【概率论与数理统计ppt课件】概率论与数理统计课件

合集下载

概率论与数理统计课件ppt

概率论与数理统计课件ppt
简化数据结构,解释变量间的关系。
操作步骤
计算相关系数矩阵、求特征值和特征 向量、确定主成分个数。
实例
分析消费者对不同品牌手机的偏好。
聚类分析
聚类分析
常见方法
目的
实例
将类似的对象归为同一 组,即“簇”,不同簇
的对象尽可能不同。
层次聚类、K均值聚类、 DBSCAN等。
揭示数据的内在结构, 用于分类、猜测和决策
用数学符号表示一个随机实验的结果 。
随机变量可以取到任何实数值,且取 每个结果的概率为一个确定的函数。
离散型随机变量
随机变量可以取到所有可能的结果, 且取每个结果的概率为一个确定的数 。
随机变量的函数变换
线性变换
对于随机变量X和常数a、b,有 aX+b的散布与X的散布不同。
非线性变换
对于随机变量X和函数g(x),g(X)的散 布与X的散布不同。
置信区间
根据样本数据对总体参数进行估计的一个范围,表示我们对 估计的可靠程度。
假设检验与置信水平
假设检验
通过样本数据对总体参数或散布进行 假设,然后根据检验结果判断假设是 否成立。
置信水平
假设检验中,我们相信结论正确的概 率,通常表示为百分比。
05 数理统计的应用
方差分析
方差分析(ANOVA)
随机进程在通讯、气象、物理等领域有广泛应用。
马尔科夫链蒙特卡洛方法
01
马尔科夫链蒙特卡洛方法是一种 基于蒙特卡洛模拟的统计推断方 法,通过构造一个马尔科夫链来 到达近似求解复杂问题的目的。
02
马尔科夫链蒙特卡洛方法在许多 领域都有应用,如物理学、化学 、经济学等。
04 数理统计基础
样本与样本空间

概率论与数理统计ppt课件

概率论与数理统计ppt课件

04
理解基本概念和原理
做大量练习题,培养解题能力
05
06
阅读相关书籍和论文,拓宽知识面
02
概率论基础
概率的基本概念
试验
一个具有有限个或无限个 可能结果的随机试验。
事件
试验中的某些结果的总称 。
概率
衡量事件发生可能性的数 值,通常表示为0到1之间 的实数。
必然事件
概率等于1的事件。
不可能事件
概率等于0的事件。
01 点估计
用样本统计量估计总体参数,如用样本均值估计 总体均值。
02 区间估计
给出总体参数的估计区间,如95%置信区间。
03 估计量的性质
无偏性、有效性和一致性。
假设检验
假设检验的基本思想
先假设总体参数具有某种 特性,然后通过样本信息 来判断这个假设是否合理 。
双侧检验
当需要判断两个假设是否 相等时,如总体均值是否 等于某个值。
连续型随机变量
取值无限的随机变 量。
方差
衡量随机变量取值 分散程度的数值。
03
数理统计基础
总体与样本
总体
研究对象的全体。
抽样方法
简单随机抽样、分层抽样、系统抽样等。
样本
从总体中随机抽取的一部分个体,用于估 计和推断总体的特性。
样本大小
样本中包含的个体数量,需要根据研究目 的和资源来确定。
参数估计
单因素方差分析
单因素方差分析的定义
单因素方差分析是方差分析的一种形式,它只涉及一个实验因素。通过对不同组的均值进行比 较,可以确定这个因素对实验结果的影响是否显著。
单因素方差分析的步骤
单因素方差分析通常包括以下步骤:首先,对实验数据进行分组;其次,计算每组的均值;接 着,计算总的均值和总的变异性;然后,计算组间变异性和组内变异性;最后,通过比较这两 种变异,得出因素的显著性。

概率论与数理统计完整ppt课件

概率论与数理统计完整ppt课件
化学
在化学领域,概率论与数理统计被用于研究化学反应的速率和化 学物质的分布,如化学反应动力学、量子化学计算等。
生物
在生物学中,概率论与数理统计用于研究生物现象的变异和分布, 如遗传学、生态学、流行病学等。
在工程中的应用
通信工程
01
概率论与数理统计在通信工程中用于信道容量、误码率、调制
解调等方面的研究。
边缘分布
对于n维随机变量(X_1,...,X_n),在概 率论中,分别定义了X_1的边缘分布 、...、X_n的边缘分布。
04
数理统计基础
样本与抽样分布
01
02
03
总体与样本
总体是包含所有可能数据 的数据集合,样本是总体 的一个随机子集。
抽样方法
包括简单随机抽样、分层 抽样、系统抽样等。
样本分布
描述样本数据的分布情况 ,如均值、中位数、标准 差等。
参数估计与置信区间
参数估计
利用样本数据估计总体的 未知参数,如均值、方差 等。
点估计
用样本统计量作为总体参 数的估计值。
置信区间
给出总体参数的一个估计 区间,表示对总体的参数 有一个可信的估计范围。
假设检验与方差分析
假设检验
通过样本数据对总体参数提出 假设,然后根据假设进行检验
01
定义
设E是一个随机试验,X,Y是定义在E上,取值分别为实数的随机变量
。称有序实数对(X,Y)为一个二维随机变量。
02
分布函数
设(X,Y)是一个二维随机变量,对于任意实数x,y,二元函数
F(x,y)=P({X<=x,Y<=y})称为二维随机变量(X,Y)的分布函数。
03
边缘分布
对于二维随机变量(X,Y),在概率论中,分别定义了X的边缘分布和Y的

概率论与数理统计ppt

概率论与数理统计ppt

第四章 随机变量的数字特征
第19讲 第20讲 第21讲 第22讲 第23讲 离散型随机变量的数学期望 连续型随机变量的数学期望 随机变量函数的数学期望 数学期望的性质 方差的概念与计算
第24讲
第25讲 第26讲
方差的性质
协方差和相关系数 独立与不相关的关系、矩
第五章 大数定律和中心极限定理
第27讲
第28讲 第29讲 第30讲
大数定律的基本概念、切比雪夫不等式
切比雪夫、伯努利、辛钦大数定律 林德贝格—勒维中心极限定理 棣莫弗—拉普拉斯中心极限定理
第六章 数理统计的基本概念
第31讲 第32讲 数理统计的方法与内容、总体、样本 样本的联合分布、频率直方图 经验分布函数
第33讲
第34讲
统计量、卡方分布、t分布
F分布、分位点、分位点查表方法
第35讲
第36讲
抽样分布定理(一)
抽样分布定理(二)
第七章 参数估计
第37讲 矩估计方法
第38讲
第39讲 第40讲 第41讲 第42讲
最大似然估计方法
无偏性 有效性、相合性 单个正态总体参数的双侧区间估计 双正态总体参数的双侧区间估计 单侧区间估计
第八章 假设检验
第43讲 第44讲 假设检验的基本方法 假设检验的基本概念、两类错误 假设检验的基本步骤
指数分布、正态分布
第11讲
随机变量函数的分布
第三章 多维随机变量及其分布
第12讲 第13讲 第14讲 第15讲 第16讲 第17讲 第18讲 二维随机变量及其分布函数 二维离散型随机变量 二维连续型随机变量 离散型随机变量的边缘分布 连续型随机变量的边缘分布 随机变量的独立性 随机变量和的分布 随机变量商、最大、最小的分布

概率论与数理统计教学PPT浙大第三版

概率论与数理统计教学PPT浙大第三版

数据挖掘
02
通过对大量数据进行挖掘和分析,发现数据间的关联和规律,
为人工智能系统的决策提供依据。
自然语言处理
03
自然语言处理中需要进行文本分类、情感分析等任务,需要概
率论与数理统计的知识进行模型训练和优化。
05
概率论与数理统计的未来发展
概率论与数理统计与其他学科的交叉发展
概率论与数理统计与计算机科学的交叉
概率论与数理统计的应用领域
金融
风险评估、投资组合优化、保 险精算等。
科学研究
物理、生物、化学、医学等领 域的数据分析和实验设计。
工程
可靠性工程、质量控制、系统 优化等。
人工智能和机器学习
数据挖掘、模型训练和评估等 。
概率论与数理统计的发展历程
概率论的起源
可以追溯到17世纪中叶,当时赌 博游戏引发了对概率计算的兴趣。
掌握点估计的概念和方法, 如矩估计和最大似然估计。
区间估计
了解区间估计的概念,掌 握单个和多个参数的区间 估计方法。
估计量的评价准则
了解无偏性、有效性和一 致性等评价估计量的准则。
假设检验
假设检验的基本原理
理解假设检验的基本思想、假设的设定和检验步骤。
单个总体参数的检验
掌握单个总体均值、比例和方差的假设检验方法。
概率论与数理统计教学 ppt浙大第三版
• 概率论与数理统计简介 • 概率论基础 • 数理统计基础 • 概率论与数理统计的应用 • 概率论与数理统计的未来发展
01
概率论与数理统计简介
概率论与数理统计的定义
概率论
研究随机现象的数学学科,通过 概率模型和随机变量描述随机事 件和随机结果。
数理统计

概率论与数理统计基本概念及抽样分布PPT课件

概率论与数理统计基本概念及抽样分布PPT课件

~
2 (n1 ),
2 2
~
2 (n2 ), 且它们相互独立,

2 1
2 2
~
2 (n1
n2 )
《概率统计》
返回
下页
结束
4. 2分布的百分位点
对给定的α(0<α<1)
(1)称满足
P{ 2
2
(n)}
,即
f ( y)dy
x2 ( n)
的点为 2分布的上100α百分位点。
f(y)
(2)称满足
注:在研究中,往往关心每个个体的一个(或几个)数量指标和 该数量指标在总体中的分布情况. 这时,每个个体具有的数量 指标的全体就是总体.
或,总体:研究对象的某项数量指标的值的全体.
《概率统计》
某批 灯泡的 寿命
该批灯泡寿命的 全体就是总体
返回
下页
结束
为推断总体分布及各种特征,按一定规则从总体中抽取若 干个体进行观察试验,以获得有关总体的信息,这一抽取过程 为 “抽样”.
( x)
(1)称满足条件 P{X>Xα} =α,
α

( x)dx
X
的点Xα为N(0,1)分布的上100α百分位点.
X1-α
0
由于 P{X X } 1 记 -Xα= X1-α
(2)称满足条件 P {| X | X }
2
2
的点 X 为N(0,1)分布的双侧100α百分位点.
X
2

E(X )
E(1 n
n i 1
Xi)
1 n
n i 1
E(Xi )
1 n
n
D(X ) D(1 n
n i1
Xi)

概率论与数理统计书ppt课件


条件概率与独立性
CHAPTER
随机变量及其分布
02
随机变量的概念与性质
定义随机变量为在样本空间中的实值函数,其取值依赖于随机试验的结果。
随机变量
讨论随机变量的可数性、可加性、正态性等性质。
随机变量的性质
离散型随机变量的概念
定义离散型随机变量为只能取可数个值的随机变量。
离散型随机变量的分布
讨论离散型随机变量的概率分布,如二项分布、泊松分布等。
应用
中心极限定理及其应用
CHAPTER
贝叶斯推断与决策分析
07
贝叶斯推断的基本原理
金融风险管理
贝叶斯推断在金融风险管理领域有着广泛的应用,如信用风险评估、投资组合优化等。
医疗诊断
贝叶斯推断在医疗诊断方面也有着重要的应用,如疾病诊断、预后评估等。
机器学习与人工智能
贝叶斯推断在机器学习算法和人工智能领域中也有着广泛的应用,如朴素贝叶斯分类器、高斯混合模型等。
参数估计与置信区间
01
点估计
用单一的数值估计参数的值。
02
区间估计
给出参数的一个估计区间,通常包括一个置信水平。
比较两个或多个组的均值差异,确定因素对结果的影响。
方差分析
检验两个或多个组的方差是否相等。
方差齐性检验
研究变量之间的关系,并预测结果。
回归分析
假设检验与方差分析
CHAPTER
回归分析与线性模型
应用
在现实生活中,大数定律被广泛应用于保险、赌博、金融等领域,通过统计数据来预测未来的趋势和风险。
大数定律及其应用
在独立随机变量序列中,它们的和的分布近似于正态分布,即中心极限定理。这意味着,当样本量足够大时,样本均值近似于正态分布。

概率论与数理统计ppt课件


称这种试验为等可能概型(或古典概型)。
*
例1:一袋中有8个球,其中3个为红球,5个为黄球,设摸到每一球的可能性相等,从袋中不放回摸两球, 记A={恰是一红一黄},求P(A). 解:
(注:当L>m或L<0时,记 )
例2:有N件产品,其中D件是次品,从中不放 回的取n件, 记Ak={恰有k件次品},求P(Ak). 解:
*
第四章 随机变量的数字特征 4.1 数学期望 4.2 方差 4.3 协方差及相关系数 4.4 矩、协方差矩阵 第五章 大数定律和中心极限定理 5.1 大数定律 5.2 中心极限定理 第六章 数理统计的基本概念 6.1 总体和样本 6.2 常用的分布
*
第七章 参数估计 7.1 参数的点估计 7.2 估计量的评选标准 7.3 区间估计 第八章 假设检验 8.1 假设检验 8.2 正态总体均值的假设检验 8.3 正态总体方差的假设检验 8.4 置信区间与假设检验之间的关系 8.5 样本容量的选取 8.6 分布拟合检验 8.7 秩和检验 第九章 方差分析及回归分析 9.1 单因素试验的方差分析 9.2 双因素试验的方差分析 9.3 一元线性回归 9.4 多元线性回归
解: 设 Ai={ 这人第i次通过考核 },i=1,2,3 A={ 这人通过考核 },
亦可:
*
例:从52张牌中任取2张,采用(1)放回抽样,(2)不放 回抽样,求恰是“一红一黑”的概率。
利用乘法公式
与 不相容
(1)若为放回抽样:
(2)若为不放回抽样:
解: 设 Ai={第i次取到红牌},i=1,2 B={取2张恰是一红一黑}



1 2 N


1 2 N
……

概率论与数理统计ppt课件(完整版)

*
几何概型的概率的性质
对任一事件A ,有
三.统计定义:
(一) 频率
在相同的条件下, 共进行了n次试验,事件A发生的次数nA, 称为A的频数, nA/n称为事件A发生的频率, 记为fn(A).
频率的特性: 波动性和稳定性.
*
四.概率公理化定义:
定义: 设S是样本空间, E是随机试验. 对于E的每个事件A对应一个实数P(A), 称为事件 A的概率, 其中集合函数P(.)满足下列条件: 对任一事件A,有P(A)≥0; (非负性) P(S)=1;(规范性) 设A1,A2,…是两两互不相容的事件,则有 P(A1 A2 …)=P(A1)+P(A2)+… (可列可加性)
2. 样本空间与随机事件
(一) 样本空间: 定义 随机试验E的所有可能结果组成的集合称为 E的样本空间, 记为S. 样本空间的元素称为样本点,用表示.
样本空间的分类:
1.离散样本空间:样本点为有限个或可列个. 例 E1,E2等.
2.无穷样本空间:样本点在区间或区域内取值. 例 灯泡的寿命{t|t≥0}.
*
(二) 乘法公式:
P(AB)>0, 则有 P(ABC)=P(A)P(B|A)P(C|AB).
一般, 设A1, A2, …,An是n个事件,(n≥2), P(A1A2 ...An-1)>0, 则有乘法公式:
P(A1A2…An)=P(A1)P(A2|A1)…P(An-1|A1A2…An-2) P(An|A1A2…An-1).
*
B
A
S
2.和事件:
3.积事件: 事件A B={x|x A 且 x B}称A与B的积,即事件A与B同时发生. A B 可简记为AB.
类似地, 事件 为可列个事件A1, A2, ...的积事件.

概率论与数理统计教程ppt课件

1. 确定性现象
• 每天早晨太阳从东方升起; • 水在标准大气压下加温到100oC沸腾;
2. 随机现象
• 掷一枚硬币,正面朝上?反面朝上? • 一天内进入某超市的顾客数; • 某种型号电视机的寿命;
16 March 2020
华东师范大学
第一章 随机事件与概率
第3页
1.1.1 随机现象
• 随机现象:在一定的条件下,并不总出现相 同结果的现象称为随机现象.
16 March 2020
华东师范大学
第一章 随机事件与概率
例1.2.1 六根草,头两两相接、
尾两两相接。求成环的概率.
解:用乘法原则直接计算 所求概率为
644221 8 6 5 4 3 2 1 15
第30页
16 March 2020
华东师范大学
第一章 随机事件与概率
3. 若 AnF ,n=1, 2, …, 则

UFA.n
n 1
16 March 2020
华东师范大学
第一章 随机事件与概率
第21页
§1.2 概率的定义及其确定方法
• 直观定义 —— 事件A 出现的可能性大小.
• 统计定义 —— 事件A 在大量重复试验下 出现的频率的稳定值称为该事件的概率.
2. 样本点 —— 随机试验的每一个可能结果.
3. 样本空间(Ω) —— 随机试验的所有样本点构成的集合.
4. 两类样本空间: 离散样本空间 样本点的个数为有限个或可列个. 连续样本空间 样本点的个数为无限不可列个.
16 March 2020
华东师范大学
第一章 随机事件与概率
第5页
1.1.3 随机事件
华东师范大学
第一章 随机事件与概率
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【概率论与数理统计ppt课件】概率论与数理统计
课件
概率论与数理统计课件
一、内容简介
概率论与数理统计是从数量侧面研究随机现象规律性的数学理论,其理论与方法已广泛应用于工业、农业、军事和科学技术中。

主要包括:随机事件和概率,一维和多维随机变量及其分布,随机变量的数字特征,大数定律与中心极限定理,参数估计,假设检验等内容。

二、本课程的目的和任务
本课程是工科以及管理各专业的基础课程,课程内容侧重于讲解概率论与数理统计的基本理论与方法,同时在教学中结合各专业的特点介绍性地给出在各领域中的具体应用。

课程的任务在于使学生初步掌握处理随机现象的基本理论和方法,培养他们解决某些相关实际问题的能力。

三、本课程与其它课程的关系
学生在进入本课程学习之前,应学过下列课程:
高等数学、线性代数
这些课程的学习,为本课程提供了必需的数学基础知识。

本课程学习结束后,学生可具备进一步学习相关课程的理论基础,同时由于概率论与数理统计的理论与方法向各基础学科、工程学科的广泛渗透,与其他学科相结合发展成不少边缘学科,所以它是许多新的重要学科的基础,学生应
对本课程予以足够的重视。

四、本课程的基本要求
概率论与数理统计是一个有特色的数学分支,有自己独特的概念和方法,内容丰富,结果深刻。

通过对本课程的学习,学生应熟练掌握概率论与数理统计中的基本理论和分析方法,能熟练运用基本原理解决某些实际问题。

具体要求如下:
(一)随机事件和概率
1、理解随机事件的概念,了解样本空间的概念,掌握事件之间的关系和运算。

2、理解概率的定义,掌握概率的基本性质,并能应用这些性质进行概率计算。

3、理解条件概率的概念,掌握概率的加法公式、乘法公式、全概率公式、贝叶斯公式,并能应用这些公式进行概率计算。

4、理解事件的独立性概念,掌握应用事件独立性进行概率计算。

5、掌握伯努利概型及其计算。

(二)随机变量及其概率分布
1、理解随机变量的概念
2、理解随机变量分布函数的概念及性质,理解离散型随机变量的分布律及其性质,理解连续型随机变量的概率密度及其性质,会应用概率分布计算有关事件的概率。

3、掌握(0-1)分布、二项分布、泊松分布、正态分布、均匀分布和指数分布。

4、会求简单随机变量函数的概率分布。

(三)二维随机变量的联合分布
1、了解二维随机变量的概念
2、了解二维随机变量的联合分布函数及其性质,了解二维离散型随机变量的联合分布律及其性质,了解二维连续型随机变量的联合概率密度及其性质,并会用它计算有关事件的概率。

3、了解二维随机变量的边缘分布和条件分布。

4、理解随机变量独立性的概念,掌握应用随机变量的独立性进行概率计算。

5、会求两个独立随机变量的简单函数的分布。

(四)随机变量的数字特征
1、理解数字期望和方差的概念,掌握它们的性质与计算。

2、掌握二项分布、泊松分布和正态分布的数学期望和方差,了解均匀分布和指数分布的数学期望和方差。

3、会计算随机变量函数的数学期望。

4、了解矩、协方差和相关系数的概念与性质,并会计算。

(五)大数定律和中心极限定理
1、了解切比雪夫不等式
2、了解切比雪夫大数定律和伯努利大数定律。

3、了解林德伯格一列维定理(独立同分布的中心极限定理)和棣莫佛-拉普拉斯定理(二项分布以正态分布为极限分布)
(六)数理统计的基本概念
1、理解总体、个体、简单随机样本和统计量的概念,掌握样本均值、样本方差及样本矩的计算。

2、了解分布、t分布和F分布的定义及性质,了解分布分位数的概念并会查表计算。

3、了解正态总体的某些常用统计量的分布。

(七)参数估计
1、理解点估计的概念
2、掌握矩估计法和极大似然估计法
3、了解估计量的评选标准(无偏性、有效性、一致性)
4、理解区间估计的概念
5、会求单个正态总体的均值和方差的置信区间。

6、会求两个正态总体的均值差和方差比的置信区间。

(八)假设检验
1、理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误。

2、了解单个及两个正态总体的均值和方差的假设检验。

3、了解总体分布假设的x2检验法.
五、课程内容
理论教学内容
第一章随机事件及其概率
1-1 随机事件、样本空间
1-2 频率与概率
1-3 古典概型
1-4 条件概率
1-5 事件独立性
第二章随机变量及其分布
2-1 随机变量
2-2 离散型随机变量及其概率分布2-3 连续型随机变量及分布函数2-4 常用连续型分布
2-5 随机变量函数的分布
第三章多维随机变量及其分布
3-1 二维随机变量
3-2 边缘分布
3-3 条件分布
3-4 相互独立的随机变量
3-5 两个随机变量函数的分布
第四章随机变量的数字特征
4-1 数学期望
4-2 方差
4-3 协方差、相关系数
4-4 矩、协方差矩阵
第五章大数定律与中心极限定理5-1 大数定律
5-2 中心极限定理
第六章数理统计的基本概念
6-1 总体与样本
6-2 统计量与抽样分布
第七章参数估计
7-1 点估计
7-2 点估计的性质
7-3 区间估计
7-4 正态总体参数的区间估计
7-5 单侧置信区间
第八章假设检验
8-1 假设检验的基本概念
8-2 单个正态总体的参数检验
8-3 两个正态总体的参数检验
8-4 分布拟合检验
实践教学内容(习题课)
第一章、第二章、第三章配合课堂教学内容,每章安排一次习题课,第四章和第五章,第六章和第七章,第八章安排三次习题课,共六次,每次2学时。

六、教材与参考书
1、教材
本课程教材选用浙江大学盛骤等编写的《概率论与数理统计》(第三
版),高等教育出版社,2001年12月
2、主要参考书
孔繁亮主编,《概率论与数理统计》,哈尔滨工业大学出版社
赵辉主编,张国志主审,《概率论与数理统计》,东北林业大学出版社
陈桂林、计东海编,《概率论与数理统计》,科学出版社
七、本课程的教学方式
本课程有其独特的数学概念和方法,并大量向各学科渗透并与之结合成不少边缘学科,其教学方式应注重启发式、引导式,课堂上注意经常列举本课程在各领域成功应用的实例,增强同学的学习热情,讲授时应注意善于联系已学过课程的有关概念、理论和方法,使同学加快对本课程的基本概念、基本理论和基本方法的理解。

配合理论教学需要,在习题课中通过合适的例题和适当的讲解,使同学通过做题既加深对课堂讲授的内容的理解,又增强运用理论建立数学模型、解决实际问题的能力。

相关文档
最新文档