锻压工艺介绍
《锻压成形工艺》课件

模具与工具
锻造模具
用于使金属在模具内塑性 变形,形成所需的形状和 尺寸。
切削工具
用于对金属进行切削加工 ,使其达到所需的精度和 表面粗糙度。
量具和夹具
用于测量和固定金属,保 证加工精度和稳定性。
06
锻压成形工艺实例分析
自由锻造实例
总结词
自由锻造是一种不受模具限制的锻造方法,主要依靠锻锤的冲击力使 金属变形。
模锻实例
总结词
详细描述
模锻是一种在模具中进行的锻造方法,通 过模具的限制使金属变形,以获得所需的 形状和尺寸。
模锻实例包括汽车曲轴、连杆、齿轮等, 这些零件在生产过程中需要经过模锻,以 获得精确的形状和尺寸。
总结词
详细描述
模锻的优点在于生产效率高,精度高,适 用于大批量生产,但模具成本较高。
模锻的实例包括汽车曲轴、连杆、齿轮等 ,这些零件在生产过程中需要经过模锻, 以获得精确的形状和尺寸。
详细描述
自由锻造实例包括大型锻件、轴类锻件、饼类锻件等,这些锻件在生 产过程中需要经过多次自由锻造,以获得所需的形状和性能。
总结词
自由锻造的优点在于灵活性高,适用于单件和小批量生产,但生产效 率较低,劳动强度较大。
详细描述
自由锻造的实例包括大型锻件、轴类锻件、饼类锻件等,这些锻件在 生产过程中需要经过多次自由锻造,以获得所需的形状和性能。
应力状态与温度场
总结词
影响材料流动和成形过程稳定性
详细描述
应力状态与温度场是影响锻压成形工艺的重要因素。在 锻压过程中,应力状态与温度场的变化相互影响,共同 决定了材料的流动和成形过程的稳定性。合理的应力状 态可以促进材料的塑性变形和流动,提高成形质量;而 稳定的温度场则可以保证材料在变形过程中保持稳定的 物理性能,防止因温度波动引起的缺陷。因此,合理控 制应力状态与温度场是实现高质量锻压成形的重要手段 。
锻压生产特点及工艺简介

6、几种锻造结构图
第二节 金属的锻造性能
一、金属的塑性变形概述 金属塑性变形的实质,对于单晶体是由于金属原子某晶面两侧受切应力作用
产生相对滑移,或晶体的部分晶格相对于某晶面沿一定方向发生切变,即滑移理 论和孪生理论。
二、热锻、冷锻、温锻、等温锻
从金属学的观点划分锻压加工的界限为再结晶温度。 1.热锻 在金属再结晶温度以上进行的锻造工艺称为热锻。在变形过程中冷变形 强化和再结晶同时存在,属于动态再结晶。 2.冷锻 在室温下进行的锻造工艺称为冷锻。冷锻可以避免金属加热出现的缺陷, 获得较高的精度和表面质量,并能提高工件的强度和硬度。但冷锻变形抗力大, 需用较大吨位的设备,多次变形时需增加再结晶退火和其它辅助工序。目前冷锻 主要局限于低碳钢、有色金属及其合金的薄件及小件加工。 3.温锻 在高于室温和低于再结晶温度范围内进行的锻造工艺称为温锻。与热锻 相比,坯料氧化脱碳少,有利于提高工件的精度和表面质量;与冷锻相比,变形 抗力减小、塑性增加,一般不需要预先退火、表面处理和工序间退火。温锻适用 于变形抗力大、冷变形强化敏感的高碳钢、中高合金钢、轴承钢、不锈钢等。 4.等温锻 在锻造全过程中,温度保持恒定不变的锻造方法称为等温锻。
冲压:有时也称板材成形, 但略有区别。所谓板材成型是指用板材、薄壁管、 薄型材等作为原材料进行 塑性加工的成形方法统称为板材成形,此时,厚板厚 方向的变形一般不着重考虑
4、锻件与铸件相比的特点
金属经过锻造加工后能改善其组织结构和力学性能。铸造组织经过锻造方法 热加工变形后由于金属的变形和再结晶,使原来的粗大枝晶和柱状晶粒变为晶粒 较细、大小均匀的等轴再结晶组织,使钢锭内原有的偏析、疏松、气孔、夹渣等 压实和焊合,其组织变得更加紧密,提高了金属的塑性和力学性能。
流行锻压基本工艺及设备简介

3~4工程
3~4工程 4.热处理
5.后处理
5. 表面处理
Ⅰ.概述
匠心制造 . 诚信天下
a.自由锻造
自由锻造是利用冲击力或后力使金属在上下平面各个方向变形, 不受任何限制而获得形状及尺寸和一定机械性能的加工方法。 (精度要求不高)
b.精密锻造
精密锻造是利用精密模具通 锻压机使材料产生塑性 变形而达到 产品形状及尺寸的一种加工方法。(精度高)--手机手表应用广泛
内外径精度
偏芯 脱炭层 表面粗造度 金属组织
冷锻造
±0.1~±0.25 ±0.02 ~±0.2 0.02~0.15 <0.1 <0.8Ra (6S)
微细
温锻造
±0.1~±0.4 ±0.1 ~±0.2 0.1~0.4
<0.2 <2.5Ra (10S)
微细
热锻造
±1~±2
±0.5 ~±1 0.7~1.0
Ⅰ.概述
匠心制造 . 诚信天下
锻压分为开式锻压和闭式锻压;又分为冷锻,热锻,温锻。又分为自由锻 和精密模锻。
名称
简图
说明
冷锻压是在低于金属再结晶温度下进行的锻压,通常所说的冷锻
压多专指在常温下的锻压,而将在高于常温、但又不超过再结晶
冷锻
温度下的锻压称为温锻压。温锻压的精度较高,表面较光洁而变
形抗力不大。
Ⅰ.概述
5.锻压工艺辅助工序有哪些?
a.不锈钢产品有退火 热处理工艺 b.铝合金有固溶/时效等热处理工艺 c.铜 钛产品有热压 加热炉 热处理工艺 d.皮膜表面处理工艺 e.表面抛光处理工艺
匠心制造 . 诚信天下
锻压成型的特点
匠心制造 . 诚信天下
(1) 改善金属的组织,提高金属的力学性能 与物理性能;
锻压的工艺类别

锻压的工艺类别
锻压是一种重要的金属加工工艺,主要是通过对金属材料进行加热、
变形和压制等操作,使其达到所需形状和尺寸的过程。
根据不同的加
工方式和工艺特点,锻压可以分为多种不同的类别。
1. 自由锻造:自由锻造是指在没有任何模具或模具辅助下,直接对金
属材料进行锤打、挤压等加工方式。
这种方法适用于生产不规则形状、小批量的零件。
2. 模具锻造:模具锻造是指使用专门设计的模具将金属材料进行加工
成所需形状和尺寸。
这种方法适用于生产大批量、高精度和复杂形状
的零件。
3. 冷镦:冷镦是一种将金属棒材或线材通过冷镦机进行拉伸、挤压等
操作,使其达到所需形状和尺寸的加工方式。
这种方法适用于生产小
直径高精度零件。
4. 热成型:热成型是指在高温条件下对金属材料进行加工,包括热挤压、热轧制、热拉伸等加工方式。
这种方法适用于生产大型、高强度
零件。
5. 拉伸成型:拉伸成型是指将金属材料进行拉伸加工,包括拉伸、深拉、冲压等加工方式。
这种方法适用于生产高精度、复杂形状的零件。
6. 压铸:压铸是一种将熔融金属注入模具中,通过压力使其凝固成所
需形状和尺寸的加工方式。
这种方法适用于生产大批量、高精度和复
杂形状的零件。
总之,锻压是一种非常重要的金属加工工艺,不同的锻压类别适用于
不同类型的零件生产。
在实际应用中,需要根据具体情况选择合适的
锻压方式,并结合先进的技术和设备来提高生产效率和产品质量。
锻压技术和热加工工艺

锻压技术和热加工工艺锻压技术和热加工工艺是金属加工领域中常用的两种工艺,它们在制造业中扮演着重要的角色。
本文将介绍锻压技术和热加工工艺的基本概念、应用领域以及优缺点,并探讨它们对制造业的重要性。
一、锻压技术锻压技术是利用锻压设备对金属材料进行塑性变形的工艺。
在锻造过程中,通过对金属材料施加压力,使其在高温下发生塑性变形,从而得到所需的形状和尺寸。
锻压技术广泛应用于汽车、航空航天、机械制造等领域。
锻压技术的主要优点是能够提高材料的内部结构和力学性能。
通过锻造,金属材料的晶粒得到细化,晶界得到消除,从而提高了材料的强度和韧性。
此外,锻压技术还可以实现精确的成形,使得零件的尺寸和形状精度高,表面质量好。
然而,锻压技术也存在一些缺点。
首先,锻压过程需要较高的设备和工艺要求,成本较高。
其次,锻压工艺的适用范围有限,对于一些复杂形状和大尺寸的零件来说,锻造难度较大。
此外,锻压过程中还会产生较大的冲击力和噪音,对设备和环境造成一定的影响。
二、热加工工艺热加工工艺是利用热能对金属材料进行加工的工艺。
常见的热加工工艺包括热轧、热挤压、热拉伸等。
热加工工艺主要适用于金属材料的塑性变形和形状修整。
热加工工艺的主要优点是能够提高材料的塑性和变形能力。
在高温下,金属材料的塑性增加,容易发生塑性变形,从而实现较大的形状变化。
此外,热加工还可以改善材料的内部结构和力学性能,提高材料的强度和韧性。
然而,热加工工艺也存在一些缺点。
首先,热加工过程需要大量的能源消耗,对环境造成一定的影响。
其次,热加工对设备和工艺要求较高,需要控制好加热温度和加工速度,以避免产生缺陷和变形。
此外,热加工过程中还会产生较大的热应力和残余应力,对材料的性能和寿命产生影响。
三、锻压技术和热加工工艺的应用锻压技术和热加工工艺在制造业中有着广泛的应用。
锻压技术主要应用于汽车、航空航天、机械制造等领域,用于生产发动机零部件、车轮、轴承等关键零件。
热加工工艺主要应用于钢铁、有色金属等行业,用于生产钢材、铝材等金属材料。
锻压成型工艺介绍及应用

0.10~0.30 0.10~0.40
部分復雜形狀 復 雜
熱間鍛造 1,000~1,1250℃
半密閉式
小 無 低 低 低 不要 石墨 a.曲柄式鍛機 b.摩擦鍛機 c.端鍛機 ±0.5~±1.0 ±1.0~2.0 0.7~1.0 復雜
f.鍛造制程變數很多,且所需之技術與經驗勻非短時間 可以累積建立,故掌握不易,直接影響制程,直接影響 制程、結果之控制及其成效。
(b)鑄造件沒有晶粒流向
3.1 鍛壓成型工藝
鍛壓成型工藝過程基本為: 坯料準備→模鍛→切邊和沖孔連皮→磨去毛刺→熱處理 →清理→冷校正或冷精壓→質量檢驗等。
4.1 鍛壓成型的應用領域
(鍛粗)端鍛 Upsetting 鍛 伸 Streching 擠 制 Extrusion 模鍛造 回轉鍛造 Rotary Forging 環 鍛
輥鍛 搖動模鍛 交叉輥鍛 徑向鍛造 Radial Forging 熱間鍛造 Hot Forging 溫間鍛造 Warm Forging 冷間鍛造 Cold Forging 恆溫鍛造 Isothermal Forging 溶湯鍛造 Liquid Forging 粉末鍛造 Powder Forging 鍛造整合制程
1.2 冷鍛用材料種類-2
種類
鋁及鋁合金
純鋁
耐蝕鋁合金
高強度鋁合金 **
鉛及鉛合金
錫及錫合金
純銅
銅及銅合金
黃銅
純銅、黃銅 洋白 白銅
鎳銅合金
JIS記號
A1080,A1070,A1050,A1100,A1200 A3003,A4061,A6063
A2014,A2024,A7075
HPb,P,HPb,P4 Sn>99%,Cn<1% OFCu,Dcu( ) 1,Dcu( ) 2,Tcu( ) Cubb Bs( ) 1, Bs ( ) 2, RBs( )1, RBs ( ) 2,RBs( ) 3,RBs ( ) 4 BeCu ( ) 2 NS ( ) 2 CN ( ) 1 NCuT
锻压的工艺类别
锻压的工艺类别锻压是一种常见的金属加工工艺,通过施加力量使金属材料发生塑性变形,以获得所需形状和尺寸的工件。
根据不同的加工要求和工件材料,锻压工艺可以分为以下几类。
一、自由锻压自由锻压是最简单、最常用的锻压工艺之一。
在自由锻压中,工件被放置在锻压机上,锻锤或压力机施加力量使其发生塑性变形。
这种工艺适用于各种金属材料的加工,可以制造出各种形状的工件,如轴类、盘类、环类等。
二、模锻压模锻压是指在锻模的作用下,将金属材料加热至一定温度后进行锻压。
通过锻模的限制和控制,使金属材料按照模具的形状和尺寸进行塑性变形,得到精确的工件。
模锻压适用于制造复杂形状的工件,如齿轮、曲轴、凸轮等。
三、冷锻压冷锻压是在室温下进行的锻压工艺。
相对于热锻压,冷锻压具有成本低、工艺简单等优点。
冷锻压适用于加工硬度较高的金属材料,可以制造出高强度、高精度的工件。
四、半热锻压半热锻压是指将金属材料加热至介于室温与热锻压温度之间的一定温度范围内进行锻压。
半热锻压结合了冷锻压和热锻压的优点,可以在保证金属材料塑性的同时,减少锻压力量和模具磨损。
半热锻压适用于加工较大尺寸、复杂形状的工件。
五、精密锻压精密锻压是一种高精度、高效率的锻压工艺。
通过精密的模具设计和控制,使金属材料按照要求的形状和尺寸进行变形。
精密锻压适用于制造精密仪器、钟表零件、汽车零部件等高精度要求的工件。
六、等温锻压等温锻压是在金属材料加热至其再结晶温度以上的高温条件下进行的锻压工艺。
等温锻压可以获得均匀细小的晶粒结构,提高材料的塑性和韧性。
等温锻压适用于加工高温合金、钛合金等特殊材料的工件。
锻压工艺的选择取决于工件的要求和材料的特性。
不同的锻压工艺在材料的形变、应力分布、工艺参数等方面存在差异,需要根据具体情况进行选择。
同时,在锻压过程中,还需要注意材料的加热、保温、冷却等环节的控制,以确保工件质量和生产效率的提高。
锻压工艺的发展离不开材料科学、机械工程等多学科的支持和合作,相信在不久的将来,锻压工艺将会得到更广泛的应用和发展。
锻压的工艺流程
锻压的工艺流程锻压是一种通过对金属材料施加压力来改变其形状和结构的加工方法。
这种工艺流程通常用于制造高强度、高耐久性的金属零件,如汽车发动机零件、飞机结构件等。
在本文中,我们将详细介绍锻压的工艺流程,包括前期准备、锻造操作和后续处理等内容。
1. 前期准备在进行锻压工艺之前,首先需要准备好原材料。
通常情况下,锻造所用的原材料为金属坯料,如钢、铝等。
这些金属坯料需要经过加热处理,使其达到适合进行锻造的温度。
加热的方法包括火炉加热、感应加热等,确保金属坯料达到一定的塑性和韧性。
2. 锻造操作一般来说,锻造操作分为冷锻和热锻两种方式。
冷锻是在室温下进行的锻造操作,适用于一些对尺寸精度要求不高的零件。
而热锻则是在金属坯料加热至一定温度后进行的锻造操作,适用于对尺寸精度要求较高的零件。
在进行锻造操作时,需要根据零件的形状和结构设计合适的模具,通过对金属坯料施加压力使其在模具中逐渐变形成型。
3. 后续处理完成锻造操作后,还需要对零件进行一些后续处理工艺,以提高其性能和精度。
后续处理工艺包括退火、淬火、表面处理等。
退火是通过加热和冷却的方式来改善金属的组织结构和性能,提高其塑性和韧性。
淬火则是通过快速冷却的方式来增强金属的硬度和强度。
表面处理包括镀层、喷涂等,可以提高零件的耐腐蚀性和美观度。
在整个锻压的工艺流程中,操作人员需要具备丰富的经验和技术,以确保零件的质量和精度。
同时,还需注意安全问题,避免因操作不当而导致意外发生。
锻压工艺虽然在金属加工领域具有重要地位,但也需要不断创新和改进,以满足不断变化的市场需求。
总的来说,锻压是一种重要的金属加工工艺,通过对金属材料施加压力来改变其形状和结构,制造出高强度、高耐久性的零件。
只有掌握了锻压的工艺流程,才能更好地应用于实际生产中,为各行各业提供更优质的产品和服务。
希望本文的介绍能够帮助读者更好地了解锻压工艺,进一步推动金属加工技术的发展。
锻压工艺技术
锻压工艺技术锻压工艺技术是一种将金属材料加热至一定温度下,在大力作用下进行塑性变形的工艺。
锻压工艺技术广泛应用于制造行业,特别是对于大型零件的制造和加工有着重要的作用。
锻压工艺技术的基本原理是利用外力对金属材料进行加工,使其发生塑性变形,从而获得所需形状和性能。
这种加工方式可以改善金属的内部结构和力学性能,提高产品的质量和使用寿命。
锻压工艺技术常用的设备有锻压机和锻锤。
锻压机是一种应用于现代制造业中的重要设备,它主要由机架、滑块、床下装置和液压系统等组成。
它通过运动的机械力和液压力使金属材料发生塑性变形,并通过模具实现所需形状的制造。
锻压工艺技术主要包括热锻和冷锻两种方式。
热锻是将金属材料加热至高温状态下进行加工,适用于难以塑性变形的金属材料。
通过高温下的塑性变形,可以改善材料的内部结构和力学性能,提高产品的质量和均匀性。
冷锻是将金属材料在室温下进行加工,适用于易塑性变形的金属材料。
冷锻的优点是加工速度快、成本低,但是由于没有加热,材料的塑性有限,容易产生裂纹和边角下沉等缺陷。
锻压工艺技术具有许多优点。
首先,它可以有效地利用金属材料,减少废料的产生,提高资源利用率。
其次,锻压可以改善金属材料的内部结构,提高材料的强度和硬度。
再次,锻压可以实现批量生产,提高生产效率和产品质量。
此外,锻压还可以应用于各种复杂形状零件的制造和加工,满足不同需求的生产。
在实际应用中,锻压工艺技术还需要注意一些问题。
首先,选择合适的锻压温度和压力,以保证金属材料的塑性和变形能力。
其次,要合理设计模具和工艺流程,以避免材料的损伤和缺陷。
另外,对于大型零件的锻造,还需要考虑材料的收缩和变形等问题。
总之,锻压工艺技术是一种重要的金属加工工艺,通过塑性变形改善金属材料的内部结构和力学性能,实现产品形状和性能的要求。
在实际应用中,我们需要根据具体的材料和要求选择合适的工艺参数,以获得最佳的加工效果和产品质量。
同时,我们还需要不断研究和改进锻压工艺技术,以适应市场的需求和技术的发展。
锻压工艺介绍
锻压工艺介绍
锻压工艺是指通过利用压力将金属或非金属材料加工成所需形状的一种工艺。
这种工艺在现代制造业中应用广泛,特别是在汽车、机械、航空航天等领域。
本文将从锻压工艺的原理、分类、设备和应用等方面进行介绍。
一、锻压工艺的原理
锻压工艺是通过施加压力,使金属或非金属材料产生塑性变形,从而实现所需形状的加工工艺。
其原理可以分为两种:一种是利用压力将材料压制到所需形状;另一种是利用压力将材料挤压到所需形状。
二、锻压工艺的分类
锻压工艺可以根据施加压力的方式进行分类。
一般来说,锻压工艺可以分为以下几种:
1.冷锻:在常温下进行的锻造,适用于生产大量小件,如螺钉、螺栓等。
2.热锻:在高温下进行的锻造,适用于生产大型零件,如轴、齿轮、锻轮等。
3.温度锻造:在介于冷锻和热锻之间的温度下进行的锻造,适用于
生产中等规模的零件,如法兰、板、带等。
三、锻压工艺的设备
常用的锻压设备有压力机、锻压机、冲压机等。
其中,压力机是最简单的设备,一般用于小型零件的生产;锻压机则是较为常用的设备,适用于各种规模的零件生产;冲压机则是专门用于生产大批量小件的设备。
四、锻压工艺的应用
锻压工艺在现代制造业中应用广泛,特别是在汽车、机械、航空航天等领域。
在汽车制造中,锻造技术可以用于制造轴承、齿轮、弹簧等零件;在机械制造中,锻造技术可以用于制造锻轮、齿轮、轴等零件;在航空航天领域,锻造技术可以用于制造飞机发动机零件、飞行器结构零件等。
锻压工艺是一种非常重要的加工工艺,具有广泛的应用前景。
通过锻压工艺,可以实现对各种材料的加工和成型,从而满足各种不同领域的生产需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锻压工艺介绍
锻压工艺是金属材料成型的主要方法之一,它通过在恰当的温度和压力下将金属材料塑性变形,来获得所需的形状和尺寸。
下面是锻压工艺的简单介绍。
一、锻压的定义
锻压是指将金属材料置于模具之间,施加压力,使其在塑性变形时,逐渐排出空气,并根据模具的形状获得所需的工件形状和尺寸的金属加工工艺。
二、锻压的分类
1. 按照运动方式分:冲击式锻压和连续式锻压。
2. 按照材料温度分:冷锻和热锻。
3. 按照压力分:锤击式锻压和压力式锻压(如液压锻压、机械压力锻压等)。
三、锻压的工艺流程
1. 原材料切割或预成型
2. 加热,使材料温度达到锻造要求
3. 送入锻压机中进行锻造
4. 锻压完成后,对工件进行进一步加工(如裁剪、加工等)
四、锻压的优点
1. 提高金属材料的塑性,能制造出形状复杂、尺寸精确的零部件。
2. 增强金属材料的韧性和抗拉强度,并改善其加工硬度和机械性能。
3. 可以提高金属材料的利用率,减少废料和能源的消耗。
4. 锻造过程中一般无需使用润滑剂,不会污染环境。
五、锻压过程中需要注意的问题
1. 锻造温度需要控制好,过高会使金属材料软化而无法保持所需形状;过低则容易导致不良的流变工艺。
2. 模具的设计和制造需要精确,以确保获得所需的工件形状和尺寸。
3. 锻压时需要注意安全,必须保证锻压机的运转稳定、操作规范,避免事故的发生。
以上是对锻压工艺的简单介绍,希望能对您有所帮助。