三角形的五心:内心、外心、重心、垂心、旁心

合集下载

三角形的、外心、内心、重心、垂心、和旁心(五心定理)

三角形的、外心、内心、重心、垂心、和旁心(五心定理)
精品文档
三角形的外心、内心、重心、垂心、旁心

号பைடு நூலகம்


形 图
质 性
三角形的外心
^7 (边交称 纤终点心 三分这外> 的平,的心 形直点形B角垂一角圆 三的于三接
2
ifc
离 距;
占小径
M半;; 个圆内点外 三接形中形 的外角边角 形的三斜三 角形在在在 三角心心心 到三外外外 心 于 的 的的 外等形形形>9rp
的者角角角 形 •三三三 角等角角角 三相锐直钝1 2
2
三角形的内心
角H内一三切 条于为内 三交加( 的线前心 形分、区内> 角平、,的心 三角点形圆
B
等rp
,t直

于一 等 等之 相 离分 «術三陌 角三角边 三于直角1 2
3
三角形的重心
点 中送重 条,的 三点形 的 角 形于三 角交为 三线称心
C B

三 最 点 个 和 顶3方 应 平 厶八
到 成 离 一tn巨 上、 苕 掘 占小;占小 占小 孔2M M的:个 个 边1 3 3>心为形•,形 重比角等角 的之三相三 形离和积到 角距心面心 三的>形>小12 3
4
三角形的垂心
称 高点AD条这垂 三,的 的点形 形 角 角 丁三 三交为
\.\c
巳-\二
r
)B
P卜F
珂的外 三勺 于形弄 角狗 等角皤 直创 三刃];三 离角計 内归 距兑戒 形洙 的与屮 角钝 盹俺甘」,在上 屛勺心2血仙; 顶抽诵勺的耕卜 任强幕蘇角<批 形M朋仪三肌朋 角戌后角「 三恻亡i¥锐弟皿 至至匣 开儿 」心心接乙角垂
精品文档

三角形的外心、重心、垂心、内心及旁心

三角形的外心、重心、垂心、内心及旁心

三角形的五心三角形的外心、重心、垂心、内心及旁心,统称为三角形的五心三角形的外心、重心、垂心、内心及旁心,统称为三角形的五心. . 一、外心一、外心. .三角形外接圆的圆心,简称外心三角形外接圆的圆心,简称外心..与外心关系密切的有圆心角定理和圆周角定理定理. .例1.过等腰△ABC 底边BC 上一点P 引PM ∥CA 交AB 于M ;引PN ∥BA 交AC 于N .作点P 关于MN 的对称点P ′.试证:P ′点在△ABC 外接圆上外接圆上. . 分析:由已知可得MP ′=MP =MB ,NP ′=NP =NC ,故点M 是△P ′BP 的外心,点的外心,点 N 是△P ′PC 的外心的外心..有 ∠∠BP ′P =21∠BMP =21∠BAC ,∠∠PP ′C =21∠PNC =21∠BAC .∴∠∴∠BP ′C =∠BP ′P +∠P ′PC =∠BAC . 从而,从而,P ′点与A ,B ,C 共圆、即P ′在△ABC 外接圆上外接圆上. . 由于由于P ′P 平分∠BP ′C ,显然还有,显然还有 P ′B :P ′C =BP :PC .例2.在△ABC 的边AB ,BC ,CA 上分别取点P ,Q ,S .证明以△APS ,△BQP ,△CSQ 的外心为顶点的三角形与△ABC 相似相似. .分析:设O 1,O 2,O 3是△APS ,△BQP ,△CSQ 的外心,作出六边形的外心,作出六边形 O 1PO 2QO 3S 后再由外后再由外 心性质可知心性质可知∠∠PO 1S =2=2∠∠A , ∠∠QO 2P =2=2∠∠B , ∠∠SO 3Q =2=2∠∠C . ∴∠∴∠PO 1S +∠QO 2P +∠SO 3Q =360=360°°.从而又知∠O 1PO 2+∠O 2QO 3+∠O 3SO 1=360=360°°将△将△O 2QO 3绕着O 3点旋转到△KSO 3,易判断△KSO 1≌△O 2PO 1,同时可得△O 1O 2O 3≌△O 1KO 3. ∴∠∴∠O 2O 1O 3=∠KO 1O 3=21∠O 2O 1K=21(∠O 2O 1S +∠SO 1K )=21(∠O 2O 1S +∠PO 1O 2) =21∠PO 1S =∠A ;同理有∠同理有∠O 1O 2O 3=∠B .故△O 1O 2O 3∽△ABC . 二、重心二、重心三角形三条中线的交点,叫做三角形的重心三角形三条中线的交点,叫做三角形的重心三角形三条中线的交点,叫做三角形的重心..掌握重心将每掌握重心将每条中线都分成定比2:1及中线长度公式,便于解题及中线长度公式,便于解题. .例3.AD ,BE ,CF 是△ABC 的三条中线,P 是任意一点是任意一点..证明:在△PAD ,△PBE ,△PCF 中,其中一个面积等于另外两个面积的和中,其中一个面积等于另外两个面积的和. .分析:设G 为△ABC 重心,直线PG 与AB,BC 相交相交..从A ,C ,D ,E ,F 分别分别 作该直线的垂线,垂足为A ′,C ′,′, D ′,E ′,F ′. 易证易证AA ′=2DD ′,CC ′=2FF ′,′,22EE ′=AA ′+CC ′,′,∴∴EE ′=DD ′+FF ′. 有有S △PGE =S △PGD +S △PGF . 两边各扩大两边各扩大3倍,有S △PBE =S △PAD +S △PCF .例4.如果三角形三边的平方成等差数列,那么该三角形和由它的三条中线围成的新三角形相似的新三角形相似..其逆亦真其逆亦真. .分析:将△ABC 简记为△,由三中线AD ,BE ,CF 围成的三角形简记为△′围成的三角形简记为△′..G为重心,连DE 到H ,使EH =DE ,连HC ,HF ,则△′就是△HCF .(1)a 2,b 2,c 2成等差数列Þ△∽△′△∽△′. .若△若△ABC 为正三角形,易证△∽△′为正三角形,易证△∽△′. . 不妨设不妨设a ≥b ≥c ,有,有CF =2222221c b a -+,BE =2222221ba c -+,AD =2222221a c b -+. 将将a 2+c 2=2b 2,分别代入以上三式,得,分别代入以上三式,得 CF =a23,BE =b 23,AD =c23.∴∴CF :BE :AD =a23:b 23:c23=a :b :c .故有△∽△′故有△∽△′故有△∽△′. . (2) (2)△∽△′△∽△′Þa 2,b 2,c 2成等差数列成等差数列. . 当△中当△中a ≥b ≥c 时,时, △′中△′中CF ≥BE ≥AD . ∵△∽△′,∵△∽△′, ∴DD S S '=(aCF )2.据据“三角形的三条中线围成的新三角形面积等于原三角形面积的43”,有AA 'FF 'G E E 'D 'C'P C B DDD SS '=43.∴∴22aCF =43Þ3a 2=4CF 2=2a 2+b 2-c 2Þa 2+c 2=2b 2.三、垂心三、垂心三角形三条高的交战,三角形三条高的交战,称为三角形的垂心称为三角形的垂心..由三角形的垂心造成的四个等由三角形的垂心造成的四个等((外接)圆三角形,给我们解题提供了极大的便利圆三角形,给我们解题提供了极大的便利. .例5.设A 1A 2A 3A 4为⊙O 内接四边形,H 1,H 2,H 3,H 4依次为依次为△A 2A 3A 4,△A 3A 4A 1,△A 4A 1A 2,△A 1A 2A 3的垂心的垂心..求证:H 1,H 2,H 3,H 4四点共圆,并确定出该圆的圆心位置四点共圆,并确定出该圆的圆心位置.. 分析:连接A 2H 1,A 1H 2,H 1H 2,记圆半径,记圆半径为R .由△A 2A 3A 4知13212sin H A A H A Ð=2R ÞA 2H 1=2R cos ∠A 3A 2A 4;由△由△A 1A 3A 4得A 1H 2=2R cos ∠A 3A 1A 4. 但∠但∠A 3A 2A 4=∠A 3A 1A 4,故A 2H 1=A 1H 2.易证易证A 2H 1∥A 1A 2,于是,A 2H 1 A 1H 2, 故得故得H 1H 2 A 2A 1.设H 1A 1与H 2A 2的交点为M ,故H 1H 2与A 1A 2关于M 点成中心对称成中心对称. .同理,同理,H 2H 3与A 2A 3,H 3H 4与A 3A 4,H 4H 1与A 4A 1都关于M 点成中心对称点成中心对称..故四边形H 1H 2H 3H 4与四边形A 1A 2A 3A 4关于M 点成中心对称,两者是全等四边形,H 1,H 2,H 3,H 4在同一个圆上在同一个圆上..后者的圆心设为Q ,Q 与O 也关于M 成中心对称成中心对称..由O ,M 两点,Q 点就不难确定了点就不难确定了. .例6.H 为△ABC 的垂心,D ,E ,F 分别是BC ,CA ,AB 的中心的中心..一个以H 为圆心的⊙H 交直线EF ,FD ,DE 于A 1,A 2,B 1,B 2,C 1,C 2. 求证:求证:AA 1=AA 2=BB 1=BB 2=CC 1=CC 2.分析:只须证明分析:只须证明AA 1=BB 1=CC 1即可即可..设 BC =a , CA =b ,AB =c ,△ABC 外 接圆半径为R ,⊙H 的半径为r .连连HA 1,AH 交EF 于M . A 21A =AM 2+A 1M 2=AM 2+r 2-MH 2=r 2+(AM 2-MH 2),①① 又又AM 2-HM 2=(21AH 1)2-(AH -21AH 1)2=AH ·AH 1-AH 2=AH 2·AB -AH 2=cos A ·bc -AH 2, ②② 而而ABHAH Ðsin =2R ÞAH 2=4R 2cos 2A ,∥=∥=H H HMAB BA ABC C C F12111222D EAa sin =2R Þa 2=4R 2sin 2A .∴AH 2+a 2=4R 2,AH 2=4R 2-a 2. . ③③ 由①、②、③有由①、②、③有A 21A =r 2+bca cb 2222-+·bc -(4R 2-a 2) =21(a 2+b 2+c 2)-4R 2+r 2.同理,21BB =21(a 2+b 2+c 2)-4R 2+r 2,21CC =21(a 2+b 2+c 2)-4R 2+r 2.故有AA 1=BB 1=CC 1.四、内心四、内心三角形内切圆的圆心,简称为内心三角形内切圆的圆心,简称为内心..对于内心,要掌握张角公式,还要记住下面一个极为有用的等量关系:下面一个极为有用的等量关系: 设I 为△ABC 的内心,射线AI 交△ABC 外接圆于A ′,则有A ′I =A ′B =A ′C .换言之,点A ′必是△IBC 之外心之外心((内心的等量关系之逆同样有用内心的等量关系之逆同样有用). ).例7.ABCD 为圆内接凸四边形,取△DAB ,△ABC ,△BCD , △CDA 的内心O 1, O 2,O 3,O 4.求证:O 1O 2O 3O 4为矩形为矩形. . (1986 (1986,中国数学奥林匹克集训题,中国数学奥林匹克集训题,中国数学奥林匹克集训题) )证明见《中等数学》证明见《中等数学》199219921992;;4例8.已知⊙O 内接△ABC ,⊙Q 切AB ,AC 于E ,F 且与⊙O 内切内切..试证:EF中点P 是△ABC 之内心之内心. .分析:在第20届IMO 中,美国提供的一道题实际上是例8的一种特例,但它增加了条件AB =AC .当AB ≠AC ,怎样证明呢? 如图,显然如图,显然EF 中点P 、圆心Q ,BC 中点K 都在∠BAC 平分线上平分线上..易知AQ =a sin r. ∵∵QK ·AQ =MQ ·QN , ∴∴QK =AQQN MQ ×=asin /)2(r r r R ×-=)2(sin r R -×a .由由Rt △EPQ 知PQ =r ×a sin .∴∴PK =PQ +QK =r ×a sin +)2(sin r R -×a =R 2sin ×a . ∴∴PK =BK .a利用内心等量关系之逆定理,即知利用内心等量关系之逆定理,即知P 是△ABC 这内心这内心. .A B C D O O O 234O 1AααMBC KNEROQ Fr P五、旁心五、旁心三角形的一条内角平分线与另两个内角的外角平分线相交于三角形的一条内角平分线与另两个内角的外角平分线相交于一点,是旁切圆的圆心,称为旁心旁心常常与内心联系在一起,旁心常常与内心联系在一起, 旁心还与三角形的半周长关系密切旁心还与三角形的半周长关系密切. .例9.在直角三角形中,求证:r +r a +r b +r c =2p . 式中式中r ,r a ,r b ,r c 分别表示内切圆半径及与a ,b ,c 相切的旁切圆半径,p 表示半周表示半周. .分析:设Rt △ABC 中,c 为斜边,先来证明一个特性:p (p -c )=(p -a )(p -b ).∵p (p -c )=21(a +b +c )·21(a +b -c )=41[(a +b )2-c 2] =21ab ;(p -a )(p -b )=21(-a +b +c )·21(a -b +c )=41[c 2-(a -b )2]=21ab .∴p (p -c )=(p -a )(p -b ). ). ①① 观察图形,可得观察图形,可得 r a =AF -AC =p -b , r b =BG -BC =p -a , r c =CK =p .而r =21(a +b -c )=p -c . ∴r +r a +r b +r c=(p -c )+(p -b )+(p -a )+p =4p -(a +b +c )=2p . 由①及图形易证由①及图形易证. .例1010..M 是△ABC 边AB 上的任意一点上的任意一点..r 1,r 2,r 分别是△AMC ,△BMC ,△ABC 内切圆的半径,q 1,q 2,q 分别是上述三角形在∠ACB 内部的旁切圆半径半径..证明:11q r ·22q r =qr .(IMO -12)分析:对任意△A ′B ′C ′,由正弦定理可知′,由正弦定理可知OD =OA ′·2'sinA=A ′B ′·'''sin 2'sinB O A B з2'sin AK r r r r O O O 213AOE CBabcA ...'B'C'O O 'ED=A ′B ′·2''sin 2'sin2'sinB A B A +×,O ′E = A ′B ′·2''sin2'cos2'cos B A B A +. ∴2'2''B tg A tg E O OD =. 亦即有亦即有11q r ·22q r =2222B tgCNB tgCMA tgA tgÐÐ=22B tgA tg =qr .六、众心共圆六、众心共圆这有两种情况:(1)(1)同一点却是不同三角形的不同的心;同一点却是不同三角形的不同的心;同一点却是不同三角形的不同的心;(2)(2)(2)同一图形出现了同一图形出现了同一三角形的几个心同一三角形的几个心. .例1111..设在圆内接凸六边形ABCDFE 中,AB =BC ,CD =DE ,EF =FA .试证:(1)AD ,BE ,CF 三条对角线交于一点;三条对角线交于一点;(2)AB +BC +CD +DE +EF +FA ≥AK +BE +CF .分析:连接AC ,CE ,EA ,由已知可证AD ,CF ,EB 是△ACE 的三条内角平分线,I 为△ACE 的内心的内心..从而有ID =CD =DE ,IF =EF =FA , IB =AB =BC .再由△再由△BDF ,易证BP ,DQ ,FS 是它的三条高,I 是它的垂心,利用利用 不不等式有:等式有: BI +DI +FI ≥2·(IP +IQ +IS ).不难证明不难证明IE =2IP ,IA =2IQ ,IC =2IS .∴∴BI +DI +FI ≥IA +IE +IC .∴∴AB +BC +CD +DE +EF +FA =2(BI +DI +FI )≥≥(IA +IE +IC )+(BI +DI +FI )=AD +BE +CF . I 就是一点两心就是一点两心. . 例1212.△.△ABC 的外心为O ,AB =AC ,D 是AB 中点,E 是△ACD 的重心的重心..证明OE 丄CD .分析:设AM 为高亦为中线,取AC 中点中点F ,E 必在DF 上且DE :EF =2:1.=2:1.设设CD 交AM 于G ,G 必为△ABC 重心重心. . 连GE ,MF ,MF 交DC 于K .易证:易证: E rdos..I P ABCD EFQ S A BCD E F O KGDG :GK =31DC :(3121-)DC =2:1.∴∴DG :GK =DE :EF ÞGE ∥MF . ∵∵OD 丄AB ,MF ∥AB , ∴∴OD 丄MF ÞOD 丄GE .但OG 丄DE ÞG 又是△ODE 之垂心之垂心. . 易证易证OE 丄CD . 例1313.△.△ABC 中∠C =30=30°,°,O 是外心,I 是内心,边AC 上的D 点与边BC 上的E 点使得AD =BE =AB .求证:OI 丄DE ,OI =DE .分析:辅助线如图所示,作∠DAO 平分线交BC 于K . 易证△易证△AID ≌△AIB ≌△EIB ,∠AID =∠AIB =∠EIB . 利用内心张角公式,有利用内心张角公式,有利用内心张角公式,有 ∠∠AIB =90=90°°+21∠C =105=105°,°,°,∴∠∴∠DIE =360=360°°-105-105°×°×°×3=453=453=45°°. ∵∠∵∠AKB =30=30°°+21∠DAO =30 =30°°+21(∠BAC -∠BAO ) =30 =30°°+21(∠BAC -60-60°°)=21∠BAC =∠BAI =∠BEI .∴∴AK ∥IE .由等腰△由等腰△AOD 可知DO 丄AK , ∴∴DO 丄IE ,即DF 是△DIE 的一条高的一条高. . 同理同理EO 是△DIE 之垂心,OI 丄DE . 由∠由∠DIE =∠IDO ,易知OI =DE . 例1414.锐角△.锐角△ABC 中,O ,G ,H 分别是外心、重心、垂心分别是外心、重心、垂心..设外心到三边距离和为d 外,重心到三边距,重心到三边距 离和为d 重,垂心到三边距离和为d 垂.求证:求证:11·d 垂+2+2··d 外=3=3··d 重. 分析:这里用三角法分析:这里用三角法..设△ABC 外接圆外接圆半径为1,三个内角记为A ,B , C . . 易知易知d 外=OO 1+OO 2+OO 3 =cos A +co sB +cos C ,∴∴2d 外=2(cos A +cos B +cos C ). ). ①① ∵∵AH 1=sin B ·AB =sin B ·(2sin C )=2sin B ·sin C , 同样可得同样可得BH 2·CH 3. ∴∴3d 重=△ABC 三条高的和三条高的和 =2 =2··(sin B ·sin C +sin C ·sin A +sin A ·sin B ) ) ②② ∴∴BCHBH Ðsin =2=2,,O ABCDEFIK30°B CO IA O G H O G H G O G H 1231122331 =( 2。

三角形的、外心、内心、重心、垂心、和旁心(五心定理)

三角形的、外心、内心、重心、垂心、和旁心(五心定理)

三角形的外心、内心、重心、垂心、旁心(五心定理)
4


形的
垂心
三角形的三条高交于一点,这点称
为三角形的垂心 1,三角形任一顶点到垂心的距离,等于外
心到对边的距离的2倍;锐角三角形的垂
心到三顶点的距离之和等于其内切圆与外接圆半径之和的2倍;
2,锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的
垂心在三角形外 ;
5
三角形的旁心
三角形的一条内角平分线与另两
个外角平分线交
于一点,称为三角形的旁心(旁切圆圆心)
1, 每个三角形都有三个旁心;
2, 旁心到三边的距离相等
附:三角形的中心:只有正三角形才有中心,这时重心,内心,外心,垂心,四心合一。

A
B
C
D
E F
I a
A B
C D
E
F O。

三角形的重心、外心、垂心、内心和旁心(五心定理)

三角形的重心、外心、垂心、内心和旁心(五心定理)

三角形五心定理(三角形的重心,外心,垂心,心坎和旁心称之为三角形的五心)三角形五心定理是指三角形重心定理,外心定理,垂心定理,心坎定理,旁心定理的总称.一、三角形重心定理三角形的三条边的中线交于一点.该点叫做三角形的重心.三中线交于一点可用燕尾定理证实,十分简略.(重心原是一个物理概念,对于等厚度的质量平均的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:1.重心到极点的距离与重心到对边中点的距离之比为2∶1.2.重心和三角形3个极点构成的3个三角形面积相等.即重心到三条边的距离与三条边的长成反比.3.重心到三角形3个极点距离的平方和最小.4.在平面直角坐标系中,重心的坐标是极点坐标的算术平均,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3.二.三角形外心定理三角形外接圆的圆心,叫做三角形的外心.外心的性质:1.三角形的三条边的垂直等分线交于一点,该点即为该三角形外心.2.若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角).3.当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合.4.盘算外心的坐标应先盘算下列暂时变量:d1,d2,d3分离是三角形三个极点连向别的两个极点向量的点乘.c1=d2d3,c2=d1d3,c3=d1d2;c=c1+c2+c3.重心坐标:( (c2+c3)/2c,(c1+c3)/2c,(c1+c2)/2c ).5.外心到三极点的距离相等三.三角形垂心定理三角形的三条高(地点直线)交于一点,该点叫做三角形的垂心.垂心的性质:1.三角形三个极点,三个垂足,垂心这7个点可以得到6个四点圆.2.三角形外心O.重心G和垂心H三点共线,且OG∶GH=1∶2.(此直线称为三角形的欧拉线(Euler line))3.垂心到三角形一极点距离为此三角形外心到此极点对边距离的2倍.4.垂心分每条高线的两部分乘积相等.定理证实已知:ΔABC中,AD.BE是两条高,AD.BE交于点O,衔接CO并延伸交AB于点F ,求证:CF⊥AB证实:衔接DE ∵∠ADB=∠AEB=90度∴A.B.D.E四点共圆∴∠ADE=∠ABE∵∠EAO=∠DAC ∠AEO=∠ADC ∴ΔAEO∽ΔADC∴AE/AO=AD/AC ∴ΔEAD∽ΔOAC ∴∠ACF=∠ADE=∠ABE 又∵∠ABE+∠BAC=90度∴∠ACF+∠BAC=90度∴CF⊥AB是以,垂心定理成立!四.三角形心坎定理三角形内切圆的圆心,叫做三角形的心坎.心坎的性质:1.三角形的三条内角等分线交于一点.该点即为三角形的心坎.2.直角三角形的心坎到边的距离等于两直角边的和减去斜边的差的二分之一.3.P为ΔABC地点平面上随意率性一点,点I是ΔABC心坎的充要前提是:向量PI=(a×向量PA+b×向量PB+c×向量PC)/(a+b+c).4.O为三角形的心坎,A.B.C分离为三角形的三个极点,延伸AO 交BC边于N,则有AO:ON=AB:BN=AC:CN=(AB+AC):BC五.三角形旁心定理三角形的旁切圆(与三角形的一边和其他双方的延伸线相切的圆)的圆心,叫做三角形的旁心.旁心的性质:1.三角形一内角等分线和别的两极点处的外角等分线交于一点,该点即为三角形的旁心.2.每个三角形都有三个旁心.3.旁心到三边的距离相等.如图,点M就是△ABC的一个旁心.三角形随意率性两角的外角等分线和第三个角的内角等分线的交点.一个三角形有三个旁心,并且必定在三角形外.附:三角形的中间:只有正三角形才有中间,这时重心,心坎,外心,垂心,四心合一.有关三角形五心的诗歌三角形五心歌(重外垂内旁)三角形有五颗心,重外垂内和旁心, 五心性质很主要,卖力控制莫记混.重心三条中线定订交,交点地位真奇巧, 交点定名为“重心”,重心性质要清楚明了,重心朋分中线段,数段之比听分晓; 长短之比二比一,灵巧应用控制好.外心三角形有六元素,三个内角有三边.作三边的中垂线,三线订交共一点.此点界说为外心,用它可作外接圆.心坎外心莫记混,内切外接是症结.垂心三角形上作三高,三高必于垂心交.高线朋分三角形,消失直角三对整,直角三角形有十二,构成六对类似形, 四点共圆图中有,仔细剖析可找清.内心三角对应三极点,角角都有等分线, 三线订交定共点,叫做“心坎”有根源;点至三边均等距,可作三角形内切圆, 此圆圆心称“心坎”,如斯界说应当然.。

三角形的五心定理

三角形的五心定理

三角形的五心定理重心定理:三角形的三条中线交于一点,这点到顶点的距离是它到对边中点距离的2倍。

该点叫做三角形的重心。

外心定理:三角形的三边的垂直平分线交于一点。

该点叫做三角形的外心。

垂心定理:三角形的三条高交于一点。

该点叫做三角形的垂心。

内心定理:三角形的三条内角平分线交于一点。

该点叫做三角形的内心。

旁心定理:三角形的一条内角平分线和另外两顶点处的外角平分线交于一点。

该点叫做三角形的旁心。

三角形有三个旁心。

三角形的重心、外心、垂心、内心、旁心称为三角形的五心。

它们都是三角形的重要相关点。

三角形的重心重心三角形的三条中线交于一点.三角形三条中线的交点叫做三角形的重心.定理:三角形重心与顶点的距离等于它与对边中点的距离的两倍.△ABC 的三条中线AD 、BE 、CF 交于P ,则.2===PFCP PE BP PD AP三角形的内心内心和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.例:⊙O 是△ABC 的内切圆,△ABC 是⊙O 的一个外切三角形,点O 叫做△ABC 的内心.三角形的三条内角平分线有一个且只有一个交点,这个交点到三角形三边的距离相等,就是三角形的内心.三角形有且只有一个内切圆.三角形的外心外心经过三角形各顶点的圆叫做三角形的外接圆.外接圆的圆心叫做三角形的外心,这个三角形叫做这个圆的内接三角形.例:⊙O是△ABC的外接圆,△ABC是⊙O的一个内接三角形,点O叫做△ABC的外心.三角形三边的垂直平分线有一个且只有一个交点,这个交点到三角形三个顶点的距离相等,就是三角形的外心.三角形有且只有一个外接圆.三角形的垂心垂心三角形的三条高线交于一点.三角形三条高线的交点叫做三角形的垂心.锐角三角形的垂心在三角形内(图1);直角三角形的垂心在直角的顶点(图2);钝角三角形的垂心在三角形外(图3).三角形的旁心旁心与三角形的一边及其他两边的延长线都相切的圆叫做三角形的旁切圆,旁切圆的圆心叫做三角形的旁心.例:图中⊙O1、⊙O2、⊙O3都是△ABC的旁切圆,点O1、O2、O3叫做△ABC的旁心.三角形的一条内角平分线与其他两个角的外角平分线交于一点,这个交点到三角形一边及其他两边延长线的距离相等,就是三角形的旁心.三角形有三个旁切圆,三个旁心.补充:三角形的中心当且仅当三角形是正三角形的时候,重心、垂心、内心、外心四心合一心,称做正三角形的中心。

三角形的重心、外心、垂心、内心和旁心(五心定理).doc

三角形的重心、外心、垂心、内心和旁心(五心定理).doc

三角形五心定理(三角形的重心,外心,垂心,内心和旁心称Z为三角形的五心)三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理, 旁心定理的总称。

、三角形重心定理三角形的三条边的中线交于一点。

该点叫做三角形的重心。

三中线交于一点可用燕尾定理证明,十分简单。

(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点, 重心因而得名)重心的性质:1、重心到顶点的距离与重心到对边中点的距离Z比为2 : 1o2、重心和三角形3个顶点组成的3个三角形面积相等。

即重心到三条边的距离与三条边的长成反比。

3、重心到三角形3个顶点距离的平方和最小。

4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其重心坐标为((X1 +X2+X3)/3, (Y1 +Y2+Y3)/3o二、三角形外心定理三角形外接圆的圆心,叫做三角形的外心。

外心的性质:仁三角形的三条边的垂直平分线交于一点,该点即为该三角形外心。

2、若0是ZXABC的外心,则ZB0C=2ZA ( ZA为锐角或宜角)或Z BOC=360°-2ZA (ZA 为钝角)。

3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时, 外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。

4、计算外心的坐标应先计算下列临时变量:d1, d2, d3分别是三角形三个顶点连向另外两个顶点向量的点乘od=d2d3, c2=d1d3, c3=d1d2; c=c1+c2+c3o 重心坐标:((c2+c3)/2c, (c1+c3)/2c, (c1+c2)/2c )o5、外心到三顶点的距离相等三、三角形垂心定理三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。

垂心的性质:1>三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。

2、三角形外心O、重心G和垂心H三点共线,且0G : GH=1 : 2。

旁心,垂心,重心,外心,内心

旁心,垂心,重心,外心,内心内心是三条角平分线的交点,它到三边的距离相等。

外心是三条边垂直平分线的交点,它到三个顶点的距离相等。

重心是三条中线的交点,它到顶点的距离是它到对边中点距离的2倍。

垂心是三条高的交点,它能构成很多直角三角形相似。

旁心是一个内角平分线与其不相邻的两个外角平分线的交点,它到三边的距离相等。

(1)重心和三顶点的连线所构成的三个三角形面积相等;(2)外心到三顶点的距离相等;(3)垂心与三顶点这四点中,任一点是其余三点构成的三角形的垂心;(4)内心、旁心到三边距离相等;(5)垂心是三垂足构成的三角形的内心;(6)外心是中点三角形的垂心;(7)中心也是中点三角形的重心;(8)三角形的中点三角形的外心也是其垂足三角形的外心。

三角形的五心一定理重心定理:三角形的三条中线交于一点,这点到顶点的距离是它到对边中点距离的2倍,该点叫做三角形的重心。

外心定理:三角形的三边的垂直平分线交于一点,该点叫做三角形的外心。

垂心定理:三角形的三条高交于一点,该点叫做三角形的垂心。

内心定理:三角形的三内角平分线交于一点,该点叫做三角形的内心。

旁心定理:三角形一内角平分线和另外两顶点处的外角平分线交于一点,该点叫做三角形的旁心。

三角形有三个旁心。

三角形的重心、外心、垂心、内心、旁心称为三角形的五心,它们都是三角形的重要相关点。

上述的几个结论早在欧几里得时代均已被人发现,欧几里得除垂心定理外,均把它们作为重要定理收集在自己的《几何原本》里。

重心物理术语定义:一个物体的各部分都要受到重力的作用。

从效果上看,我们可以认为各部分受到的重力作用集中于一点,这一点叫做物体的重心。

物体的重心位置质量均匀分布的物体(均匀物体),重心的位置只跟物体的形状有关。

有规则形状的物体,它的重心就在几何重心上,例如,均匀细直棒的中心在棒的中点,均匀球体的重心在球心,均匀圆柱的重心在轴线的中点。

不规则物体的重心,可以用悬挂法来确定物体的重心,不一定在物体上。

三角形的重心、外心、垂心、内心和旁心(五心定理)(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改三角形五心定理(三角形的重心,外心,垂心,内心和旁心称之为三角形的五心)三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称。

一、三角形重心定理三角形的三条边的中线交于一点。

该点叫做三角形的重心。

三中线交于一点可用燕尾定理证明,十分简单。

(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质:1、重心到顶点的距离与重心到对边中点的距离之比为2∶1。

2、重心和三角形3个顶点组成的3个三角形面积相等。

即重心到三条边的距离与三条边的长成反比。

3、重心到三角形3个顶点距离的平方和最小。

4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3。

二、三角形外心定理三角形外接圆的圆心,叫做三角形的外心。

外心的性质:1、三角形的三条边的垂直平分线交于一点,该点即为该三角形外心。

2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或∠BOC=360°-2∠A(∠A为钝角)。

3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。

4、计算外心的坐标应先计算下列临时变量:d1,d2,d3分别是三角形三个顶点连向另外两个顶点向量的点乘。

c1=d2d3,c2=d1d3,c3=d1d2;c=c1+c2+c3。

重心坐标:( (c2+c3)/2c,(c1+c3)/2c,(c1+c2)/2c )。

5、外心到三顶点的距离相等三、三角形垂心定理三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。

三角形五心定律

∵∠EAO=∠DAC ∠AEO=∠ADC∴ΔAEO∽ΔADC
∴AE/AO=AD/AC ∴ΔEAD∽ΔOAC ∴∠ACF=∠ADE=∠ABE
又∵∠ABE+∠BAC=90度 ∴∠ACF+∠BAC=90度∴CF⊥AB
因此,垂心定理成立!
内心定理
三角形内切圆的圆心,叫做三角形的内心。
内心的性质:
1、三角形的三条内角平分线交于一点。该点即为三角形的内心。
3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三ቤተ መጻሕፍቲ ባይዱ形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。5PCzVD7HxA
4、计算外心的坐标应先计算下列临时变量:d1,d2,d3分别是三角形三个顶点连向另外两个顶点向量的点乘。c1=d2d3,c2=d1d3,c3=d1d2;c=c1+c2+c3。外心坐标:( (c2+c3>/2c,(c1+c3>/2c,(c1+c2>/2c >。jLBHrnAILg
附:三角形的中心:只有正三角形才有中心,这时重心,内心,外心,垂心,四心合一。
有关诗歌
三角形五心歌<重外垂内旁)
三角形有五颗心,重外垂内和旁心,五心性质很重要,认真掌握莫记混.
重心
三条中线定相交,交点位置真奇巧,交点命名为“重心”,重心性质要明了,
重心分割中线段,数段之比听分晓;长短之比二比一,灵活运用掌握好.
由于任何n边的多边形都可以分割成<n-2)个三角形,所以海伦公式可以用作求多边形面积的公式,但需要先知道分割用的对角线的长度。比如说测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地导出答案。6ewMyirQFL

三角形的、外心、内心、重心、垂心、和旁心(五心定理)

2
三角形的内心
三角形的三条内角平分线交于一点,这点称为三角形的内心(内切圆圆心)
1,三角形的内心到三边的距离相等,都等于三角形内切圆半径;
2,直角三角Байду номын сангаас的内心到边的距离等于两直角边的和减去斜边的差的二分之一
3
三角形的重心
三角形的三条中线交于一点,这点称为三角形的重心
1,三角形的重心到边的中点与到相应顶点的距离之比为1∶2;
2,重心和三角形3个顶点组成的3个三角形面积相等;
3,重心到三角形3个顶点距离的平方和最小
4
三角形的垂心
三角形的三条高交于一点,这点称为三角形的垂心
1,三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍;锐角三角形的垂心到三顶点的距离之和等于其内切圆与外接圆半径之和的2倍;
2,锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的垂心在三角形外;
三角形的外心、内心、重心、垂心、旁心(五心定理)
序号
名称
定义
图形
性质
1
三角形的外心
三角形的三条边的垂直平分线交于一点,这点称为三角形的外心(外接圆圆心)
1,三角形的外心到三角形的三个顶点距离相等.都等于三角形的外接圆半径;
2,锐角三角形的外心在三角形内;
3,直角三角形的外心在斜边中点;
4,钝角三角形的外心在三角形外
5
三角形的旁心
三角形的一条内角平分线与另两个外角平分线交于一点,称为三角形的旁心(旁切圆圆心)
1,每个三角形都有三个旁心;
2,旁心到三边的距离相等
附:三角形的中心:只有正三角形才有中心,这时重心,内心,外心,垂心,四心合一。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重心、外心、内心、垂心、旁心统称为三角形的"五心",由于三角形的五心处在特殊的位置上,因而它们具有丰富而独特的性质,这些性质是解与五心相关问题的基础.
一.重心
三角形的三条中线的交点叫三角形的重心.
如图,设O为三角形的重心,则有
1.重心到顶点的距离与重心到对边中点的距离之比为2:1。

2.重心和三角形3个顶点组成的3个三角形面积相等。

3.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(Z1+Z2+Z3)/3
4.重心和三角形3个顶点的连线的任意一条连线将三角形面积平分。

5.重心到三角形3个顶点距离的平方和最小。

6.重心是三角形内到三边距离之积最大的点。

7.重心在向量中的重要结论:外心
二.外心
三角形三边的垂直平分线的交点叫三角形的外心.(外接圆的圆心)
1.三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合。

2.锐角三角形的外心在三角形内;钝角三角形的外心在三角形外;直角三角形的外心与斜边的中点重合
4.OA=OB=OC=R
5.∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA
6.S△ABC=abc/4R
三.内心
三角形的内心是三角形三条角平分线的交点(或内切圆的圆心)。

三角形的内心的性质
1.三角形的三条角平分线交于一点,该点即为三角形的内心
2.三角形的内心到三边的距离相等,都等于内切圆半径r
3.r=2S/(a+b+c)
4.在Rt△ABC中,∠C=90°,r=(a+b-c)/2.
5.∠BOC = 90 °+∠A/2 ∠BOA = 90 °+∠C/2 ∠AOC = 90 °+∠B/2
6.S△=[(a+b+c)r]/2 (r是内切圆半径)
四.旁心
1 三角形的一条内角平分线与其他两个角的外角平分线交于一点,该点即为三角形的旁心。

2旁心到三角形三边的距离相等。

3三角形有三个旁切圆,三个旁心。

旁心一定在三角形外。

4直角三角形斜边上的旁切圆的半径等于三角形周长的一半。

5∠BI1C=90°-∠A/2.
6AP1=r1·cot(A/2)=(a+b+c)/2.
7∠AI1B=∠C/2.
8S⊿ABC=r1(b+c-a)/2.
9r1=rp/(p-a).
10r1=(p-b)(p-c)/r.
111/r1+1/r2+1/r3=1/r.
12r1=r/(tanB/2)(tanC/2).
五.垂心
三角形的垂心是三角形三边上的高的交点(通常用H表示)。

三角形的垂心的性质
1.锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的垂心在三角形外
2.三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心
3. 垂心O关于三边的对称点,均在△ABC的外接圆上
4.△ABC中,有六组四点共圆,有三组(每组四个)相似的直角三角形,且AO·OD=BO·OE=CO·OF
5. H、A、B、C四点中任一点是其余三点为顶点的三角形的垂心(并称这样的四点为一—垂心组)。

6.△ABC,△ABO,△BCO,△ACO的外接圆是等圆。

7.在非直角三角形中,过O的直线交AB、AC所在直线分别于P、Q,则AB/AP·tanB+ AC/AQ·tanC=tanA+tanB+tanC
8.三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍。

9.设O,H分别为△ABC的外心和垂心,则∠BAO=∠HAC,∠ABH=∠OBC,∠BCO=∠HCA。

10.锐角三角形的垂心到三顶点的距离之和等于其内切圆与外接圆半径之和的2倍。

11.锐角三角形的垂心是垂足三角形的内心;锐角三角形的内接三角形(顶点在原三角形的边上)中,以垂足三角形的周长最短。

相关文档
最新文档