻载
正弦加速度
§9-3 凸轮轮廓曲线的设计
3、对心滚子直动从动件盘形凸轮
已知凸轮的基圆半径r0,滚子半径rr、凸轮角速度和 从动件的运动规律,设计该凸轮轮廓曲线。
实际廓线 A
s
1 3 5
7
8
1 3 5 7 8
120º
60º 90º
9 10 11 12 13 14 9 11 13 15


O
90º
设计步骤: ① 选比例尺 l,作位移曲线和基 ③ 作滚子圆族及滚子圆族的内包 确定反转后从动件滚子中心在 ⑤ 圆 r0 。 各等分点占据的位置。 络线。 ② 等分位移曲线及反向等分各运 ④ 将各点连接成一条光滑曲线。 动角,确定反转后对应于各等分点的 从动件的位置。
相关文档
最新文档